CS276A Text Retrieval and Mining Lecture 1 Determine 1 Det

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbet
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0 🔪	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Bigger corpora

- Consider *n* = 1M documents, each with about 1K terms.
- Avg 6 bytes/term incl spaces/punctuation
 6GB of data in the documents.
- Say there are *m* = 500K <u>distinct</u> terms among these.

Can't build the matrix

- 500K x 1M matrix has half-a-trillion 0's and 1's.
- But it has no more than one billion 1's.matrix is extremely sparse.

What's a better representation?We only record the 1 positions.

Boolean queries: Exact match

- Boolean Queries are queries using AND, OR and NOT together with query terms
 - Views each document as a <u>set</u> of words
 - Is precise: document matches condition or not.
- Primary commercial retrieval tool for 3 decades.
- Professional searchers (e.g., lawyers) still like Boolean queries:
 - You know exactly what you're getting.

Example: WestLaw http://www.westlaw.com/

- Largest commercial (paying subscribers) legal search service (started 1975; ranking added 1992)
- About 7 terabytes of data; 700,000 users
- Majority of users still use boolean queries
- Example query:
 - What is the statute of limitations in cases involving the federal tort claims act?
 - LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM
- Long, precise queries; proximity operators; incrementally developed; not like web search

More general merges

 Exercise: Adapt the merge for the queries: Brutus AND NOT Caesar
 Brutus OR NOT Caesar

Can we still run through the merge in time O(x+y)?

Merging

What about an arbitrary Boolean formula? (Brutus OR Caesar) AND NOT (Antony OR Cleopatra)

- Can we always merge in "linear" time?Linear in what?
- Can we do better?

Query optimization What is the best order for query processing? Consider a query that is an AND of t terms. For each of the t terms, get its postings, then AND together. Brutus 2 4 8 16 32 64128 Calpurnia 1 2 3 5 8 16 21 34 Caesar I 3 16 Query: Brutus AND Calpurnia AND Caesar

More general optimization

- e.g., (madding OR crowd) AND (ignoble OR strife)
- Get freq's for all terms.
- Estimate the size of each *OR* by the sum of its freq's (conservative).
- Process in increasing order of *OR* sizes.

Exercise

 Recommend a query processing order for

Term Freq (tangerine OR trees) AND eyes 213312 (marmalade OR skies) AND (kaleidoscope OR eyes) kaleidoscope 87009 marmalade 107913 skies 271658 tangerine 46653 trees 316812

Query processing exercises

- If the query is *friends* AND romans AND (NOT countrymen), how could we use the freq of countrymen?
- Exercise: Extend the merge to an arbitrary Boolean query. Can we always guarantee execution in time linear in the total postings size?
- Hint: Begin with the case of a Boolean *formula* query: the each query term appears only once in the query.

Beyond term search

- What about phrases?
- Proximity: Find *Gates NEAR Microsoft*.
 Need index to capture position information in docs. More later.
- Zones in documents: Find documents with (*author = Ullman*) AND (text contains *automata*).

Evidence accumulation

- 1 vs. 0 occurrence of a search term
 - 2 vs. 1 occurrence
 - 3 vs. 2 occurrences, etc.
- Need term frequency information in docs

Ranking search results

- Boolean queries give inclusion or exclusion of docs.
- Need to measure proximity from query to each doc.
- Whether docs presented to user are singletons, or a group of docs covering various aspects of the query.

Structured vs unstructured data

 Structured data tends to refer to information in "tables"

Employee	Manager	Salary		
Smith	Jones	50000		
Chang	Smith	60000		
lvy	Smith	50000		

Typically allows numerical range and exact match (for text) queries, e.g., Salary < 60000 AND Manager = Smith.

Unstructured data

- Typically refers to free text
- Allows
 - Keyword queries including operators
 - More sophisticated "concept" queries e.g.,
 - find all web pages dealing with *drug abuse*
- Classic model for searching text documents

Structured data has been the big commercial success [think, Oracle...] but unstructured data is now becoming dominant in a large and increasing range of activities [think, email, the web]

Semi-structured data

- In fact almost no data is "unstructured"
- E.g., this slide has distinctly identified zones such as the *Title* and *Bullets*
- Facilitates "semi-structured" search such as
- Title contains data AND Bullets contain search

... to say nothing of linguistic structure

More sophisticated semistructured search

- *Title* is about <u>Object Oriented Programming</u> AND *Author* something like <u>stro*rup</u>
- where * is the wild-card operator
- Issues:
 - how do you process "about"? how do you rank results?
- The focus of XML search.

Clustering and classification

- Given a set of docs, group them into clusters based on their contents.
- Given a set of topics, plus a new doc *D*, decide which topic(s) *D* belongs to.

The web and its challenges

- Unusual and diverse documents
- Unusual and diverse users, queries, information needs
- Beyond terms, exploit ideas from social networks
 - Iink analysis, clickstreams ...

Exercise

- Try the search feature at <u>http://www.rhymezone.com/shakespeare/</u>
- Write down five search features you think it could do better

Course administrivia

Course URL: cs276a.stanford.edu [a.k.a.,http://www.stanford.edu/class/cs276a/]

20%

- Work/Grading:
 - Problem sets (2)
 - Practical exercises (2) 20%
 Midterm 20%
 - Midterm 20%
 Final 40%
- Textbook:
- No required text
 - Managing Gigabytes best early on
 - Will distribute brief readings

Looking ahead to CS276B (winter)

Course organization: two quarter sequence

- 276A Text Retrieval and Mining
 - We cover all the basic search and machine learning techniques for text
 - Small practical exercises; no big project
- 276B Web Search and Mining
 - Web search challenges
 - Link analysis, crawling, and other web-specifics
 - (Textual) XML
 - Project

Course staff

- Professor: <u>Christopher Manning</u> Office: Gates 158 [new office!] <u>manning@cs.stanford.edu</u>
- Professor: <u>Prabhakar Raghavan</u> pragh@db.stanford.edu
- TA: Louis Eisenberg
 <u>tarheel@stanford.edu</u>
- In general don't use the above addresses, but:
 - <u>su.class.cs276a</u> (first option)
 - <u>cs276a-aut0405-staff@lists.stanford.edu</u>

Resources for today's lecture

- Managing Gigabytes, Chapter 3.2
- Modern Information Retrieval, Chapter 8.2
- Shakespeare:
- http://www.rhymezone.com/shakespeare/
- Try the neat browse by keyword sequence feature!

Any questions?