CS276

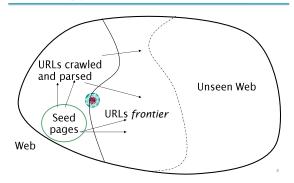
Information Retrieval and Web Search Chris Manning, Pandu Nayak and Prabhakar Raghavan Crawling and Duplicates Introduction to Information Retrievo

Today's lecture

- Web Crawling
- (Near) duplicate detection

ntroduction to Information Retrieva

Sec. 20.2


Basic crawler operation

- Begin with known "seed" URLs
- Fetch and parse them
 - Extract URLs they point to
 - Place the extracted URLs on a queue
- Fetch each URL on the queue and repeat

Introduction to Information Retrieval

Sec. 20.2

Crawling picture

Introduction to Information Retrieval

Sec. 20.1.1

Simple picture – complications

- Web crawling isn't feasible with one machine
 - All of the above steps distributed
- Malicious pages
 - Spam pages
 - Spider traps incl dynamically generated
- Even non-malicious pages pose challenges
 - Latency/bandwidth to remote servers vary
 - Webmasters' stipulations
 - How "deep" should you crawl a site's URL hierarchy?
 - Site mirrors and duplicate pages
- Politeness don't hit a server too often

Introduction to Information Retrieval

Sec. 20.1.1

What any crawler must do

- Be <u>Polite</u>: Respect implicit and explicit politeness considerations
 - Only crawl allowed pages
 - Respect robots.txt (more on this shortly)
- Be <u>Robust</u>: Be immune to spider traps and other malicious behavior from web servers

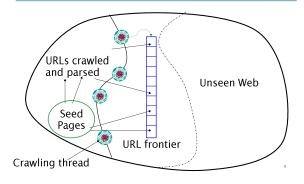
Sec. 20.1.1

Introduction to Information Retriev

Sec. 20.1.1

What any crawler should do

- Be capable of <u>distributed</u> operation: designed to run on multiple distributed machines
- Be <u>scalable</u>: designed to increase the crawl rate by adding more machines
- <u>Performance/efficiency</u>: permit full use of available processing and network resources


What any crawler *should* do

- Fetch pages of "higher quality" first
- <u>Continuous</u> operation: Continue fetching fresh copies of a previously fetched page
- Extensible: Adapt to new data formats, protocols

Introduction to Information Retrieva

Sec. 20.1.1

Updated crawling picture

Introduction to Information Retrieval

Sec. 20.2

URL frontier

- Can include multiple pages from the same host
- Must avoid trying to fetch them all at the same time
- Must try to keep all crawling threads busy

Introduction to Information Retrieval

Sec. 20.2

Explicit and implicit politeness

- Explicit politeness: specifications from webmasters on what portions of site can be crawled
 - robots.txt
- Implicit politeness: even with no specification, avoid hitting any site too often

Introduction to Information Retrieval

Sec. 20.2.1

Robots.txt

- Protocol for giving spiders ("robots") limited access to a website, originally from 1994
 - www.robotstxt.org/wc/norobots.html
- Website announces its request on what can(not) be crawled
 - For a server, create a file / robots.txt
 - This file specifies access restrictions

12

Robots.txt example

No robot should visit any URL starting with "/yoursite/temp/", except the robot called "searchengine":

User-agent: *

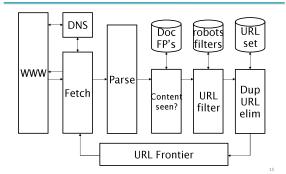
Disallow: /yoursite/temp/

User-agent: searchengine

Disallow:

Processing steps in crawling

- Fetch the document at the URL
- Parse the URL
 - Extract links from it to other docs (URLs)
- Check if URL has content already seen
 - If not, add to indexes


E.g., only crawl .edu, obey robots.txt, etc.

- For each extracted URL
 Ensure it passes certain URL filter tests
 - Check if it is already in the frontier (duplicate URL elimination)

Introduction to Information Retrieval

Sec. 20.2.1

Basic crawl architecture

Introduction to Information Retrieval

Sec. 20.2.2

DNS (Domain Name Server)

- A lookup service on the internet
 - Given a URL, retrieve its IP address
 - Service provided by a distributed set of servers thus, lookup latencies can be high (even seconds)
- Common OS implementations of DNS lookup are blocking: only one outstanding request at a time
- Solutions
 - DNS caching
 - Batch DNS resolver collects requests and sends them out together

Introduction to Information Retrieval

Sec. 20.2.1

Parsing: URL normalization

- When a fetched document is parsed, some of the extracted links are relative URLs
- E.g., http://en.wikipedia.org/wiki/Main_Page has a relative link to /wiki/Wikipedia:General_disclaimer which is the same as the absolute URL http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer
- During parsing, must normalize (expand) such relative URLs

Introduction to Information Retrieva

Sec. 20.2.

Content seen?

- Duplication is widespread on the web
- If the page just fetched is already in the index, do not further process it
- This is verified using document fingerprints or <u>shingles</u>
 - Second part of this lecture

18

Filters and robots.txt

- <u>Filters</u> regular expressions for URLs to be crawled/not
- Once a robots.txt file is fetched from a site, need not fetch it repeatedly
 - Doing so burns bandwidth, hits web server
- Cache robots.txt files

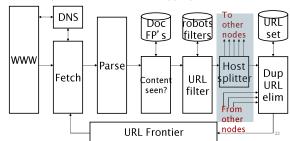
Duplicate URL elimination

- For a non-continuous (one-shot) crawl, test to see if an extracted+filtered URL has already been passed to the frontier
- For a continuous crawl see details of frontier implementation

Introduction to Information Retrieval

Sec. 20.2.1

Distributing the crawler


- Run multiple crawl threads, under different processes – potentially at different nodes
 - Geographically distributed nodes
- Partition hosts being crawled into nodes
 - Hash used for partition
- How do these nodes communicate and share URLs?

Introduction to Information Retrieval

Sec. 20.2.1

Communication between nodes

 Output of the URL filter at each node is sent to the Dup URL Eliminator of the appropriate node

Introduction to Information Retrieva

Sec. 20.2.3

URL frontier: two main considerations

- Politeness: do not hit a web server too frequently
- <u>Freshness</u>: crawl some pages more often than others
 - E.g., pages (such as News sites) whose content changes often

These goals may conflict each other.

(E.g., simple priority queue fails – many links out of a page go to its own site, creating a burst of accesses to that site.) Introduction to Information Retrieval

Sec. 20.2.3

Politeness – challenges

- Even if we restrict only one thread to fetch from a host, can hit it repeatedly
- Common heuristic: insert time gap between successive requests to a host that is >> time for most recent fetch from that host

Sec. 20.2.3

Mercator URL frontier

- URLs flow in from the top into the frontier
- Front queues manage prioritization
- Back queues enforce politeness
- Each queue is FIFO

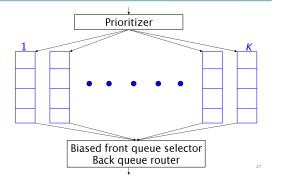
Prioritizer

K front queues

Biased front queue selector
Back queue router

B back queues
Single host on each

Back queue selector


Crawl thread requesting URL

URL frontier: Mercator scheme

Introduction to Information Retrieval

Sec. 20.2.3

Front queues

Introduction to Information Retrieval

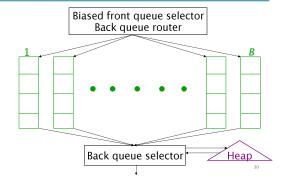
Sec. 20.2.3

Front queues

- Prioritizer assigns to URL an integer priority between 1 and K
 - Appends URL to corresponding queue
- Heuristics for assigning priority
 - Refresh rate sampled from previous crawls
 - Application-specific (e.g., "crawl news sites more often")

Introduction to Information Retrieva

Sec. 20.2.3


Biased front queue selector

- When a <u>back queue</u> requests a URL (in a sequence to be described): picks a front queue from which to pull a URL
- This choice can be round robin biased to queues of higher priority, or some more sophisticated variant
 - Can be randomized

Introduction to Information Retrieval

Sec. 20.2.3

Back queues

Sec. 20.2.3

Back queue heap

One entry for each back queue

- The entry is the earliest time t_e at which the host corresponding to the back queue can be hit again
- This earliest time is determined from
 - Last access to that host
 - Any time buffer heuristic we choose

Back queue invariants

 Each back queue is kept non-empty while the crawl is in progress

- Each back queue only contains URLs from a single host
 - Maintain a table from hosts to back queues

Host name	Back queue
	3
	1
	В

ntroduction to Information Retrieva

Sec. 20.2.3

Back queue processing

- A crawler thread seeking a URL to crawl:
- Extracts the root of the heap
- Fetches URL at head of corresponding back queue q (look up from table)
- Checks if queue q is now empty if so, pulls a URL v from front queues
 - If there's already a back queue for v's host, append v to q and pull another URL from front queues, repeat
 - Else add v to q
- When q is non-empty, create heap entry for it

Introduction to Information Retrieval

Sec. 20.2.3

Number of back queues B

- Keep all threads busy while respecting politeness
- Mercator recommendation: three times as many back queues as crawler threads

Intro

ntroduction to Information Retrieva

Sec. 19.

Duplicate documents

- The web is full of duplicated content
- Strict duplicate detection = exact match
 - Not as common
- But many, many cases of near duplicates
 - E.g., Last modified date the only difference between two copies of a page

Introduction to

Information Retrieval

Near duplicate document detection

35

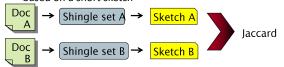
Duplicate/Near-Duplicate Detection

- Duplication: Exact match can be detected with fingerprints
- Near-Duplication: Approximate match
 - Overview
 - Compute syntactic similarity with an edit-distance measure
 - Use similarity threshold to detect near-duplicates
 - E.g., Similarity > 80% => Documents are "near duplicates"
 - Not transitive though sometimes used transitively

Computing Similarity

- Features:
 - Segments of a document (natural or artificial breakpoints)
 - Shingles (Word N-Grams)
 - a rose is a rose is a rose → 4-grams are

```
a_rose_is_a
rose_is_a_rose
is_a_rose_is
a_rose_is_a
```


- Similarity Measure between two docs (= sets of shingles)
 - Set intersection
 - Specifically (Size_of_Intersection / Size_of_Union)

Introduction to Information Retrieval

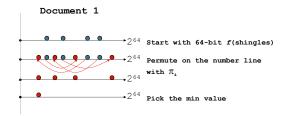
Sec. 19.6

Shingles + Set Intersection

- Computing <u>exact</u> set intersection of shingles between <u>all</u> pairs of documents is expensive/intractable
- Approximate using a cleverly chosen subset of shingles from each (a sketch)
- Estimate (size_of_intersection / size_of_union) based on a short sketch

Introduction to Information Retrieva

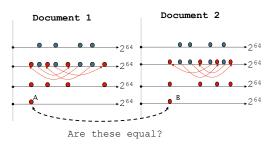
Sec. 19.6


Sketch of a document

- Create a "sketch vector" (of size ~200) for each document
 - Documents that share ≥ t (say 80%) corresponding vector elements are deemed near duplicates
 - For doc D, sketch_D[i] is as follows:
 - Let f map all shingles in the universe to 0..2^m (e.g., f = fingerprinting)
 - Let π_i be a random permutation on 0..2^m
 - Pick MIN $\{\pi_i(f(s))\}$ over all shingles s in D

Introduction to Information Retrieva

Sec. 19.6


Computing Sketch[i] for Doc1

Introduction to Information Retrieval

Sec. 19.

Test if Doc1.Sketch[i] = Doc2.Sketch[i]

Test for 200 random permutations: π_1 , π_2 ,... π_{200}

Sec 19 6

sec. 19.6

However...

A = B iff the shingle with the MIN value in the union of Doc1 and Doc2 is common to both (i.e., lies in the intersection)

Claim: This happens with probability

Size of intersection / Size of union

Set Similarity of sets C_i , C_i

$$Jaccard(C_{i}, C_{j}) = \frac{|C_{i} \cap C_{j}|}{|C_{i} \cup C_{i}|}$$

- View sets as columns of a matrix A; one row for each element in the universe. a_{ij} = 1 indicates presence of item i in set j
- Example

Jaccard(
$$C_{1}, C_{2}$$
) = 2/5 = 0.4

Introduction to Information Retrieval

Sec. 19.6

Key Observation

■ For columns C_i, C_i, four types of rows

$$\mathbf{C}_{i}$$
 \mathbf{C}_{j}

- Overload notation: A = # of rows of type A
- Claim

$$Jaccard(C_i, C_j) = \frac{A}{A + B + C}$$

Introduction to Information Retrieva

Sec. 19.6

"Min" Hashing

- Randomly permute rows
- Hash h(C_i) = index of first row with 1 in column C_i
- Surprising Property

$$P[h(C_i) = h(C_i)] = Jaccard(C_i, C_i)$$

- Why?
 - Both are A/(A+B+C)
 - Look down columns C_i, C_i until first non-Type-D row
 - $h(C_i) = h(C_i) \longleftrightarrow type A row$

Introduction to Information Retrieva

Final notes

- Shingling is a randomized algorithm
 - Our analysis did not presume any probability model on the inputs
 - It will give us the right (wrong) answer with some probability on any input
- We've described how to detect near duplication in a pair of documents
- In "real life" we'll have to concurrently look at many pairs
 - Use <u>Locality Sensitive Hashing</u> for this