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CS276A
Text Retrieval and Mining 

Lecture 15

Thanks to Thomas Hoffman, Brown University
for sharing many of these slides.

Recap: Clustering 2

Hierarchical clustering
Agglomerative clustering techniques

Evaluation
Term vs. document space clustering
Multi-lingual docs
Feature selection
Labeling

Linear Algebra 
Background

Eigenvalues & Eigenvectors

Eigenvectors (for a square m×m matrix S)

How many eigenvalues are there at most?

only has a non-zero solution if

this is a m-th order equation in λ which can have at 
most m distinct solutions (roots of the characteristic 
polynomial) – can be complex even though S is real.

eigenvalue(right) eigenvector

Example

Matrix-vector multiplication
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S has eigenvalues 3, 2, 0 with
corresponding eigenvectors
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On each eigenvector, S acts as a multiple of the identity
matrix: but as a different multiple on each.

Any vector (say x= ) can be viewed as a combination of
the eigenvectors:               x = 2v1 + 4v2 + 6v3
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Matrix vector multiplication

Thus a matrix-vector multiplication such as Sx (S, 
x as in the previous slide) can be rewritten in 
terms of the eigenvalues/vectors:

Even though x is an arbitrary vector, the action of 
S on x is determined by the eigenvalues/vectors.
Suggestion: the effect of “small” eigenvalues is 
small. 
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Eigenvalues & Eigenvectors

0 and , 2121}2,1{}2,1{}2,1{ =•⇒≠= vvvSv λλλ

For symmetric matrices, eigenvectors for distinct
eigenvalues are orthogonal

ℜ∈⇒==− λλλ TSS and 0 if ,complex for IS

All eigenvalues of a real symmetric matrix are real.

0vSv if then ,0, ≥⇒=≥ℜ∈∀ λλSwww Tn

All eigenvalues of a positive semidefinite matrix
are non-negative

Example

Let

Then

The eigenvalues are 1 and 3 (nonnegative, real). 
The eigenvectors are orthogonal (and real):
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Real, symmetric.

Plug in these values 
and solve for 
eigenvectors.

Let                  be a square matrix with m linearly 
independent eigenvectors (a “non-defective”
matrix)
Theorem: Exists an eigen decomposition

(cf. matrix diagonalization theorem)

Columns of U are eigenvectors of S
Diagonal elements of     are eigenvalues of 

Eigen/diagonal Decomposition

diagonal

Unique 
for 

distinct 
eigen-
values

Diagonal decomposition: why/how
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Then, SU can be written

And S=UΛU–1.

Thus SU=UΛ, or U–1SU=Λ

Diagonal decomposition - example
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Recall
UU–1 =1.

Example continued

Let’s divide U (and multiply U–1) by  2
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Then, S=

Q (Q-1= QT )Λ

Why? Stay tuned …
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If                  is a symmetric matrix:
Theorem: Exists a (unique) eigen
decomposition

where Q is orthogonal:
Q-1= QT

Columns of Q are normalized eigenvectors

Columns are orthogonal.

(everything is real)

Symmetric Eigen Decomposition

TQQS Λ=

Exercise

Examine the symmetric eigen decomposition, if 
any, for each of the following matrices:

⎥
⎦

⎤
⎢
⎣

⎡
− 01

10
⎥
⎦

⎤
⎢
⎣

⎡
01
10

⎥
⎦

⎤
⎢
⎣

⎡
− 32

21
⎥
⎦

⎤
⎢
⎣

⎡
42
22

Time out!

I came to this class to learn about text retrieval 
and mining, not have my linear algebra past 
dredged up again …

But if you want to dredge, Strang’s Applied 
Mathematics is a good place to start.

What do these matrices have to do with text?
Recall m× n term-document matrices …
But everything so far needs square matrices – so 
…

Singular Value Decomposition

TVUA Σ=

m×m m×n V is n×n

For an m× n matrix A of rank r there exists a factorization
(Singular Value Decomposition = SVD) as follows:

The columns of U are orthogonal eigenvectors of AAT.

The columns of V are orthogonal eigenvectors of ATA.

ii λσ =

( )rdiag σσ ...1=Σ Singular values.

Eigenvalues λ1 … λr of AAT are the eigenvalues of ATA.

Singular Value Decomposition

Illustration of SVD dimensions and sparseness

SVD example

Let
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Thus m=3, n=2. Its SVD is
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Typically, the singular values arranged in decreasing order.
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SVD can be used to compute optimal low-rank 
approximations.
Approximation problem: Find Ak of rank k such that

Ak and X are both m×n matrices.
Typically, want k << r.

Low-rank Approximation

Frobenius normF
kXrankX

k XAA −=
=
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)(:

Solution via SVD

Low-rank Approximation

set smallest r-k
singular values to zero

T
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Approximation error

How good (bad) is this approximation?
It’s the best possible, measured by the Frobenius 
norm of the error:

where the σi are ordered such that σi ≥ σi+1.
Suggests why Frobenius error drops as k

increased.

1
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Recall random projection

Completely different method for low-rank 
approximation
Was data-oblivious

SVD-based approximation is data-dependent
Error for random projection depended only on 
start/finish dimensionality

For every distance
Error for SVD-based approximation is for the 
Frobenius norm, not for individual distances

SVD Low-rank approximation

Whereas the term-doc matrix A may have 
m=50000, n=10 million (and rank close to 50000)
We can construct an approximation A100 with rank 
100.

Of all rank 100 matrices, it would have the lowest 
Frobenius error.

Great … but why would we??
Answer: Latent Semantic Indexing

C. Eckart, G. Young, The approximation of a matrix by another of lower rank. 
Psychometrika, 1, 211-218, 1936.

Latent Semantic 
Analysis via SVD
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What it is

From term-doc matrix A, we compute the 
approximation Ak.

There is a row for each term and a column for 
each doc in Ak

Thus docs live in a space of k<<r dimensions
These dimensions are not the original axes

But why?

Vector Space Model: Pros

Automatic selection of index terms
Partial matching of queries and documents 
(dealing with the case where no document contains all 
search terms)
Ranking according to similarity score (dealing 
with large result sets)
Term weighting schemes (improves retrieval 
performance)
Various extensions

Document clustering
Relevance feedback (modifying query vector)

Geometric foundation

Problems with Lexical Semantics

Ambiguity and association in natural language
Polysemy: Words often have a multitude of meanings and 
different types of usage (more urgent for very heterogeneous 
collections).
The vector space model is unable to discriminate between 
different meanings of the same word.

Synonymy: Different terms may have an identical or a 
similar meaning (weaker: words indicating the same topic).
No associations between words are made in the vector 
space representation.

Polysemy and Context

Document similarity on single word level: 
polysemy and context

car
company

•••
dodge
ford

meaning 2

ring
jupiter

•••
space

voyagermeaning 1
…

saturn
...

…
planet

...

contribution to similarity, if 
used in 1st meaning, but not 
if in 2nd

Latent Semantic Analysis

Perform a low-rank approximation of document-term 
matrix (typical rank 100-300)
General idea

Map documents (and terms) to a low-dimensional
representation.
Design a mapping such that the low-dimensional space 
reflects semantic associations (latent semantic space).
Compute document similarity based on the inner product in 
this latent semantic space

Goals
Similar terms map to similar location in low dimensional 
space
Noise reduction by dimension reduction

Latent Semantic Analysis

Latent semantic space: illustrating example

courtesy of Susan Dumais
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Performing the maps

Each row and column of A gets mapped into the 
k-dimensional LSI space, by the SVD.
Claim – this is not only the mapping with the best 
(Frobenius error) approximation to A, but in fact 
improves retrieval.
A query q is also mapped into this space, by

Query NOT a sparse vector.

1−Σ= kk
T

k Uqq

Empirical evidence

Experiments on TREC 1/2/3 – Dumais
Lanczos SVD code (available on netlib) due to 
Berry used in these expts

Running times of ~ one day on tens of thousands 
of docs

Dimensions – various values 250-350 reported
(Under 200 reported unsatisfactory)

Generally expect recall to improve – what about 
precision?

Empirical evidence

Precision at or above median TREC precision
Top scorer on almost 20% of TREC topics

Slightly better on average than straight vector 
spaces
Effect of dimensionality:

0.374346
0.371300
0.367250
PrecisionDimensions

Failure modes

Negated phrases
TREC topics sometimes negate certain 
query/terms phrases – automatic conversion of 
topics to 

Boolean queries
As usual, freetext/vector space syntax of LSI 
queries precludes (say) “Find any doc having to 
do with the following 5 companies”

See Dumais for more.

But why is this clustering?

We’ve talked about docs, queries, retrieval and 
precision here.
What does this have to do with clustering?
Intuition: Dimension reduction through LSI brings 
together “related” axes in the vector space.

Intuition from block matrices

Block 1

Block 2

…

Block k
0’s

0’s

= non-zero entries.

m
terms

n documents

What’s the rank of this matrix?
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Intuition from block matrices

Block 1

Block 2

…

Block k
0’s

0’s
m
terms

n documents

Vocabulary partitioned into k topics (clusters); 
each doc discusses only one topic.

Intuition from block matrices

Block 1

Block 2

…

Block k
0’s

0’s

= non-zero entries.

m
terms

n documents

What’s the best rank-k
approximation to this matrix?

Intuition from block matrices

Block 1

Block 2

…

Block k
Few nonzero entries

Few nonzero entries

wiper
tire
V6

car
automobile

1
1
0

0

Likely there’s a good rank-k
approximation to this matrix.

Simplistic picture
Topic 1

Topic 2

Topic 3

Some wild extrapolation

The “dimensionality” of a corpus is the number of 
distinct topics represented in it.
More mathematical wild extrapolation:

if A has a rank k approximation of low Frobenius 
error, then there are no more than k distinct topics 
in the corpus.

LSI has many other applications

In many settings in pattern recognition and 
retrieval, we have a feature-object matrix.

For text, the terms are features and the docs are 
objects.
Could be opinions and users … more in 276B.

This matrix may be redundant in dimensionality.
Can work with low-rank approximation.
If entries are missing (e.g., users’ opinions), can 
recover if dimensionality is low.

Powerful general analytical technique
Close, principled analog to clustering methods.
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Resources

http://www.cs.utk.edu/~berry/lsi++/
http://lsi.argreenhouse.com/lsi/LSIpapers.html
Dumais (1993) LSI meets TREC: A status report.
Dumais (1994) Latent Semantic Indexing (LSI) and 
TREC-2.
Dumais (1995) Using LSI for information filtering: 
TREC-3 experiments.
M. Berry, S. Dumais and G. O'Brien. Using linear 
algebra for intelligent information retrieval. SIAM 
Review, 37(4):573--595, 1995.


