0000
s
Review: Suffix Arrays and BWT o
SBANANA 13 Suffixes are sorted in the BWT matrix
ASBANAN 2 AS
ANASBAN 3 ANAS Define suffix array S.:
ANANASB 4 ANANAS
BANANAS 5 BANANAS S(i) = j, where X ...X, is the i-th suffix
NASBANA 6 NAS lexicographically
NANASBA 7 NANAS
1 2 3 5 6 7
X B A N N A §
M BWT(X) constructed from S:
At each position, take the
S 7 6 4 1 5 3 letter to the left of the one
pointed by S

BWT(X)

A N N B $ A A

Review: Reconstructing BANANA o

A N N B $§ A A

C h t :
zz’;m CO 1 5 5 4 0 1 1 fioterocesveiorea
. . i: indicating i-th :
ﬁiﬁi@g indexi 1 1 2 1 1 2 3 owumwr o
BANANA
NA$BAN§\ LF) 2 6 7 5 1 3 4 LF)=C(+i
NANASBA
Reconstruct BANANA:
BWT matrix of S := Y, r :=1; ¢ := BWT[r];
string ‘BANANA' UNTIL c = ‘$’ ({
S := ¢S;
r := LF(r);
c := BWT(r), }

Credit: Ben Langmead thesis

000
0000
0000
: . T oo’
Searching for query “ANA -
Let
LFC(r, a) = C(a) + i, where i =#a’'s up to rin BWT
ExactMatch(WI[1...k]) {
SBANANA
AS$BANAN a := WIK];
ANASBAN low := C(a) +1;
ANANASB high := C(a+1); // a+1: lexicographically next char
BANANAS i=k-1;
NASBANA while (low <= high && i >= 1) {
NANASBA a = WJil;
low = LFC(low — 1, a) + 1;
BWT matrix of high = LFC(high, a);

i=i—1;}

string ‘'BANANA return (low, high);

Credit: Ben Langmead thesis

BWT Index Construction :° .

Reference

TTATTT.. ATGTGCCTTTGAAA...GTTAAACCT... AAATT. .. AATTT.. AGGTTTAAAC. TTTCAAAGGCACAT. AAATAAS
[|]
| T
Forward

Reference Sequence

. . Reverse Complement
Construction

BWT

ACGTTA. TTCTGAATGTGACC... TCCAGACGA...CCATT....AGTTC...CGGATT AGAT... AAGTACCGTGTGAT...CCAGAT

T

. 3
. B

TTATTT..ATGTGCCTT............SGTTGGTTAATAA
C-array O-array

L iliar $: 0 T|G|C|A
BWT-auxiliary . . L o
Structure Construction C: 1044814 L 20 00
- G: 7814189 p S

(C & O arrays) A1 S
and Compression o e

|G = —

Compressed BWT (4 bases/byte)

SA
IG-1
64

0:
15
2: 144814
3. 781414689

Gi-1: 1484

/

Credit: Victoria Popic

o000
Y X X
Y XX
eo0o
o0
BWA Inexact Match .
Allow up to n mismatches/gaps
[<0
W,i—1,z—1,k,
Backward search: I <1 U INEXRECUR(W,i—1 1,k,0)
Gi dW. Kk track of iti| for each be{A,C,G,T} do
iven read W, keep track of multiple k< C(b)+0(b.k—1)+1
partial alignments I < C(b)+0(b. 1)
_ _ _ if K <!/ then
Partial alignment: (i, z, L, U) I < I U INEXRECUR(W,i,z—1,k,1])
if b=W]|i] then
i; current position [<1 U INEXRECUR(W,i—1,z,k,])
z: remaining non-matches allowed else
L: current low [<1 U INEXRECUR(W,i—1,z—1,k,[)

U: current high

Credit: Victoria Popic

00
'YYX
'YX,
5
BWA Inexact Match :
<0
P — I <1 U II:'I;XRECL'R(W.I'—OI.:—I.k.l)
W = ACTGTGT ‘ k«—hC:b)rb(Cb'.i.—T:)il
Partial alignment 4-tuple: (i=4,z=3,L, U) i
I < I U INEXRECUR(W,i,z—1,k,])
if b=W]|i] then
Recursive step: 1T U bexRecn(W.i—1.2.k.)
A C] G gap-ref gap-read 11U ieReccR(V.i-1i— 1k
AGT CGT TGT GGT FGT *GT
z-1 z-1 Z z-1 z-1 z-1
i-1 i-1 i-1 i-1 i-1 i
LAUA LCUC LTUT LeUG LU LAUA LCUCLTUT LeUG
LGAGT ...GCGT ..GTGT ..GGGT ..G-GT ..GT[A/C/T/G]GT
LLGTGT L.GTGT ...GTGT ..GTGT .GTGT .GT - GT

LA=C(A) + O(A, L-1) + 1
UA=C(A) + O(A, L)

Credit: Victoria Popic

BANVASHEURSHES

“ Lower bound array D, where D(i) := LB on number of differences of exactly matching R[0,i] with the
reference (can be computed in O(|R|) time — check » < D(i) instead of n < 0)

“ Process best partial alignments first: use a min-priority heap to store alignment entries (instead of recursion)

© Prune out alignments considered sub-optimal (although they might have fewer than » differences):
dynamically adjust search parameters (e.g. n):

(1) stop if # top hits exceeds a threshold (=30),
(2) setn = nbest + 1, where nbest 1s the # of differences in top hit
© Seeding: limit the number of differences in the Seed sequence (first & bp)

© Disallow indels at the ends of the read

Li H, Durbin R.
Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009. 7154 cites

Langmead B, Salzberg SL.
Fast gapped-read alignment with Bowtie2. Nature Methods, 2012. 3017 cites

LiH
Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM

Credit: Victoria Popic

Hidden Markov Models

Example: The Dishonest Casino

A casino has two dice:

 Fairdie

P(1)=P(2)=P(3)=P(5) =P(6)=1/6
 Loaded die

P(1)=P(2)=P(3) =P(5) =1/10

P(6) = 1/2

Casino player switches back-&-forth between
fair and loaded die once every 20 turns

Game:
1. You bet $1
You roll (always with a fair die)

Casino player rolls (maybe with fair die,
maybe with loaded die)

Highest number wins $2

@ N

B

Question # 1 — Evaluation :

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

SN— I
—

Prob = 1.3 x 10-3°

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the EVALUATION problem in HMMs

Question # 2 — Decoding o

GIVEN

A sequence of rolls by the casino player

12455264621461461361 3|6661 664661636616366163616515615115146123562344,

FAIR LOADED FAIR

QUESTION

What portion of the sequence was generated with the fair die, and what
portion with the loaded die?

This is the DECODING question in HMMs

Question # 3 — Learning o

GIVEN

A sequence of rolls by the casino player

12455264621461461361 3|6661 664661636616366163616515615115146123562344
— _/

~
Prob(6) = 64%

QUESTION

How “loaded” is the loaded die? How “fair” is the fair die? How often
does the casino player change from fair to loaded, and back?

This is the LEARNING question in HMMs

The dishonest casino model

PA|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

0.95

LOADED

PA|L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4]L) = 1/10
P(5|L) = 1/10
P(B|L) = 1/2

A HMM is memory-less

At each time step t,
the only thing that affects future states
Is the current state

Definition of a hidden Markov model

Definition: A hidden Markov model (HMM)

Alphabet 2={Dby, b,,.
SetofstatesQ={1, ..., K}

.., by)

Transition probabilities between any two states

a; = transition prob from state i to state |
a,+..+a,=1, forallstatesi=1...K

Start probabilities a,

gyt ... tay="1

End les ay,

in Durbin; not needed

Emission probabilities within each state

e(b) =P(x,=b | m =Kk)

ei(bs) + ... +e(by) =1, forallstatesi=1...K

A HMM is memory-less

At each time step t,
the only thing that affects future states
Is the current state

P(m..1 = k| "whatever happened so far”)
P(rt, = K| my, 7y, .0, Ty Xqy Xoy oy X)
P(m.,. = K| m)

A HMM is memory-less

At each time step t,
the only thing that affects x;
Is the current state

P(x, = b | "whatever happened so far’) =
P(x,=b | mq, m,, ..., m, X4, X5, -+, X¢4)
P(x,=b | m)

A parse of a sequence

Given a sequence X = X;...... XN
A parse of x is a sequence of states t = m,, TN

Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state nt, according to prob a_;
2. Emit letter x, according to prob e_(x4)
3. Go to state m, according to prob a_,.,
4. ... until emitting x,

-

®: ©®C

)

Likelihood of a parse o

Given a sequence X = X;...... XN
and a parse w =,, TN

To flnd how likely this scenario is: X, X5 X3 Xk
(given our HMM)

P(X,) = P(Xq, ..c; Xy gy ceenen,) =
P(xy | ty) Py | o) «oeee P(x, | y) P(mty | mtq) P(X4 | 7tq) P(mtq) =

Qg1 Axn2e -+ -+ BxNAaN Sx1(Xq)- - en(Xn)

Likelihood of a parse

Given a sequence X = X;...... X
and a parse w = m, , TONs

To find how likely this scenaric
(given our HMM)

A compact way to write
a071:1 an1n2 """ an:N-1nN en1 (X1) """ enN(XN)

Enumerate all parameters a; and e(b); n params

Example:
AgFair - 015 AgLoaded + 025 +++ €Loaded(6) = 018

Then, count in x and & the # of times each
parameterj=1, ..., n occurs

F(j, x, w) = # parameter 6, occurs in (x,)

(call F(.,.,.) the feature counts) Then,

P(x,) = I-Ij=1...n 6,0 xm =

= exp[Zj;._, log(0)xF(, x,)]

Example: the dishonest casino o

Let the sequence of rolls be:

&

x=1,2,1,5,6,2,1,5,2,4

Then, what is the likelihood of

nt = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs age,i = 72, 8y oaded = 72)

Y2 x P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) ... P(4 | Fair) =

Y% x (1/6)10 x (0.95)° = .00000000521158647211 ~= 0.5 x 109

Example: the dishonest casino o

So, the likelihood the die is fair in this run
is just 0.521 x 109

What is the likelihood of

7t = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,
Loaded, Loaded, Loaded?

Y2 x P(1 | Loaded) P(Loaded, Loaded) ... P(4 | Loaded) =
Y2 x (1/10)° x (1/2)' (0.95)° = .00000000015756235243 ~= 0.16 x 10°

Therefore, it somewhat more likely that all the rolls are done with the
fair die, than that they are all done with the loaded die

Example: the dishonest casino o

Let the sequence of rolls be:

&

x=1,6,6,56,2,6,6,3,6

Now, what is the likelihood = = F, F, ..., F?

Y2 x (1/6)19 x (0.95)° ~= 0.5 x 102, same as before
What is the likelihood

n=L,L,..L?

Y2 x (1/10)* x (1/2)° (0.95)° = .00000049238235134735 ~= 0.5 x 10”7

So, it is 100 times more likely the die is loaded

Question # 1 — Evaluation :

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

SN— I
—

Prob = 1.3 x 10-3°

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the EVALUATION problem in HMMs

Question # 2 — Decoding o

GIVEN

A sequence of rolls by the casino player

12455264621461461361 3|6661 664661636616366163616515615115146123562344,

FAIR LOADED FAIR

QUESTION

What portion of the sequence was generated with the fair die, and what
portion with the loaded die?

This is the DECODING question in HMMs

Question # 3 — Learning o

GIVEN

A sequence of rolls by the casino player

12455264621461461361 3|6661 664661636616366163616515615115146123562344
— _/

~
Prob(6) = 64%

QUESTION

How “loaded” is the loaded die? How “fair” is the fair die? How often
does the casino player change from fair to loaded, and back?

This is the LEARNING question in HMMs

The three main questions on HMMs o

1. Evaluation

GIVEN a HMM M, and a sequence X,
FIND Prob[x | M]
2. Decoding
GIVEN a HMM M, and a sequence X,
FIND the sequence n of states that maximizes P[x, & | M]

3. Learning

GIVEN a HMM M, with unspecified transition/emission probs.,
and a sequence X,

FIND parameters 6 = (g(.), a;) that maximize P[x | 6]

Problem 1: Decoding

Find the most likely parse of a
sequence

Decoding o

GIVEN x = xX,...... XN

Findx =m,, , TN
to maximize P[x, =]

n = argmax, P[X, m]

MaXImlzeS aO.TIS1 eJ‘lJ1 (x1) aJ‘E1J‘l§2 """ aJ‘CN-1J‘CN eJ‘EN(xN) Given that we end up in

state k at step i,
Dynamic Programming! maximize product to the
left and right

Vili) = maXgq gy PIXgecXig, T, 0 T, X5 1 = K]

= Prob. of most likely sequence of states ending at
state w, = k

0000
0000
. - . °s°
Decoding — main idea -
Inductive assumption: Given that for all states Kk,
and for a fixed position |,
Vili) = maxg gy PIXqooXiq, 704, oony g, X5 1 = K]
What is V|(i+1)?
From definition,
= MaXeq ifPXivqs Tiq = 1| Xq00. X 7,00,) P[x1...xi, TUqyeees TG
= MaXg P Xiers Teq = 1 1) PXgeoXig, 0, - T, X, 1)
= maxy [P(Xi.q, Tg = || 07K) MaXgyy iy PIX X300, X3,k

- man[I:)(X|+1 | Tisq = |) P(T = =1 | Jtl_k) \ (I)]
= €(Xi4q) max, ay V(i)

The Viterbi Algorithm o

Input: X = X4...... XN

Initialization:
V,(0) =1 (O is the imaginary first position)
V. (0)=0, forallk>0

Iteration:
Ptr;(i) = argmax, a,; V(i—1)

Termination:
P(x, =*) = max, V,(N)

Traceback:
my” = argmax, V,(N)
4" = Ptry (i)

The Viterbi Algorithm o

R S PR Xy
State 1 X
2
0
%
K /

Similar to “aligning” a set of states to a sequence

Time:

O(K2N)

Space:
O(KN)

Viterbi Algorithm — a practical detail o

Underflows are a significant problem
P[x1,----, Xi, Jt»l, mmny ni] = aon»l an1n2 ------ ani en1(x1) ------ eni(Xi)

These numbers become extremely small — underflow

Solution: Take the logs of all values

V|(i) = log e,(x;) + max, [V,(i-1) + log a,]

Example

Let x be a long sequence with a portion of ~ 1/6 6’s,
followed by a portion of ~ 72 6’s...

X = 123456123456...12345 6626364656...1626364656

Then, it is not hard to show that optimal parse is (exercise):

6 characters “123456” parsed as F, contribute .95%x(1/6)° =1.6x10°
parsed as L, contribute .95%x(1/2)'x(1/10)° = 0.4x10°

“162636” parsed as F, contribute .955x(1/6)° =1.6x10°
parsed as L, contribute .95%x(1/2)3x(1/10)3 = 9.0x10-

Problem 2: Evaluation

Find the likelihood a sequence
IS generated by the model

Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:

1. Start at state nt, according to prob a_;
2. Emit letter x, according to prob e_(x4)
3. Go to state m, according to prob a_,.,
4. ... until emitting x,

-

®: ©®C

)

-9-4-4-
000
A couple of questions e
Given a sequence x P(box: FFFFFFFFFFF) =
’ ’ (1/6)" * 0.9512 =
2.76'9 *0.54 =

« What is the probability that | 1.49°

P(box: LLLLLLLLLLL) =

[(1/2)8 * (1/10)5] * 0.9510 * 0.052 =
1.56*107 * 1.53=

Example: the dishonest ca 0.23-9

* Given a position i, what is tt

Say x = 12341...23162616364616234112...21341

~—

F F

Most likely path: @ = FF...... F
(too “unlikely” to transition F — L — F)
However: marked letters more likely to be L than unmarked letters

Evaluation °°

We will develop algorithms that allow us to compute:
P(x) Probability of x given the model
P(X;...X;) Probability of a substring of x given the model
P(r, =k | x) “Posterior” probability that the it" state is k, given x

A more refined measure of which states x may be in

The Forward Algorithm o

We want to calculate

P(x) = probability of x, given the HMM

Sum over all possible ways of generating x:
P(x)= 2 P(x,) = 2_P(x| x) P(x)

To avoid summing over an exponential number of paths &, define
f (i) = P(X4...x, m = K) (the forward probability)

“generate i first characters of x and end up in state k”

The Forward Algorithm — derivation

Define the forward probability:

fi (i) = P(X4...%;, m = K)
= 201 it P Xy Ty, g, 7 = K) €4(X)
= 2 2t iz PXqeeXigs Tpuees Ty T = 1) @y €4(%)

= El P(x4...X;_4, ;4 = 1) @y €, (X)

= (X)) Z| fi(i—1)ay

The Forward Algorithm o

We can compute f(i) for all k, i, using dynamic programming!

Initialization:
fo(0) = 1
f(0)=0,forallk>0

lteration:

fi(i) = e (x) Z| fii—1) ay

Termination:

P(x) = 2, f(N)

Relation between Forward and Viterbi

VITERBI FORWARD
Initialization: Initialization:
V(0) = 1 fo(0) = 1
V,(0)=0, forallk>0 f(0)=0,forallk>0
lteration: Iteration:
Vi(i) =ex) max, V,(i—1)ay (i) = ei(x;) 2 fili — 1) ay
Termination: Termination:

P(x, ©*) = max, V,(N) P(x) = 2, f.(N)

Motivation for the Backward Algorithm

We want to compute

P(m =k | x),

the probability distribution on the it" position, given x

We start by computing

P (.

=K, X) = P(X4...%X;, % = K, Xi4q-..XN)
P(X...X, m = K) P(Xiyq... XN | X4--.X;, 7T = K)

P(X4...X, T = K)

P(Xisq1--- XN | T = K)

Forward, f,(i)

Backward, b, (i)

Then, P(w, = k | X) = P(m, = k, x) / P(X)

0000
o000
L X X
The Backward Algorithm — derivation o
Define the backward probability:
b (i) = P(Xisq... Xy | % = K) “starting from " state = k, generate rest of x”
= 2t POt Xias -0 Xpgo Tiags s Ty | 7 = K)
= 2 Lot on POt Xias - Xpg Tiaq =1, Ty ooy 70y | 75 = K)

= 2| €(Xi+1) Ay 2ni+1...nN P(Xis25 «ves Xpy Tiags oeey Ty | g = 1)

= 2, &/(X41) 8 by(i+1)

The Backward Algorithm o

We can compute b,(i) for all k, i, using dynamic programming

Initialization:

b.(N) =1, for all k

Iteration:

by(i) = 2 €(Xiur) @y bi(i+1)

Termination:

P(x) = 2, ag e(x;) b(1)

Computational Complexity o

What is the running time, and space required, for Forward, and Backward?

Time: O(K2N)
Space: O(KN)

Useful implementation technique to avoid underflows

Viterbi: sum of logs

Forward/Backward: rescaling at each few positions by multiplying by a
constant

000
HE
Posterior Decoding o
We can now calculate Plm =k |x)=
P(r, =k, x)/[P(x) =
f (i) b.(i
P(x, =k | x) = B0 P4, +or X 7 = Ky Xias, oo Xq) [P(X) =
P(x) P(xy, . = K) P(Xja1, - %o | 1 = K) / P(X) =

Then, we can ask

fi(i) By(i) / P(x)

What is the most likely state at position i of sequence x:

Define " by Posterior Decoding:

n. = argmax, P(r, = k | X)

Posterior Decoding o

* For each state,

Posterior Decoding gives us a curve of likelihood of state for each
position

That is sometimes more informative than Viterbi path =’

« Posterior Decoding may give an invalid sequence of
states (of prob 0)

Why?

Posterior Decoding s
D Xy
State 1 4’\\/\ / /&
P (=il ><%
K /\/ /\ \/
P =k|x) =2 P(x|x)1(m = k) 1) = 1, if p is true

0, otherwise

=2 ot = ky PEUIX)

Viterbi, Forward, Backward

VITERBI FORWARD
Initialization: Initialization:
Vo(0) =1 f,(0) = 1
V. (0)=0,forallk>0 f(0)=0, forallk >0
Iteration: Iteration:
Vil) = &x) max Vi) &g (i) = () 2 fi(i-1) ay
Termination: Termination:

P(x, m*) = max, V,(N) P(x) = Z f(N)

BACKWARD

Initialization:
b.(N) =1, for all k

Iteration:
by(i) = 2y (xi+1) a by(i+1)

Termination:

P(x) = 2k Aok €x(Xq) b(1)

