

Recap

- Probabilistic models: Naïve Bayes Text Classification
 Introduction to Text Classification
 - Probabilistic Language Models
 - Naïve Bayes text categorization

Today

- The Language Model Approach to IR
 Basic query generation model
 - Alternative models

Slochas	tic Langu	age	Mod	dels		
 Model pr 	obability of ger	neratir	ng any	string		
Model M1	Model M2					
0.2 the	0.2 the	the	class	pleaseth	yon	maid
	0.0001 class				—	
0.0001 sayst	0.03 sayst					
	0.02 pleaseth	0.2	0.0001	0.02	0.1	0.01
0.0001 yon	0.1 yon					
	0.01 maiden					
	0.0001 woman		P(s M2) > P(s M1)			

- Language Modeling Approaches
 - Attempt to model query generation process
 - Documents are ranked by the probability that a query would be observed as a random sample from the respective document model
 - Multinomial approach

$$P(Q|M_D) = \prod_{w} P(w|M_D)^{q_w}$$

Retrieval based on probabilistic LM

- Treat the generation of queries as a random process.
- Approach
 - Infer a language model for each document.
 - Estimate the probability of generating the query according to each of these models.
 - Rank the documents according to these probabilities.
 - Usually a unigram estimate of words is used
 Some work on bigrams, paralleling van Rijsbergen

Retrieval based on probabilistic LM

- Intuition
- Users ...
 - Have a reasonable idea of terms that are likely to occur in documents of interest.
 - They will choose query terms that distinguish these documents from others in the collection.
- Collection statistics ...
 - Are integral parts of the language model.
 - Are not used heuristically as in many other approaches.
 - In theory. In practice, there's usually some wiggle room for empirically set parameters

Insufficient data

• Zero probability $p(t | M_d) = 0$

- May not wish to assign a probability of zero to a document that is missing one or more of the query terms [gives conjunction semantics]
- General approach
 - A non-occurring term is possible, but no more likely than would be expected by chance in the collection.

If
$$tf_{(t,d)} = 0$$
 $p(t \mid M_d) = \frac{cf_t}{cs}$

 ${\cal C}\!f_t$: raw count of term t in the collection ${\cal C}\!S$: raw collection size(total number of tokens in the collection)

Insufficient data Zero probabilities spell disaster We need to smooth probabilities Discount nonzero probabilities Give some probability mass to unseen things There's a wide space of approaches to smoothing probability distributions to deal with this problem, such as adding 1, ½ or ε to counts, Dirichlet priors, discounting, and interpolation

- [See FSNLP ch. 6 or CS224N if you want more]
- A simple idea that works well in practice is to use a mixture between the document multinomial and the collection multinomial distribution

Mixture model

- $P(w|d) = \lambda P_{mle}(w|M_d) + (1 \lambda)P_{mle}(w|M_c)$
- Mixes the probability from the document with the general collection frequency of the word.
- Correctly setting λ is very important
- A high value of lambda makes the search "conjunctive-like" – suitable for short queries
- A low value is more suitable for long queries
- Can tune λ to optimize performance
 - Perhaps make it dependent on document size (cf. Dirichlet prior or Witten-Bell smoothing)

Example Ponte and Croft Experiments Data Document collection (2 documents) TREC topics 202-250 on TREC disks 2 and 3 d₁: Xerox reports a profit but revenue is down Natural language gueries consisting of one sentence each d₂: Lucent narrows quarter loss but revenue TREC topics 51-100 on TREC disk 3 using the concept decreases further fields Lists of good terms Model: MLE unigram from documents; λ = ¹/₂ dom>Domain: International Economics Query: revenue down <title>Topic: Satellite Launch Contracts • $P(Q|d_1) = [(1/8 + 2/16)/2] \times [(1/8 + 1/16)/2]$ desc>Description: = 1/8 x 3/32 = 3/256 </desc: ■ P(Q|d₂) = [(1/8 + 2/16)/2] x [(0 + 1/16)/2] <con>Concept(s): = 1/8 x 1/32 = 1/256 Contract, agre Launch vehicle, rocket, payload, satellite • Ranking: $d_1 > d_2$

Precis	sion	/re	call	res	ult	s 20)2-2	50
		tf.idf	LM	%chg	I/D	Sim	Wile	
	Rel:	6501	6501		- 10			
	Bretz	3201	3344	± 5.09	34/43	0.0000+	0.0002+	
	Proc.	0.007	0004	1000	0.07.20	000000	0100000	
	0.00	0.7439	0.7590	+2.0	10/22	0.7383	0.5709	
	0.10	0.4521	0.4910	+8.6	24/42	0.2204	0.0761	
	0.20	0.3514	0.4045	+15.1	27/44	0.0871	0.0081+	
	0.30	0.2761	0.3342	+21.0	28/43	0.0330*	0.0054*	
	0.40	0.2093	0.2572	+22.9	25/39	0.0541	0.0158+	
	0.50	0.1558	0.2061	+32.3	24/35	0.0205+	0.0018+	
	0.60	0.1024	0.1405	+37.1	22/27	0.0008+	0.0027+	
	0.70	0.0451	0,0760	+68.7	13/15	0.0037+	0.0062+	
	0.80	0.0160	0.0432	+169.6	9/10	0.0107*	0.0035+	
	0.90	0.0033	0.0063	+89.3	2/3	0.5000	undef	
	1.00	0.0028	0.0050	+76.9	2/3	0.5000	undef	
	Ave	0.1968	0.2233	+19.55	32/49	0.0222*	0.0003*	
	Prec.							
	5	0.4939	0.5020	+1.7	10/21	0.6682	0.4106	
	10	0,4449	0,4898	+10.1	22/30	0.0081+	0.0154+	
	15	0.3932	0.4435	+12.8	19/26	0.0145 +	0.0038+	
	20	0.3643	0.4051	+11.2	22/34	0.0507	0.0218+	
	30	0.3313	0.3707	+11.9	28/41	0.0138+	0.0070*	
	100	0.2157	0.2500	+15.9	32/42	0.0005+	0.0003+	
	200	0.1655	0.1903	+15.0	35/44	0.0001*	0.0000*	
	500	0,1004	0,1119	+11.4	38/44	0.0000+	0.0000+	
	1000	0.0653	0.0687	+5.1	38/43	0.0000+	0.0002+	
	RPr	0.2473	0.2876	+16.32	34/43	0.0001 +	0.0000+	

LM vs. Prob. Model for IR

- The main difference is whether "Relevance" figures explicitly in the model or not
 - LM approach attempts to do away with modeling relevance
- LM approach asssumes that documents and expressions of information problems are of the same type
- Computationally tractable, intuitively appealing

LM vs. Prob. Model for IR

- Problems of basic LM approach
 - Assumption of equivalence between document and information problem representation is unrealistic
 - Very simple models of language
 - Relevance feedback is difficult to integrate, as are user preferences, and other general issues of relevance
 - Can't easily accommodate phrases, passages, Boolean operators
- Current extensions focus on putting relevance back into the model, etc.

Extension: 3-level model

- 3-level model
- 1. Whole collection model (M_d)
- Specific-topic model; relevant-documents model (M_T)
- Individual-document model (M)
- Relevance hypothesis
- A request(query; topic) is generated from a specific-topic model $\{M_C, M_T\}$.
- Iff a document is relevant to the topic, the same model will apply to the document.
 - It will replace part of the individual-document model in explaining the document.
- The probability of relevance of a document The probability that this model explains part of the document The probability that the $\{M_c, M_T, M_b\}$ combination is better than the $\{M_c, M_g\}$ or M_b combination

Query Likelihood

- P(Q|D_m)
- Major issue is estimating document model
- i.e. smoothing techniques instead of tf.idf weights
- Good retrieval results
- e.g. UMass, BBN, Twente, CMU
- Problems dealing with relevance feedback, query expansion, structured queries

Document Likelihood

- Rank by likelihood ratio P(D|R)/P(D|NR)
 - treat as a generation problem
 - P(w|R) is estimated by P(w|Q_m)
 - Q_m is the query or relevance model
 P(w|NR) is estimated by collection probabilities P(w)
- Issue is estimated by collection probability
 Issue is estimation of query model
 - Treat query as generated by mixture of topic and
- Estimate relevance model from related documents (query
- Estimate relevance model non related documents (querexpansion)
 Relevance feedback is easily incorporated
- Relevance reedback is easily incorpora
 Good retrieval results
 - e.g. UMass at SIGIR 01
 - inconsistent with heterogeneous document collections

Model Comparison

Estimate query and document models and compare

• Suitable measure is KL divergence
$$D(Q_m || D_m)$$

 $D(Q_m || D_m) = \sum Q_m(x) \log \frac{Q_m(x)}{2\pi m(x)}$

- More general risk minimization framework has been proposed
 - Zhai and Lafferty 2001
- Better results than query-likelihood or documentlikelihood approaches

Two-stage smoothing: Another Reason for Smoothing

Query	= The	algorithms	Tot.	dala	mining				
d1: d2:	0.04 0.02	0.001 0.001	0.02 0.01	0.002 0.003	0.003 0.004				
$\begin{array}{l} p(``algorithms'' d1) = p(``algorithm'' d2) \\ p(``data'' d1) < p(``data'' d2) \\ p(``mining'' d1) < p(``mining'' d2) \end{array}$									
		But p(q d	1)>p(q d	12)!					
Wechen	d maka	n("tho?") on	d n/66	· · · · · · · · · · · · · · · · · · ·	different f	on oll de			

We should make p("the") and p("for") less different for all docs.

Translation model (Berger and Lafferty)

- Basic LMs do not address issues of synonymy.
 Or any deviation in expression of information need from language of documents
- A translation model lets you generate query words not in document via "translation" to synonyms etc.
 - Or to do cross-language IR, or multimedia IR

 $P(\vec{q} \mid M) = \prod_{i} \sum_{v \in Lexicon} P(v \mid M) T(q_i \mid v)$ Basic LM Translation

 Need to learn a translation model (using a dictionary or via statistical machine translation)

Comparison With Vector Space

- There's some relation to traditional tf.idf models:
 (unscaled) term frequency is directly in model
 - the probabilities do length normalization of term frequencies
 - the effect of doing a mixture with overall collection frequencies is a little like idf: terms rare in the general collection but common in some documents will have a greater influence on the ranking

Comparison With Vector Space

- Similar in some ways
 - Term weights based on frequency
 - Terms often used as if they were independent
 - Inverse document/collection frequency used
 - Some form of length normalization useful
- Different in others
 - Based on probability rather than similarity
 - Intuitions are probabilistic rather than geometric
 - Details of use of document length and term, document, and collection frequency differ

Resources

- J.M. Ponte and W.B. Croft. 1998. A language modelling approach to information retrieval. In SIGIR 21.
- D. Hiemstra. 1998. A linguistically motivated probabilistic model of information retrieval. *ECDL* 2, pp. 569–584.
 A. Berger and J. Lafferty. 1999. Information retrieval as statistical translation. *SIGIR* 22, pp. 222–229.

- translation. *or GIR 22*, pp. 222-223.
 D.R.H. Miller, T. Leek, and R.M. Schwartz. 1999. A hidden Markov model information retrieval system. *SIGIR* 22, pp. 214-221.
 [Several relevant newer papers at *SIGIR* 23-25, 2000-2002.]
 Workshop on Language Modeling and Information Retrieval, CMU 2001. http://la.lti.cs.cmu.edu/callan/Workshops/ImirO1/.
- The Lemur Toolkit for Language Modeling and Information Retrieval. http://www-2.cs.cmu.edu/~lemur/ . CMU/Umass LM and IR system in C(++), currently actively developed.