
1

CS276A
Text Retrieval and Mining

Lecture 13

[Borrows slides from Ray Mooney and Soumen
Chakrabarti]

Recap: The Language Model
Approach to IR

query

d1

d2

dn

…

Information
need

document collection

generationgeneration

)|(dMQP 1dM

2dM

…

ndM
Consider probability of generating the query
using a language model derived from each
document

Usually mixed with a “general model”
A higher probability means a better match
Comparisons with vector space IR similarity

Today’s Topic: Clustering 1

Document clustering
Motivations
Document representations
Success criteria

Clustering algorithms
K-means
Model-based clustering (EM clustering)

What is clustering?

Clustering is the process of grouping a set of
physical or abstract objects into classes of similar
objects

It is the commonest form of unsupervised learning
Unsupervised learning = learning from raw data, as
opposed to supervised data where the correct
classification of examples is given

It is a common and important task that finds many
applications in IR and other places

Why cluster documents?

Whole corpus analysis/navigation
Better user interface

For improving recall in search applications
Better search results

For better navigation of search results
Effective “user recall” will be higher

For speeding up vector space retrieval
Faster search

Navigating document collections

Standard IR is like a book index
Document clusters are like a table of contents
People find having a table of contents useful

Index
Aardvark, 15
Blueberry, 200
Capricorn, 1, 45-55
Dog, 79-99
Egypt, 65
Falafel, 78-90
Giraffes, 45-59

…

Table of Contents
1. Science of Cognition

1.a. Motivations
1.a.i. Intellectual Curiosity
1.a.ii. Practical Applications

1.b. History of Cognitive Psychology
2. The Neural Basis of Cognition

2.a. The Nervous System
2.b. Organization of the Brain
2.c. The Visual System

3. Perception and Attention
3.a. Sensory Memory
3.b. Attention and Sensory Information Processing

2

Corpus analysis/navigation

Given a corpus, partition it into groups of related
docs

Recursively, can induce a tree of topics
Allows user to browse through corpus to find
information
Crucial need: meaningful labels for topic nodes.

Yahoo!: manual hierarchy
Often not available for new document collection

Yahoo! Hierarchy

dairy
crops

agronomyforestry

AI

HCI
craft

missions

botany

evolution

cell
magnetism

relativity

courses

agriculture biology physics CS space

...

… (30)

www.yahoo.com/Science

... ...

Scatter/Gather: Cutting, Karger, and Pedersen
For visualizing a document collection and
its themes

Wise et al, “Visualizing the non-visual” PNNL
ThemeScapes, Cartia

[Mountain height = cluster size]

For improving search recall

Cluster hypothesis - Documents with similar text are
related
Therefore, to improve search recall:

Cluster docs in corpus a priori
When a query matches a doc D, also return other
docs in the cluster containing D

Hope if we do this: The query “car” will also return
docs containing automobile

Because clustering grouped together docs
containing car with those containing automobile.

Why might this happen?

For better navigation of search results

For grouping search results thematically
clusty.com / Vivisimo

3

For better navigation of search results

And more visually: Kartoo.com

Navigating search results (2)

One can also view grouping documents with the
same sense of a word as clustering
Given the results of a search (say Jaguar, or
NLP), partition into groups of related docs
Can be viewed as a form of word sense
disambiguation
E.g., jaguar may have senses:

The car company
The animal
The football team
The video game

Recall query reformulation/expansion discussion

For visualizing bookmarked pages

Robertson, “Data Mountain” (Microsoft)

For speeding up vector space
retrieval

In vector space retrieval, we must find nearest
doc vectors to query vector
This entails finding the similarity of the query to
every doc – slow (for some applications)
By clustering docs in corpus a priori

find nearest docs in cluster(s) close to query
inexact but avoids exhaustive similarity
computation

Exercise: Make up a simple
example with points on a line in 2
clusters where this inexactness
shows up.

Speeding up vector space retrieval

Recall lecture 7 on leaders and followers
Effectively a fast simple clustering algorithm where
documents are assigned to closest item in a set of
randomly chosen leaders

We could instead find natural clusters in the data
Cluster documents into k clusters
Retrieve closest cluster ci to query
Rank documents in ci and return to user

What Is A Good Clustering?

Internal criterion: A good clustering will produce
high quality clusters in which:

the intra-class (that is, intra-cluster) similarity is
high
the inter-class similarity is low
The measured quality of a clustering depends on
both the document representation and the
similarity measure used

External criterion: The quality of a clustering is
also measured by its ability to discover some or
all of the hidden patterns or latent classes

Assessable with gold standard data

4

External Evaluation of Cluster Quality

Assesses clustering with respect to ground truth
Assume that there are C gold standard classes,
while our clustering algorithms produce k clusters,
π1, π2, …, πk with ni members.
Simple measure: purity, the ratio between the
dominant class in the cluster πi and the size of
cluster πi

Others are entropy of classes in clusters (or
mutual information between classes and clusters)

Cjn
n

Purity ijj
i

i ∈=)(max1)(π

• •
• •
• •

• •
• •

• •

• •
• •
•

Cluster I Cluster II Cluster III

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6

Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5

Purity

Issues for clustering

Representation for clustering
Document representation

Vector space? Normalization?

Need a notion of similarity/distance
How many clusters?

Fixed a priori?
Completely data driven?

Avoid “trivial” clusters - too large or small
In an application, if a cluster's too large, then for navigation
purposes you've wasted an extra user click without
whittling down the set of documents much.

What makes docs “related”?

Ideal: semantic similarity.
Practical: statistical similarity

We will use cosine similarity.
Docs as vectors.
For many algorithms, easier to think in terms of a
distance (rather than similarity) between docs.
We will describe algorithms in terms of cosine
similarity.

. Aka

1

)(

:,normalized of similarityCosine

,

product inner normalized

∑
=

×=
m

i ikwijwDDsim

DD

kj

kj

Recall doc as vector

Each doc j is a vector of tf×idf values, one
component for each term.
Can normalize to unit length.
So we have a vector space

terms are axes - aka features
n docs live in this space
even with stemming, may have 20,000+
dimensions
do we really want to use all terms?

Different from using vector space for search. Why?

Intuition

Postulate: Documents that are “close together”
in vector space talk about the same things.

t 1

D
2

D1

D3

D4

t 3

t 2

x

y

5

Clustering Algorithms

Partitioning “flat” algorithms
Usually start with a random (partial) partitioning
Refine it iteratively

k means/medoids clustering
Model based clustering

Hierarchical algorithms
Bottom-up, agglomerative
Top-down, divisive

Partitioning Algorithms

Partitioning method: Construct a partition of n
documents into a set of k clusters
Given: a set of documents and the number k
Find: a partition of k clusters that optimizes the
chosen partitioning criterion

Globally optimal: exhaustively enumerate all
partitions
Effective heuristic methods: k-means and k-
medoids algorithms

How hard is clustering?

One idea is to consider all possible clusterings, and
pick the one that has best inter and intra cluster
distance properties
Suppose we are given n points, and would like to
cluster them into k-clusters

How many possible clusterings?
!k

k n

• Too hard to do it brute force or optimally
• Solution: Iterative optimization algorithms

– Start with a clustering, iteratively
improve it (eg. K-means)

K-Means

Assumes documents are real-valued vectors.
Clusters based on centroids (aka the center of
gravity or mean) of points in a cluster, c:

Reassignment of instances to clusters is based
on distance to the current cluster centroids.

(Or one can equivalently phrase it in terms of
similarities)

∑
∈

=
cx

x
c r

rr

||
1(c)µ

K-Means Algorithm

Let d be the distance measure between instances.
Select k random instances {s1, s2,… sk} as seeds.
Until clustering converges or other stopping criterion:

For each instance xi:
Assign xi to the cluster cj such that d(xi, sj) is minimal.

(Update the seeds to the centroid of each cluster)
For each cluster cj

sj = µ(cj)

K Means Example
(K=2)

Pick seeds

Reassign clusters

Compute centroids

x
x

Reassign clusters

x
x xx Compute centroids

Reassign clusters

Converged!

6

Termination conditions

Several possibilities, e.g.,
A fixed number of iterations.
Doc partition unchanged.
Centroid positions don’t change.

Does this mean that the
docs in a cluster are

unchanged?

Convergence

Why should the K-means algorithm ever reach a
fixed point?

A state in which clusters don’t change.
K-means is a special case of a general
procedure known as the Expectation
Maximization (EM) algorithm.

EM is known to converge.
Number of iterations could be large.

Convergence of K-Means

Define goodness measure of cluster k as sum of
squared distances from cluster centroid:

Gk = Σi (vi – ck)2 (sum all vi in cluster k)
G = Σk Gk

Reassignment monotonically decreases G since
each vector is assigned to the closest centroid.
Recomputation monotonically decreases each Gk
since: (mk is number of members in cluster)

Σ (vin – a)2 reaches minimum for:
Σ –2(vin – a) = 0

Convergence of K-Means

Σ –2(vin – a) = 0
Σ vin = Σ a
mk a = Σ vin

a = (1/ mk) Σ vin = ckn

K-means typically converges quite quickly

Time Complexity

Assume computing distance between two
instances is O(m) where m is the dimensionality
of the vectors.
Reassigning clusters: O(kn) distance
computations, or O(knm).
Computing centroids: Each instance vector gets
added once to some centroid: O(nm).
Assume these two steps are each done once for i
iterations: O(iknm).
Linear in all relevant factors, assuming a fixed
number of iterations, more efficient than
hierarchical agglomerative methods

Seed Choice

Results can vary based on
random seed selection.
Some seeds can result in poor
convergence rate, or
convergence to sub-optimal
clusterings.

Select good seeds using a
heuristic (e.g., doc least similar
to any existing mean)
Try out multiple starting points
Initialize with the results of
another method.

In the above, if you start
with B and E as centroids
you converge to {A,B,C}
and {D,E,F}
If you start with D and F
you converge to
{A,B,D,E} {C,F}

Example showing
sensitivity to seeds

Exercise: find good approach
for finding good starting points

7

How Many Clusters?

Number of clusters k is given
Partition n docs into predetermined number of
clusters

Finding the “right” number of clusters is part of
the problem

Given docs, partition into an “appropriate” number
of subsets.
E.g., for query results - ideal value of k not known
up front - though UI may impose limits.

Can usually take an algorithm for one flavor and
convert to the other.

k not specified in advance

Say, the results of a query.
Solve an optimization problem: penalize having
lots of clusters

application dependent, e.g., compressed summary
of search results list.

Tradeoff between having more clusters (better
focus within each cluster) and having too many
clusters

k not specified in advance

Given a clustering, define the Benefit for a doc to
be the cosine similarity to its centroid
Define the Total Benefit to be the sum of the
individual doc Benefits.

Why is there always a clustering of Total Benefit n?

Penalize lots of clusters

For each cluster, we have a Cost C.
Thus for a clustering with k clusters, the Total
Cost is kC.
Define the Value of a clustering to be =
Total Benefit - Total Cost.

Find the clustering of highest value, over all
choices of k.

Total benefit increases with increasing K. But can
stop when it doesn’t increase by “much”. The Cost
term enforces this.

K-means issues, variations, etc.

Recomputing the centroid after every assignment
(rather than after all points are re-assigned) can
improve speed of convergence of K-means
Assumes clusters are spherical in vector space

Sensitive to coordinate changes, weighting etc.
Disjoint and exhaustive

Doesn’t have a notion of “outliers”

Soft Clustering

Clustering typically assumes that each instance
is given a “hard” assignment to exactly one
cluster.
Does not allow uncertainty in class membership
or for an instance to belong to more than one
cluster.
Soft clustering gives probabilities that an instance
belongs to each of a set of clusters.
Each instance is assigned a probability
distribution across a set of discovered categories
(probabilities of all categories must sum to 1).

8

Model based clustering

Algorithm optimizes a probabilistic model criterion
Clustering is usually done by the Expectation
Maximization (EM) algorithm

Gives a soft variant of the K-means algorithm
Assume k clusters: {c1, c2,… ck}
Assume a probabilistic model of categories that
allows computing P(ci | E) for each category, ci, for
a given example, E.
For text, typically assume a naïve Bayes category
model.
Parameters θ = {P(ci), P(wj | ci): i∈{1,…k}, j
∈{1,…,|V|}}

Expectation Maximization (EM)
Algorithm

Iterative method for learning probabilistic categorization
model from unsupervised data.
Initially assume random assignment of examples to
categories.
Learn an initial probabilistic model by estimating model
parameters θ from this randomly labeled data.
Iterate following two steps until convergence:

Expectation (E-step): Compute P(ci | E) for each example given
the current model, and probabilistically re-label the examples
based on these posterior probability estimates.
Maximization (M-step): Re-estimate the model parameters, θ,
from the probabilistically re-labeled data.

EM Experiment [Soumen Chakrabarti]

Semi-supervised: some labeled and unlabeled data
Take a completely labeled corpus D, and randomly select
a subset as DK.
Also use the set of unlabeled documents in the EM
procedure.
Correct classification of a document

=> concealed class label = class with largest probability

Accuracy with unlabeled documents > accuracy without
unlabeled documents

Keeping labeled set of same size

EM beats naïve Bayes with same size of labeled
document set

Largest boost for small size of labeled set
Comparable or poorer performance of EM for large labeled sets

DDU ⊆

Belief in labeled documents

Depending on one’s faith in the initial labeling
Set before 1st iteration:

With each iteration
Let the class probabilities of the labeled documents
`smear‘ in reestimation process

To limit ‘drift’ from initial labeled documents, one
can add a damping factor in the E step to the
contribution from unlabeled documents

dd cc allfor 1)-/(n d)|cPr(and -1 d)|Pr(c ≠′=′= εε

Increasing DU while holding DK fixed also shows the advantage
of using large unlabeled sets in the EM-like algorithm.

Purity

Summary

Two types of clustering
Flat, partional clustering
Hierarchical, agglomerative clustering

How many clusters?
Key issues

Representation of data points
Similarity/distance measure

K-means: the basic partitional algorithm
Model-based clustering and EM estimation

