
1

CS276A
Text Retrieval and Mining

Lecture 1

Query

Which plays of Shakespeare contain the words
Brutus AND Caesar but NOT Calpurnia?
One could grep all of Shakespeare’s plays for
Brutus and Caesar, then strip out lines containing
Calpurnia?

Slow (for large corpora)
NOT Calpurnia is non-trivial
Other operations (e.g., find the word Romans near
countrymen) not feasible

Term-document incidence

1 if play contains
word, 0 otherwise

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Brutus AND Caesar but NOT
Calpurnia

Incidence vectors

So we have a 0/1 vector for each term.
To answer query: take the vectors for Brutus,
Caesar and Calpurnia (complemented)
bitwise AND.
110100 AND 110111 AND 101111 = 100100.

Answers to query

Antony and Cleopatra, Act III, Scene ii
Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,

When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar I was killed i' the

Capitol; Brutus killed me.

Bigger corpora

Consider n = 1M documents, each with about 1K
terms.
Avg 6 bytes/term incl spaces/punctuation

6GB of data in the documents.
Say there are m = 500K distinct terms among
these.

2

Can’t build the matrix

500K x 1M matrix has half-a-trillion 0’s and 1’s.
But it has no more than one billion 1’s.

matrix is extremely sparse.
What’s a better representation?

We only record the 1 positions.

Why?

Inverted index

For each term T, we must store a list of all
documents that contain T.
Do we use an array or a list for this?

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

What happens if the word Caesar
is added to document 14?

Inverted index

Linked lists generally preferred to arrays
Dynamic space allocation
Insertion of terms into documents easy
Space overhead of pointers

Brutus

Calpurnia

Caesar

2 4 8 16 32 64 128

2 3 5 8 13 21 34

13 16

1

Dictionary Postings
Sorted by docID (more later on why).

Inverted index construction

Tokenizer

Token stream. Friends Romans Countrymen
Linguistic
modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

More on
these later.

Documents to
be indexed.

Friends, Romans, countrymen.

Sequence of (Modified token, Document ID) pairs.

I did enact Julius
Caesar I was killed

i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Indexer steps

Sort by terms.
Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Core indexing step.

3

Multiple term entries in a
single document are
merged.
Frequency information is
added.

Term Doc # Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Why frequency?
Will discuss later.

The result is split into a Dictionary file and a
Postings file.

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Tot Freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Term Doc # Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

Where do we pay in storage?

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Tot Freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Pointers

Terms

Will quantify
the storage,
later.

The index we just built

How do we process a query?
Later - what kinds of queries can we process?

Today’s
focus

Query processing

Consider processing the query:
Brutus AND Caesar

Locate Brutus in the Dictionary;
Retrieve its postings.

Locate Caesar in the Dictionary;
Retrieve its postings.

“Merge” the two postings:

128
34

2 4 8 16 32 64
1 2 3 5 8 13 21

Brutus
Caesar

34
1282 4 8 16 32 64

1 2 3 5 8 13 21

The merge

Walk through the two postings simultaneously, in
time linear in the total number of postings entries

128
34

2 4 8 16 32 64
1 2 3 5 8 13 21

Brutus
Caesar2 8

If the list lengths are x and y, the merge takes O(x+y)
operations.
Crucial: postings sorted by docID.

4

Boolean queries: Exact match

Boolean Queries are queries using AND, OR and
NOT together with query terms

Views each document as a set of words
Is precise: document matches condition or not.

Primary commercial retrieval tool for 3 decades.
Professional searchers (e.g., lawyers) still like
Boolean queries:

You know exactly what you’re getting.

Example: WestLaw http://www.westlaw.com/

Largest commercial (paying subscribers) legal
search service (started 1975; ranking added 1992)
About 7 terabytes of data; 700,000 users
Majority of users still use boolean queries
Example query:

What is the statute of limitations in cases involving
the federal tort claims act?
LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT
/3 CLAIM

Long, precise queries; proximity operators;
incrementally developed; not like web search

More general merges

Exercise: Adapt the merge for the queries:
Brutus AND NOT Caesar
Brutus OR NOT Caesar

Can we still run through the merge in time O(x+y)?

Merging

What about an arbitrary Boolean formula?
(Brutus OR Caesar) AND NOT
(Antony OR Cleopatra)

Can we always merge in “linear” time?
Linear in what?

Can we do better?

Query optimization

What is the best order for query processing?
Consider a query that is an AND of t terms.
For each of the t terms, get its postings, then
AND together.

Brutus

Calpurnia

Caesar

1 2 3 5 8 16 21 34

2 4 8 16 32 64128

13 16

Query: Brutus AND Calpurnia AND Caesar

Query optimization example

Process in order of increasing freq:
start with smallest set, then keep cutting further.

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

This is why we kept
freq in dictionary

Execute the query as (Caesar AND Brutus) AND Calpurnia.

5

More general optimization

e.g., (madding OR crowd) AND (ignoble
OR strife)
Get freq’s for all terms.
Estimate the size of each OR by the sum
of its freq’s (conservative).
Process in increasing order of OR sizes.

Exercise
Recommend a query
processing order for

(tangerine OR trees) AND
(marmalade OR skies) AND
(kaleidoscope OR eyes)

 Term Freq
 eyes 213312
 kaleidoscope 87009
 marmalade 107913
 skies 271658
 tangerine 46653
 trees 316812

Query processing exercises

If the query is friends AND romans AND (NOT
countrymen), how could we use the freq of
countrymen?
Exercise: Extend the merge to an arbitrary
Boolean query. Can we always guarantee
execution in time linear in the total postings size?
Hint: Begin with the case of a Boolean formula
query: the each query term appears only once in
the query.

Beyond term search

What about phrases?
Proximity: Find Gates NEAR Microsoft.

Need index to capture position information in
docs. More later.

Zones in documents: Find documents with
(author = Ullman) AND (text contains automata).

Evidence accumulation

1 vs. 0 occurrence of a search term
2 vs. 1 occurrence
3 vs. 2 occurrences, etc.

Need term frequency information in docs

Ranking search results

Boolean queries give inclusion or exclusion of
docs.
Need to measure proximity from query to each
doc.
Whether docs presented to user are singletons,
or a group of docs covering various aspects of
the query.

6

Structured vs unstructured data

Structured data tends to refer to information in
“tables”

Employee Manager Salary

Smith Jones 50000

Chang Smith 60000

50000Ivy Smith

Typically allows numerical range and exact match
(for text) queries, e.g.,
Salary < 60000 AND Manager = Smith.

Unstructured data

Typically refers to free text
Allows

Keyword queries including operators
More sophisticated “concept” queries e.g.,

find all web pages dealing with drug abuse
Classic model for searching text documents

Structured data has been the big commercial success [think,
Oracle…] but unstructured data is now becoming dominant in a
large and increasing range of activities [think, email, the web]

Semi-structured data

In fact almost no data is “unstructured”
E.g., this slide has distinctly identified zones such
as the Title and Bullets
Facilitates “semi-structured” search such as

Title contains data AND Bullets contain search

… to say nothing of linguistic structure

More sophisticated semi-
structured search

Title is about Object Oriented Programming AND
Author something like stro*rup
where * is the wild-card operator
Issues:

how do you process “about”?
how do you rank results?

The focus of XML search.

Clustering and classification

Given a set of docs, group them into clusters
based on their contents.
Given a set of topics, plus a new doc D, decide
which topic(s) D belongs to.

The web and its challenges

Unusual and diverse documents
Unusual and diverse users, queries,
information needs
Beyond terms, exploit ideas from social
networks

link analysis, clickstreams ...

7

Exercise

Try the search feature at
http://www.rhymezone.com/shakespeare/
Write down five search features you think it could
do better

Course administrivia

Course URL: cs276a.stanford.edu
[a.k.a.,http://www.stanford.edu/class/cs276a/]
Work/Grading:

Problem sets (2) 20%
Practical exercises (2) 20%
Midterm 20%
Final 40%

Textbook:
No required text
Managing Gigabytes best early on
Will distribute brief readings

Looking ahead to CS276B (winter)

Course organization: two quarter sequence
276A Text Retrieval and Mining

We cover all the basic search and machine
learning techniques for text
Small practical exercises; no big project

276B Web Search and Mining
Web search challenges
Link analysis, crawling, and other web-specifics
(Textual) XML
Project

Course staff

Professor: Christopher Manning
Office: Gates 158 [new office!]
manning@cs.stanford.edu
Professor: Prabhakar Raghavan
pragh@db.stanford.edu
TA: Louis Eisenberg
tarheel@stanford.edu
In general don’t use the above addresses, but:

su.class.cs276a (first option)
cs276a-aut0405-staff@lists.stanford.edu

Resources for today’s lecture

Managing Gigabytes, Chapter 3.2
Modern Information Retrieval, Chapter 8.2
Shakespeare:
http://www.rhymezone.com/shakespeare/

Try the neat browse by keyword sequence
feature!

Any questions?

