
1

CS276A
Text Retrieval and Mining

Lecture 14

Recap

Why cluster documents?
For improving recall in search applications
For speeding up vector space retrieval
Navigation
Presentation of search results

k-means basic iteration
At the start of the iteration, we have k centroids.
Each doc assigned to the nearest centroid.
All docs assigned to the same centroid are
averaged to compute a new centroid;

thus have k new centroids.

“The Curse of Dimensionality”

Why document clustering is difficult
While clustering looks intuitive in 2 dimensions,
many of our applications involve 10,000 or more
dimensions…
High-dimensional spaces look different: the
probability of random points being close drops
quickly as the dimensionality grows.
One way to look at it: in large-dimension spaces,
random vectors are almost all almost
perpendicular. Why?

Next class we will mention methods of
dimensionality reduction … important for text

Today’s Topics: Clustering 2

Hierarchical clustering
Agglomerative clustering techniques

Evaluation
Term vs. document space clustering
Multi-lingual docs
Feature selection
Labeling

Hierarchical Clustering

Build a tree-based hierarchical taxonomy (dendrogram)
from a set of unlabeled examples.

One option to produce a hierarchical clustering is
recursive application of a partitional clustering algorithm to
produce a hierarchical clustering.

animal

vertebrate

fish reptile amphib. mammal worm insect crustacean

invertebrate

Hierarchical Agglomerative
Clustering (HAC)

Assumes a similarity function for determining the
similarity of two instances.
Starts with all instances in a separate cluster and
then repeatedly joins the two clusters that are
most similar until there is only one cluster.
The history of merging forms a binary tree or
hierarchy.

2

• Dendrogram: Decomposes
data objects into a several
levels of nested partitioning
(tree of clusters).

• Clustering of the data
objects is obtained by
cutting the dendrogram at
the desired level, then each
connectedconnected component
forms a cluster.

A Dendogram: Hierarchical Clustering HAC Algorithm

Start with all instances in their own cluster.
Until there is only one cluster:

Among the current clusters, determine the two
clusters, ci and cj, that are most similar.

Replace ci and cj with a single cluster ci∪ cj

Agglomerative (bottom-up):
Start with each document being a single cluster.
Eventually all documents belong to the same cluster.

Divisive (top-down):
Start with all documents belong to the same cluster.
Eventually each node forms a cluster on its own.

Does not require the number of clusters k in advance

Needs a termination/readout condition
The final mode in both Agglomerative and Divisive is of no use.

Hierarchical Clustering algorithms Dendrogram: Document Example

As clusters agglomerate, docs likely to fall into a
hierarchy of “topics” or concepts.

d1

d2

d3

d4

d5

d1,d
2

d4,d
5

d3

d3,d4,d
5

“Closest pair” of clusters

Many variants to defining closest pair of clusters
“Center of gravity”

Clusters whose centroids (centers of gravity) are
the most cosine-similar

Average-link
Average cosine between pairs of elements

Single-link
Similarity of the most cosine-similar (single-link)

Complete-link
Similarity of the “furthest” points, the least cosine-
similar

Hierarchical Clustering

Key problem: as you build clusters, how do you
represent the location of each cluster, to tell
which pair of clusters is closest?
Euclidean case: each cluster has a centroid =
average of its points.

Measure intercluster distances by distances of
centroids.

3

Single Link Agglomerative
Clustering

Use maximum similarity of pairs:

Can result in “straggly” (long and thin) clusters
due to chaining effect.

Appropriate in some domains, such as clustering
islands: “Hawai’i clusters”

After merging ci and cj, the similarity of the
resulting cluster to another cluster, ck, is:

),(max),(
,

yxsimccsim
ji cycxji ∈∈

=

)),(),,(max()),((kjkikji ccsimccsimcccsim =∪

Single Link Example

Complete Link Agglomerative
Clustering

Use minimum similarity of pairs:

Makes “tighter,” spherical clusters that are
typically preferable.
After merging ci and cj, the similarity of the
resulting cluster to another cluster, ck, is:

),(min),(
,

yxsimccsim
ji cycxji ∈∈

=

)),(),,(min()),((kjkikji ccsimccsimcccsim =∪

Complete Link Example

Computational Complexity

In the first iteration, all HAC methods need to
compute similarity of all pairs of n individual
instances which is O(n2).
In each of the subsequent n−2 merging
iterations, it must compute the distance between
the most recently created cluster and all other
existing clusters.

Since we can just store unchanged similarities
In order to maintain an overall O(n2)
performance, computing similarity to each other
cluster must be done in constant time.

Else O(n2 log n) or O(n3) if done naively

Key notion: cluster representative

We want a notion of a representative point in a
cluster
Representative should be some sort of “typical”
or central point in the cluster, e.g.,

point inducing smallest radii to docs in cluster
smallest squared distances, etc.
point that is the “average” of all docs in the cluster

Centroid or center of gravity

4

Example: n=6, k=3, closest pair of
centroids

d1 d2

d3

d4

d5

d6

Centroid after first step.

Centroid after
second step.

Outliers in centroid computation

Can ignore outliers when computing centroid.
What is an outlier?

Lots of statistical definitions, e.g.
moment of point to centroid > M × some cluster moment.

Centroid
Outlier

Say 10.

Group Average Agglomerative
Clustering

Use average similarity across all pairs within the merged
cluster to measure the similarity of two clusters.

Compromise between single and complete link.
Two options:

Averaged across all ordered pairs in the merged cluster
Averaged over all pairs between the two original clusters

Some previous work has used one of these options; some the
other. No clear difference in efficacy

∑ ∑
∪∈ ≠∪∈−∪∪

=
)(:)(

),(
)1(

1),(
ji jiccx xyccyjiji

ji yxsim
cccc

ccsim
r rrr

rr

Computing Group Average
Similarity

Assume cosine similarity and normalized vectors
with unit length.
Always maintain sum of vectors in each cluster.

Compute similarity of clusters in constant time:

∑
∈

=
jcx

j xcs
r

rr)(

)1||||)(|||(|
|)||(|))()(())()((

),(
−++

+−+•+
=

jiji

jijiji
ji cccc

cccscscscs
ccsim

rrrr

Efficiency: Medoid As Cluster
Representative

The centroid does not have to be a document.
Medoid: A cluster representative that is one of
the documents
For example: the document closest to the
centroid
One reason this is useful

Consider the representative of a large cluster
(>1000 documents)
The centroid of this cluster will be a dense vector
The medoid of this cluster will be a sparse vector

Compare: mean/centroid vs. median/medoid

Exercise

Consider agglomerative clustering on n points on
a line. Explain how you could avoid n3 distance
computations - how many will your scheme use?

5

Efficiency: “Using approximations”

In standard algorithm, must find closest pair of
centroids at each step
Approximation: instead, find nearly closest pair

use some data structure that makes this
approximation easier to maintain
simplistic example: maintain closest pair based on
distances in projection on a random line

Random line

Term vs. document space
So far, we clustered docs based on their
similarities in term space
For some applications, e.g., topic analysis for
inducing navigation structures, can “dualize”:

use docs as axes
represent (some) terms as vectors
proximity based on co-occurrence of terms in docs
now clustering terms, not docs

Term vs. document space

Cosine computation
Constant for docs in term space
Grows linearly with corpus size for terms in doc
space

Cluster labeling
clusters have clean descriptions in terms of noun
phrase co-occurrence
Easier labeling?

Application of term clusters
Sometimes we want term clusters (example?)
If we need doc clusters, left with problem of
binding docs to these clusters

Multi-lingual docs

E.g., Canadian government docs.
Every doc in English and equivalent French.

Must cluster by concepts rather than language
Simplest: pad docs in one language with
dictionary equivalents in the other

thus each doc has a representation in both
languages

Axes are terms in both languages

Feature selection

Which terms to use as axes for vector space?
Large body of (ongoing) research
IDF is a form of feature selection

Can exaggerate noise e.g., mis-spellings
Better is to use highest weight mid-frequency
words – the most discriminating terms
Pseudo-linguistic heuristics, e.g.,

drop stop-words
stemming/lemmatization
use only nouns/noun phrases

Good clustering should “figure out” some of these

Major issue - labeling

After clustering algorithm finds clusters - how can
they be useful to the end user?
Need pithy label for each cluster

In search results, say “Animal” or “Car” in the
jaguar example.
In topic trees (Yahoo), need navigational cues.

Often done by hand, a posteriori.

6

How to Label Clusters

Show titles of typical documents
Titles are easy to scan
Authors create them for quick scanning!
But you can only show a few titles which may not
fully represent cluster

Show words/phrases prominent in cluster
More likely to fully represent cluster
Use distinguishing words/phrases

Differential labeling

But harder to scan

Labeling

Common heuristics - list 5-10 most frequent
terms in the centroid vector.

Drop stop-words; stem.
Differential labeling by frequent terms

Within a collection “Computers”, clusters all have
the word computer as frequent term.
Discriminant analysis of centroids.

Perhaps better: distinctive noun phrase

Evaluation of clustering
Perhaps the most substantive issue in data
mining in general:

how do you measure goodness?
Most measures focus on computational efficiency

Time and space
For application of clustering to search:

Measure retrieval effectiveness

Approaches to evaluating

Anecdotal
User inspection
Ground “truth” comparison

Cluster retrieval

Purely quantitative measures
Probability of generating clusters found
Average distance between cluster members

Microeconomic / utility

Anecdotal evaluation

Probably the commonest (and surely the easiest)
“I wrote this clustering algorithm and look what it
found!”

No benchmarks, no comparison possible
Any clustering algorithm will pick up the easy
stuff like partition by languages
Generally, unclear scientific value.

User inspection

Induce a set of clusters or a navigation tree
Have subject matter experts evaluate the results
and score them

some degree of subjectivity
Often combined with search results clustering
Not clear how reproducible across tests.
Expensive / time-consuming

7

Ground “truth” comparison

Take a union of docs from a taxonomy & cluster
Yahoo!, ODP, newspaper sections …

Compare clustering results to baseline
e.g., 80% of the clusters found map “cleanly” to
taxonomy nodes
How would we measure this?

But is it the “right” answer?
There can be several equally right answers

For the docs given, the static prior taxonomy may
be incomplete/wrong in places

the clustering algorithm may have gotten right
things not in the static taxonomy

“Subjective”

Ground truth comparison

Divergent goals
Static taxonomy designed to be the “right”
navigation structure

somewhat independent of corpus at hand
Clusters found have to do with vagaries of corpus
Also, docs put in a taxonomy node may not be
the most representative ones for that topic

cf Yahoo!

Microeconomic viewpoint

Anything - including clustering - is only as good
as the economic utility it provides
For clustering: net economic gain produced by an
approach (vs. another approach)
Strive for a concrete optimization problem
Examples

recommendation systems
clock time for interactive search

expensive

Evaluation example: Cluster retrieval

Ad-hoc retrieval
Cluster docs in returned set
Identify best cluster & only retrieve docs from it
How do various clustering methods affect the
quality of what’s retrieved?
Concrete measure of quality:

Precision as measured by user judgements for
these queries

Done with TREC queries

Evaluation

Compare two IR algorithms
1. send query, present ranked results
2. send query, cluster results, present clusters

Experiment was simulated (no users)
Results were clustered into 5 clusters
Clusters were ranked according to percentage
relevant documents
Documents within clusters were ranked according
to similarity to query

Sim-Ranked vs. Cluster-Ranked

8

Relevance Density of Clusters Buckshot Algorithm

Another way to an efficient implementation:
Cluster a sample, then assign the entire set

Buckshot combines HAC and K-Means
clustering.
First randomly take a sample of instances of size
√n
Run group-average HAC on this sample, which
takes only O(n) time.
Use the results of HAC as initial seeds for K-
means.
Overall algorithm is O(n) and avoids problems of
bad seed selection.

Uses HAC to bootstrap K-means

Cut where
You have k
clusters

Bisecting K-means
Divisive hierarchical clustering method using K-means
For I=1 to k-1 do {

Pick a leaf cluster C to split
For J=1 to ITER do {

Use K-means to split C into two sub-clusters, C1 and C2

Choose the best of the above splits and make it permanent}
}

}

Steinbach et al. suggest HAC is better than k-means but
Bisecting K-means is better than HAC for their text
experiments

Exercises

Consider running 2-means clustering on a
corpus, each doc of which is from one of two
different languages. What are the two clusters
we would expect to see?
Is agglomerative clustering likely to produce
different results to the above?
Is the centroid of normalized vectors normalized?
Suppose a run of agglomerative clustering finds
k=7 to have the highest value amongst all k.
Have we found the highest-value clustering
amongst all clusterings with k=7?

Resources

Scatter/Gather: A Cluster-based Approach to
Browsing Large Document Collections (1992)

Cutting/Karger/Pedersen/Tukey

http://citeseer.ist.psu.edu/cutting92scattergather.html

Data Clustering: A Review (1999)
Jain/Murty/Flynn

http://citeseer.ist.psu.edu/jain99data.html

A Comparison of Document Clustering
Techniques

Michael Steinbach, George Karypis and Vipin Kumar.
TextMining Workshop. KDD. 2000.

Resources

Initialization of iterative refinement clustering
algorithms. (1998)

Fayyad, Reina, and Bradley

http://citeseer.ist.psu.edu/fayyad98initialization.html

Scaling Clustering Algorithms to Large
Databases (1998)

Bradley, Fayyad, and Reina

http://citeseer.ist.psu.edu/bradley98scaling.html

