CS276A
Text Retrieval and Mining

Lecture 15

Recap: Clustering 2

= Hierarchical clustering

= Agglomerative clustering techniques
= Evaluation
= Term vs. document space clustering
= Multi-lingual docs
= Feature selection
= Labeling

Linear Algebra
Background

Eigenvalues & Eigenvectors

= Eigenvectors (for a square mxm matrix S)

Sy = Av

,\ Example
(right) eigenvector  eigenvalue (i 702) (D B (i) B ZG)

veR™£0 AER

= How many eigenvalues are there at most?
v=Av <= (S-A)v=0

only has a non-zero solution if |[S — AL =0

this is a m-th order equation in A which can have at
most m distinct solutions (roots of the characteristic
polynomial) - can be complex even though S is real.

Matrix-vector multiplication

300
s={o0 2 0 has eigenvalues 3, 2, 0 with
00 0 corresponding eigenvectors
1 0 0
v, =0 v, =1 v;=|0
0 0 1

On each eigenvector, S acts as a multiple of the identity
matrix: but as a different multiple on each.

Any vector (say x= H) can be viewed as a combination of
the eigenvectors: X=2v;+4v,+ 6v;

Matrix vector multiplication

= Thus a matrix-vector multiplication such as Sx (S,
X as in the previous slide) can be rewritten in
terms of the eigenvalues/vectors:

Sx=S2v, +4v, +6v,)
SX =28V, +4Sv, +6Sv,=24V, + 44V, + 64.V,

= Even though x is an arbitrary vector, the action of
S on x is determined by the eigenvalues/vectors.

= Suggestion: the effect of “small” eigenvalues is
small.




Eigenvalues & Eigenvectors

]
For symmetric matrices, eigenvectors for distinct
eigenvalues are orthogonal

Vo =AgoVyay,and 4 # 4, =V ev, =0
All eigenvalues of a real symmetric matrix are real.

for complex 4,if [S—Al|=0andS=S" = 1R

All eigenvalues of a positive semidefinite matrix
are non-negative

vweR", W'Sw> 0, thenif Sv=Av=1>0

Example

32[2 1}
2

1

= Then 2—1
S-Al ={

=(2-4)*-1=0.
1 2—1} @=4

= The eigenvalues are 1 and 3 (nonnegative, real).
= The eigenvectors are orthogonal (and real):

1 1 Plug in these values
and solve for
-1 1 eigenvectors.

Eigen/diagonal Decomposition

= Let S € R™*™ be a square matrix with m linearly
independent eigenvectors (a “non-defective”

matrix) Uf:jque
or

= Theorem: Exists an eigen decomposition{ distinct

g — UAUT diagonal eigen-

values
= (cf. matrix diagonalization theorem)

= Columns of U are eigenvectors of S
= Diagonal elements of A are eigenvalues of §
A =diag( A1, .5 Am)y A > g

Diagonal decomposition: why/how

Let U have the eigenvectors as columns: U —{v, A

Then, SU can be written

2 -
SU=S|v, .. V,[=|4Y, ... A4V, [=|V, .. V,
o |

Thus SU=UA, or U-1SU=A

And S=UAUL.

Diagonal decomposition - example
]

2 1
Recall S:1 2;/11:1,/12:3.

) 1 1 1 1
The eigenvectors and form U =
1 1 -1 1
1/2 -1/2
Inverting, we have U ' = @
° {1/2 1/2 } uu-! =1.

1 11 0f1/2 -1/2
Then, S=UAU 1=
-1 110 3(1/2 1/2

Example continued

Let's divide U (and multiply U-) by~/2

then oo | | VN2 U2 0)1N2 —1/42
’ “1/N2 120 3142 1/42
Q A @'=Q")
[Why? Stay tuned ... |




Symmetric Eigen Decomposition

s If S € R™*™ is a symmetric matrix:

= Theorem: Exists a (unique) eigen
decomposition S =QAQ"

= where Q is orthogonal:
= Q'=Q7
= Columns of Q are normalized eigenvectors
= Columns are orthogonal.

= (everything is real)

Exercise

= Examine the symmetric eigen decomposition, if
any, for each of the following matrices:

R e e

Time out!
|

= | came to this class to learn about text retrieval
and mining, not have my linear algebra past
dredged up again ...

= But if you want to dredge, Strang’s Applied
Mathematics is a good place to start.

= What do these matrices have to do with text?
= Recall mx n term-document matrices ...
= But everything so far needs square matrices — so

Singular Value Decomposition

For an mx n matrix A of rank r there exists a factorization
(Singular Value Decomposition = SVD) as follows:
A=UzVT

‘mmemxn‘ ‘Vis nxn‘

The columns of U are orthogonal eigenvectors of AAT.
The columns of V are orthogonal eigenvectors of ATA.
Eigenvalues A, ... A, of AAT are the eigenvalues of ATA.
o = \/Z
£ = diag(o,...0, ) —==={Singuiar vaiues)

Singular Value Decomposition

= lllustration of SVD dimensions and sparseness

SVD example
1 -1

Let A=|0 1
10

Thus m=3, n=2. Its SVD is

0 2/46 1310
/N2 -1/46 1/43 |0 \g{l/ﬁ 1/\/}}
N2 16 —1/B] o o /¥E SN2

Typically, the singular values arranged in decreasing order.




Low-rank Approximation

= SVD can be used to compute optimal low-rank
approximations.

= Approximation problem: Find A, of rank k such that

Ak = mlIl HA_ XHP* Frobenius norm

X:rank (X )=k

A, and X are both mxn matrices.
Typically, want k << r.

Low-rank Approximation

= Solution via SVD

A =U diag(o,....,0,,0,...0V"

set smallest r-k
singular values to zero

k
Ak = Z O'-U»V-T_i column notation: sum
i=1 of rank 1 matrices

Approximation error

= How good (bad) is this approximation?

= It's the best possible, measured by the Frobenius
norm of the error:

min_[A-X[. =[A-Al; = o,
X:rank (X )=k
where the o; are ordered such that o, > o, ;.

Suggests why Frobenius error drops as k
increased.

Recall random projection

= Completely different method for low-rank
approximation

= Was data-oblivious
= SVD-based approximation is data-dependent
= Error for random projection depended only on
start/finish dimensionality
= For every distance
= Error for SVD-based approximation is for the
Frobenius norm, not for individual distances

SVD Low-rank approximation

= Whereas the term-doc matrix A may have
m=50000, n=10 million (and rank close to 50000)

= We can construct an approximation A, ,, with rank
100.

= Of all rank 100 matrices, it would have the lowest
Frobenius error.

= Great ... but why would we??
= Answer: Latent Semantic Indexing

C. Eckart, G. Young, The approximation of a matrix by another of lower rank.
Psychometrika, 1, 211-218, 1936.

Latent Semantic
Analysis via SVD




What it is

= From term-doc matrix A, we compute the
approximation A,

= There is a row for each term and a column for
each doc in A,
= Thus docs live in a space of k<<r dimensions
= These dimensions are not the original axes
= But why?

Vector Space Model: Pros

= Automatic selection of index terms

= Partial matching of queries and documents
(dealing with the case where no document contains all
search terms)

= Ranking according to similarity score (dealing
with large result sets)

= Term weighting schemes (improves retrieval
performance)

= Various extensions

= Document clustering

= Relevance feedback (modifying query vector)
= Geometric foundation

Problems with Lexical Semantics
|

= Ambiguity and association in natural language
= Polysemy: Words often have a multitude of meanings and
different types of usage (more urgent for very heterogeneous
collections).
= The vector space model is unable to discriminate between
different meanings of the same word.

S, (d, q) < ms(.{(d_: q))

= Synonymy: Different terms may have an identical or a
similar meaning (weaker: words indicating the same topic).

= No associations between words are made in the vector
space representation.

sim, . (d, g) > cos{.{{rf: q))

Polysemy and Context

= Document similarity on single word level:
polysemy and context

ring

jupiter
space

voyager

_—

meaning 1

saturn

meaning 2 con‘f]%ran
y

contribution to similarity, if dodge
used in 15t meaning, but not or

if in 2nd

Latent Semantic Analysis

= Perform a low-rank approximation of document-term
matrix (typical rank 100-300)
= General idea
= Map documents (and terms) to a low-dimensional
representation.
= Design a mapping such that the low-dimensional space
reflects semantic associations (latent semantic space).
= Compute document similarity based on the inner product in
this latent semantic space
= Goals
= Similar terms map to similar location in low dimensional
space
= Noise reduction by dimension reduction

Latent Semantic Analysis
= Latent semantic space: illustrating example
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Laptop LSI Dimension 1

courtesy of Susan Dumais




Performing the maps

]
= Each row and column of A gets mapped into the
k-dimensional LSI space, by the SVD.

= Claim — this is not only the mapping with the best
(Frobenius error) approximation to A, but in fact
improves retrieval.

= A query q is also mapped into this space, by
gy = qTUkZEl

= Query NOT a sparse vector.

Empirical evidence
]
= Experiments on TREC 1/2/3 — Dumais
= Lanczos SVD code (available on netlib) due to
Berry used in these expts

= Running times of ~ one day on tens of thousands
of docs

= Dimensions — various values 250-350 reported
= (Under 200 reported unsatisfactory)

= Generally expect recall to improve — what about
precision?

Empirical evidence
e ———— ]
= Precision at or above median TREC precision
= Top scorer on almost 20% of TREC topics

= Slightly better on average than straight vector
spaces

= Effect of dimensionality:

Dimensions | Precision

250 0.367
300 0.371
346 0.374

Failure modes
—————————— ]
= Negated phrases
= TREC topics sometimes negate certain
query/terms phrases — automatic conversion of
topics to
= Boolean queries
= As usual, freetext/vector space syntax of LSI
queries precludes (say) “Find any doc having to
do with the following 5 companies”

= See Dumais for more.

But why is this clustering?

—
= We've talked about docs, queries, retrieval and
precision here.
= What does this have to do with clustering?

= Intuition: Dimension reduction through LSI brings
together “related” axes in the vector space.

Intuition from block matrices

n documents

]
Block 1 What'’s the rank of this matdix?‘

Block 2 0's

terms

0's ‘
| Block k

[] = non-zero entries.




Intuition from block matrices Intuition from block matrices

— —
n documents n documents
. e What's the best rank-k
¢ oc approximation to this matrix?
Block 2 0's Block 2 0's
m m
terms terms
0's 0’s ‘
Block k | Block k

Vocabulary partitioned into k topics (clusters);

each doc discusses only one topic. [ = non-zero entries.

Intuition from block matrices Simplistic picture
e —— ]
Likely there’s a good rank-k Topic 1
approximation to this matrix.
wiper
tire Block 1
V6
ok 2 Few nonzero entries
Few nonzero entries
Block k
car 1/ 0|
automobile| 0 1 .
Topic 3
Some wild extrapolation LSI has many other applications
] ]
= The “dimensionality” of a corpus is the number of = In many settings in pattern recognition and
distinct topics represented in it. retrieval, we have a feature-object matrix.
= More mathematical wild extrapolation: = For text, the terms are features and the docs are
= if A has a rank k approximation of low Frobenius objects.
error, then there are no more than k distinct topics = Could be opinions and users ... more in 276B.
in the corpus. = This matrix may be redundant in dimensionality.
= Can work with low-rank approximation.
= If entries are missing (e.g., users’ opinions), can
recover if dimensionality is low.
= Powerful general analytical technique
= Close, principled analog to clustering methods.




Resources
e ——————————— ]
= http://www.cs.utk.edu/~berry/lsi++/
= http://Isi.argreenhouse.com/Isi/LSIpapers.html
= Dumais (1993) LS| meets TREC: A status report.
= Dumais (1994) Latent Semantic Indexing (LSI) and
TREC-2.
= Dumais (1995) Using LSI for information filtering:
TREC-3 experiments.
= M. Berry, S. Dumais and G. O'Brien. Using linear
algebra for intelligent information retrieval. SIAM
Review, 37(4):573--595, 1995.




