Review: Suffix Arrays and BWT

A\$BANAN ANA\$BAN ANANA\$B BANANA\$ NA\$BANA

NANA\$BA

\$BANANA
 A\$BANAN
 ANA\$BAN
 ANA\$BAN
 ANANA\$B
 BANANA\$
 NA\$BANA
 NANA\$BA

Suffixes are sorted in the BWT matrix

Define suffix array S:

S(i) = j, where $X_j \dots X_n$ is the i-th suffix lexicographically

BWT(X) constructed from S: At each position, take the letter to the left of the one pointed by S

Review: Reconstructing BANANA

\$BANANA A\$BANAN ANA\$BAN ANANA\$B BANANA\$ NA\$BANA

BWT matrix of string 'BANANA'

	A	N	N	В	\$	A	A	
C()	1	5	5	4	0	1	1	C(a) character array: # letter occs before a
ndex i	1	1	2	1	1	2	3	i: indicating i-th occurr. of 'a' in BWT
LF()	2	6	7	5	1	3	4	LF() = C() + i

Reconstruct BANANA:

```
S := ``"; r := 1; c := BWT[r];
UNTIL c = `$' {
    S := cS;
    r := LF(r);
    c := BWT(r); }
```

Credit: Ben Langmead thesis

Searching for query "ANA"

}

\$BANANA A\$BANAN ANA\$BAN ANANA\$B BANANA\$ NA\$BANA NANA\$BA

BWT matrix of string 'BANANA'

```
Let
LFC(r, a) = C(a) + i, where i = #'a's up to r in BWT
ExactMatch(W[1...k]) {
   a := W[k];
   low := C(a) + 1;
   high := C(a+1); // a+1: lexicographically next char
   i := k – 1:
   while (low \leq high && i \geq 1) {
         a = W[i];
         low = LFC(low - 1, a) + 1;
         high = LFC(high, a);
         i := i - 1; 
   return (low, high);
```

Credit: Ben Langmead thesis

BWT Index Construction

Credit: Victoria Popic

BWA Inexact Match

Allow up to **n** mismatches/gaps

Backward search: Given read W, keep track of multiple partial alignments

```
Partial alignment: (i, z, L, U)
```

- i: current position
- z: remaining non-matches allowed
- L: current low
- U: current high

 $I \leftarrow \emptyset$ $I \leftarrow I \cup \text{INEXRECUR}(W, i-1, z-1, k, l)$ for each $b \in \{A, C, G, T\}$ do $k \leftarrow C(b) + O(b, k-1) + 1$ $l \leftarrow C(b) + O(b, l)$ if $k \leq l$ then $I \leftarrow I \cup \text{INEXRECUR}(W, i, z-1, k, l)$ if b = W[i] then $I \leftarrow I \cup \text{INEXRECUR}(W, i-1, z, k, l)$ else $I \leftarrow I \cup \text{INEXRECUR}(W, i-1, z-1, k, l)$

BWA Inexact Match

W = ACT Partial a	GT <mark>GT</mark> lignment 4	4-tuple: (i	$I \leftarrow \emptyset$ $I \leftarrow I \cup INEXRECUR(W, i-1, z-1, k, l)$ for each $b \in \{A, C, G, T\}$ do $k \leftarrow C(b) + O(b, k-1) + 1$ $l \leftarrow C(b) + O(b, l)$ if $k \le l$ then $I \leftarrow I \cup INEXRECUR(W, i, z-1, k, l)$			
Recursiv	e step:					if $b = W[i]$ then $I \leftarrow I \cup \text{INEXRECUR}(W, i-1, z, k, l)$
А	С	Т	G	gap-ref	gap-read	else $I \leftarrow I \cup \text{INEXRECUR}(W, i-1, z-1, k, l)$
AGT	CGT	TGT	GGT	∓GT	*GT	_
z-1	z-1	Z	z-1	z-1	z-1	-
i-1	i-1	i-1	i-1	i-1	i	
L ^A U ^A	Γ _C Π _C	L ^T U ^T	L _G N _G	LU	L ^A U ^A L ^C U ^C L	^τ υ ^τ L ^G U ^G
G <mark>A</mark> GT GTGT	G <mark>C</mark> GT GTGT	GTGT GTGT	G <mark>G</mark> GT GTGT	G-GT GTGT	GT <mark>[A/C/T</mark> GT -	<mark>/G]</mark> GT GT

 $L^{A}=C(A) + O(A, L-1) + 1$ $U^{A}=C(A) + O(A, L)$

BWA Heuristics

• Lower bound array D, where D(i) := LB on number of differences of exactly matching R[0,i] with the reference (can be computed in O(|R|) time \rightarrow check n < D(i) instead of n < 0)

Process best partial alignments first: use a *min*-priority heap to store alignment entries (instead of recursion)

• Prune out alignments considered sub-optimal (although they might have fewer than *n* differences): dynamically adjust search parameters (e.g. *n*):

(1) stop if # top hits exceeds a threshold (=30),

(2) set n = nbest + 1, where *nbest* is the # of differences in top hit

- Seeding: limit the number of differences in the *seed* sequence (first *k* bp)
- Disallow indels at the ends of the read

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009. 7154 cites

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie2. Nature Methods, 2012.

3017 cites

Li H

Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM

Credit: Victoria Popic

Hidden Markov Models

Example: The Dishonest Casino

A casino has two dice:

- Fair die
 P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
- Loaded die
 P(1) = P(2) = P(3) = P(5) = 1/10
 P(6) = 1/2

Casino player switches back-&-forth between fair and loaded die once every 20 turns

<u>Game:</u>

- 1. You bet \$1
- 2. You roll (always with a fair die)
- 3. Casino player rolls (maybe with fair die, maybe with loaded die)
- 4. Highest number wins \$2

GIVEN

A sequence of rolls by the casino player

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the **EVALUATION** problem in HMMs

Question #2 – Decoding

GIVEN

A sequence of rolls by the casino player

124552646214614613613<mark>6661664661636616366163616</mark>515615115146123562344

FAIR LOADED FAIR

QUESTION

What portion of the sequence was generated with the fair die, and what portion with the loaded die?

This is the **DECODING** question in HMMs

Question #3 – Learning

GIVEN

A sequence of rolls by the casino player

QUESTION

How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?

This is the **LEARNING** question in HMMs

The dishonest casino model

A HMM is memory-less

At each time step t, the only thing that affects future states is the current state π_t

Definition: A hidden Markov model (HMM)

- Alphabet $\Sigma = \{ b_1, b_2, ..., b_M \}$
- Set of states Q = { 1, ..., K }
- Transition probabilities between any two states

 a_{ij} = transition prob from state i to state j a_{i1} + ... + a_{iK} = 1, for all states i = 1...K

• Start probabilities a_{0i}

a₀₁ + ... + a_{0K} = 1

• Emission probabilities within each state

 $e_i(b) = P(x_i = b | \pi_i = k)$ $e_i(b_1) + ... + e_i(b_M) = 1$, for all states i = 1...K

A HMM is memory-less

At each time step t, the only thing that affects future states is the current state π_t

 $P(\pi_{t+1} = k | "whatever happened so far") = P(\pi_{t+1} = k | \pi_1, \pi_2, ..., \pi_t, x_1, x_2, ..., x_t) = P(\pi_{t+1} = k | \pi_t)$

A HMM is memory-less

At each time step t, the only thing that affects x_t is the current state π_t

$$P(x_{t} = b | "whatever happened so far") = P(x_{t} = b | \pi_{1}, \pi_{2}, ..., \pi_{t}, x_{1}, x_{2}, ..., x_{t-1})$$
$$P(x_{t} = b | \pi_{t})$$

=

A parse of a sequence

Given a sequence $\mathbf{x} = \mathbf{x}_1 \dots \mathbf{x}_N$,

A <u>parse</u> of x is a sequence of states $\pi = \pi_1, \dots, \pi_N$

Given a HMM, we can generate a sequence of length n as follows:

- 1. Start at state π_1 according to prob $a_{0\pi 1}$
- 2. Emit letter x_1 according to prob $e_{\pi 1}(x_1)$
- 3. Go to state π_2 according to prob $a_{\pi 1\pi 2}$
- 4. ... until emitting x_n

Likelihood of a parse

Given a sequence $\mathbf{x} = \mathbf{x}_1, \dots, \mathbf{x}_N$ and a parse $\pi = \pi_1, \dots, \pi_N$,

To find how likely this scenario is: (given our HMM)

$$P(x, \pi) = P(x_1, ..., x_N, \pi_1, ..., \pi_N) = P(x_N \mid \pi_N) P(\pi_N \mid \pi_{N-1}) P(x_2 \mid \pi_2) P(\pi_2 \mid \pi_1) P(x_1 \mid \pi_1) P(\pi_1) = a_{0\pi 1} a_{\pi 1 \pi 2} a_{\pi N-1\pi N} e_{\pi 1}(x_1) e_{\pi N}(x_N)$$

Likelihood of a parse

Example: the dishonest casino

Let the sequence of rolls be:

x = 1, 2, 1, 5, 6, 2, 1, 5, 2, 4

Then, what is the likelihood of

 π = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs $a_{0Fair} = \frac{1}{2}$, $a_{0Loaded} = \frac{1}{2}$)

 $\frac{1}{2} \times P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) \dots P(4 | Fair) =$

 $\frac{1}{2} \times (1/6)^{10} \times (0.95)^9 = .0000000521158647211 \sim = 0.5 \times 10^{-9}$

Example: the dishonest casino

So, the likelihood the die is fair in this run is just 0.521 \times $10^{\text{-9}}$

What is the likelihood of

π = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded?

 $\frac{1}{2} \times P(1 \mid Loaded) P(Loaded, Loaded) \dots P(4 \mid Loaded) =$

 $\frac{1}{2} \times (1/10)^9 \times (1/2)^1 (0.95)^9 = .0000000015756235243 \sim = 0.16 \times 10^{-9}$

Therefore, it somewhat more likely that all the rolls are done with the fair die, than that they are all done with the loaded die

Example: the dishonest casino

Let the sequence of rolls be:

x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6

Now, what is the likelihood π = F, F, ..., F?

 $\frac{1}{2} \times (1/6)^{10} \times (0.95)^9 \sim = 0.5 \times 10^{-9}$, same as before

What is the likelihood

 $\pi = L, L, ..., L?$

 $\frac{1}{2} \times (1/10)^4 \times (1/2)^6 (0.95)^9 = .00000049238235134735 \sim = 0.5 \times 10^{-7}$

So, it is 100 times more likely the die is loaded

GIVEN

A sequence of rolls by the casino player

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the **EVALUATION** problem in HMMs

Question #2 – Decoding

GIVEN

A sequence of rolls by the casino player

124552646214614613613<mark>6661664661636616366163616</mark>515615115146123562344

FAIR LOADED FAIR

QUESTION

What portion of the sequence was generated with the fair die, and what portion with the loaded die?

This is the **DECODING** question in HMMs

Question #3 – Learning

GIVEN

A sequence of rolls by the casino player

QUESTION

How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?

This is the **LEARNING** question in HMMs

The three main questions on HMMs

1. Evaluation

GIVEN	a HMM M,	and a sequence x,
FIND	Prob[x M]	

2. Decoding

GIVEN	a HMM M,	and a sequence x,
FIND	the sequence π of s	tates that maximizes P[x, π M]

3. Learning

- GIVEN a HMM M, with unspecified transition/emission probs., and a sequence x,
- FIND parameters $\theta = (e_i(.), a_{ij})$ that maximize P[x | θ]

Problem 1: Decoding

Find the most likely parse of a sequence

Decoding

K

X_K

- GIVEN $x = x_1 x_2 \dots x_N$
- Find $\pi = \pi_1, \ldots, \pi_N$, to maximize P[x, π]
- $\pi^* = \operatorname{argmax}_{\pi} P[x, \pi]$

Maximiz

Dynamic Programming!

zes
$$a_{0\pi 1} e_{\pi 1}(x_1) a_{\pi 1 \pi 2} \dots a_{\pi N-1 \pi N} e_{\pi N}(x_N)$$

Given that we end up in state k at step i, maximize product to the left and right

 \mathbf{X}_3

X₂

= Prob. of most likely sequence of states ending at state $\pi_i = k$

K

 X_1

Decoding – main idea

Inductive assumption: Given that for all states k, and for a fixed position i,

$$V_{k}(i) = \max_{\{\pi_{1}...,\pi_{i-1}\}} P[x_{1}...x_{i-1}, \pi_{1}, ..., \pi_{i-1}, x_{i}, \pi_{i} = k]$$

What is $V_{I}(i+1)$?

From definition,

$$\begin{aligned} \mathsf{V}_{\mathsf{I}}(\mathsf{i+1}) &= \max_{\{\pi_{1}...,\pi_{i}\}}\mathsf{P}[\;\mathbf{x}_{1}...\mathbf{x}_{i},\;\pi_{1},\;\ldots,\;\pi_{i},\;\mathbf{x}_{i+1},\;\pi_{i+1}=\mathsf{I}\;] \\ &= \max_{\{\pi_{1}...,\pi_{i}\}}\mathsf{P}(\mathbf{x}_{i+1},\;\pi_{i+1}=\mathsf{I}\;|\;\mathbf{x}_{1}...\mathbf{x}_{i},\;\pi_{1},\ldots,\;\pi_{i})\;\mathsf{P}[\mathbf{x}_{1}...\mathbf{x}_{i},\;\pi_{1},\ldots,\;\pi_{i}] \\ &= \max_{\{\pi_{1}...,\pi_{i}\}}\mathsf{P}(\mathbf{x}_{i+1},\;\pi_{i+1}=\mathsf{I}\;|\;\pi_{i}=\mathsf{k})\;\mathsf{P}[\mathbf{x}_{1}...\mathbf{x}_{i-1},\;\pi_{1},\;\ldots,\;\pi_{i-1},\;\mathbf{x}_{i},\;\pi_{i}] \\ &= \max_{\mathsf{k}}\left[\mathsf{P}(\mathbf{x}_{i+1},\;\pi_{i+1}=\mathsf{I}\;|\;\pi_{i}=\mathsf{k})\;\mathsf{max}_{\{\pi_{1}...,\pi_{i-1}\}}\mathsf{P}[\mathbf{x}_{1}...\mathbf{x}_{i-1},\pi_{1},\ldots,\pi_{i-1},\;\mathbf{x}_{i},\pi_{i}=\mathsf{k}]\right] \\ &= \max_{\mathsf{k}}\left[\;\mathsf{P}(\mathbf{x}_{i+1}\;|\;\pi_{i+1}=\mathsf{I}\;)\;\mathsf{P}(\pi_{i+1}=\mathsf{I}\;|\;\pi_{i}=\mathsf{k})\;\mathsf{V}_{\mathsf{k}}(\mathsf{i})\;\right] \\ &= \mathsf{e}_{\mathsf{I}}(\mathbf{x}_{i+1})\;\mathsf{max}_{\mathsf{k}}\;\mathsf{a}_{\mathsf{k}\mathsf{l}}\;\mathsf{V}_{\mathsf{k}}(\mathsf{i}) \end{aligned}$$

The Viterbi Algorithm

Input: $x = x_1 \dots x_N$

Initialization:

 $V_0(0) = 1$ $V_k(0) = 0$, for all k > 0

(0 is the imaginary first position)

Iteration:

 $V_{j}(i) = e_{j}(x_{i}) \times \max_{k} a_{kj} V_{k}(i-1)$

 $Ptr_{j}(i) = argmax_{k} a_{kj} V_{k}(i-1)$

 $\frac{\text{Termination:}}{P(x, \pi^*) = \max_k V_k(N)}$

Traceback:

 $\begin{array}{l} {\pi_N}^* = argmax_k \; V_k(N) \\ {\pi_{i\text{-}1}}^* \; = \; \mathsf{Ptr}_{\pi i} \; (i) \end{array}$

The Viterbi Algorithm

Similar to "aligning" a set of states to a sequence

Time:

 $O(K^2N)$

Space:

O(KN)

Underflows are a significant problem

 $P[x_1,...,x_i,\pi_1,...,\pi_i] = a_{0\pi 1} a_{\pi 1\pi 2}....a_{\pi i} e_{\pi 1}(x_1)....e_{\pi i}(x_i)$

These numbers become extremely small – underflow

Solution: Take the logs of all values

 $V_{i}(i) = \log e_{k}(x_{i}) + \max_{k} [V_{k}(i-1) + \log a_{ki}]$

Let x be a long sequence with a portion of ~ 1/6 6's, followed by a portion of ~ $\frac{1}{2}$ 6's...

x = 123456123456...12345 6626364656...1626364656

Then, it is not hard to show that optimal parse is (exercise):

FFF......FLLL.....L

6 characters "123456" parsed as F, contribute $.95^6 \times (1/6)^6$ = 1.6×10^{-5} parsed as L, contribute $.95^6 \times (1/2)^1 \times (1/10)^5 = 0.4 \times 10^{-5}$

> "162636" parsed as F, contribute $.95^6 \times (1/6)^6 = 1.6 \times 10^{-5}$ parsed as L, contribute $.95^6 \times (1/2)^3 \times (1/10)^3 = 9.0 \times 10^{-5}$

Problem 2: Evaluation

Find the likelihood a sequence is generated by the model

Given a HMM, we can generate a sequence of length n as follows:

- 1. Start at state π_1 according to prob $a_{0\pi 1}$
- 2. Emit letter x_1 according to prob $e_{\pi 1}(x_1)$
- 3. Go to state π_2 according to prob $a_{\pi 1\pi 2}$
- 4. ... until emitting x_n

A couple of questions

Given a sequence x,

- What is the probability that 1.49-9
- Given a position i, what is the function of the dishonest calculate the dishonest calculated as $P(box: LLLLLLLLLLL) = [(1/2)^6 * (1/10)^5] * 0.95^{10} * 0.05^2 = 1.56^{*}10^{-7} * 1.5^{-3} = 0.23^{-9}$

Say x = 12341...23162616364616234112...21341

Most likely path: π = FF.....F (too "unlikely" to transition F \rightarrow L \rightarrow F) However: marked letters more likely to be L than unmarked letters

P(box: FFFFFFFFFF) =

 $(1/6)^{11} * 0.95^{12} =$

 $2.76^{-9} * 0.54 =$

We will develop algorithms that allow us to compute:

- P(x) Probability of x given the model
- $P(x_i...x_i)$ Probability of a substring of x given the model

 $P(\pi_i = k | x)$ "Posterior" probability that the ith state is k, given x

A more refined measure of which states x may be in

We want to calculate

P(x) = probability of x, given the HMM

Sum over all possible ways of generating x:

$$\mathsf{P}(\mathsf{x}) = \Sigma_{\pi} \mathsf{P}(\mathsf{x}, \pi) = \Sigma_{\pi} \mathsf{P}(\mathsf{x} \mid \pi) \mathsf{P}(\pi)$$

To avoid summing over an exponential number of paths π , define

 $f_k(i) = P(x_1...x_i, \pi_i = k)$ (the forward probability)

"generate i first characters of x and end up in state k"

The Forward Algorithm – derivation

Define the forward probability:

$$f_k(i) = P(x_1...x_i, \pi_i = k)$$

$$= \sum_{\pi_1...\pi_{i-1}} \mathsf{P}(\mathsf{x}_1...\mathsf{x}_{i-1}, \pi_1, ..., \pi_{i-1}, \pi_i = \mathsf{k}) \mathsf{e}_{\mathsf{k}}(\mathsf{x}_i)$$

$$= \sum_{I} \sum_{\pi_{1}...\pi_{i-2}} P(\mathbf{x}_{1}...\mathbf{x}_{i-1}, \pi_{1}, ..., \pi_{i-2}, \pi_{i-1} = I) a_{Ik} e_{k}(\mathbf{x}_{i})$$

=
$$\sum_{i} \mathbf{P}(\mathbf{x}_{1}...\mathbf{x}_{i-1}, \pi_{i-1} = \mathbf{I}) a_{ik} e_{k}(\mathbf{x}_{i})$$

$$= e_k(x_i) \sum_i f_i(i-1) a_{ik}$$

We can compute $f_k(i)$ for all k, i, using dynamic programming!

Initialization:

 $f_0(0) = 1$ $f_k(0) = 0$, for all k > 0

Iteration:

 $f_k(i) = e_k(x_i) \sum_{i} f_i(i-1) a_{ik}$

Termination:

 $P(x) = \sum_{k} f_{k}(N)$

Relation between Forward and Viterbi

VITERBI

Initialization:

 $V_0(0) = 1$ $V_k(0) = 0$, for all k > 0

Iteration:

$$V_j(i) = e_j(x_i) \max_k V_k(i-1) a_{kj}$$

Termination:

$$P(x, \pi^*) = \max_k V_k(N)$$

FORWARD

$\frac{\text{Initialization:}}{f_0(0) = 1}$

 $f_k(0) = 0$, for all k > 0

Iteration:

$$f_{l}(i) = e_{l}(x_{i}) \sum_{k} f_{k}(i-1) a_{kl}$$

Termination:

 $P(x) = \sum_{k} f_{k}(N)$

Motivation for the Backward Algorithm

We want to compute

$$\mathsf{P}(\pi_{\mathsf{i}} = \mathsf{k} \mid \mathsf{x}),$$

the probability distribution on the ith position, given x

We start by computing

$$P(\pi_{i} = k, x) = P(x_{1}...x_{i}, \pi_{i} = k, x_{i+1}...x_{N})$$

= P(x_{1}...x_{i}, \pi_{i} = k) P(x_{i+1}...x_{N} | x_{1}...x_{i}, \pi_{i} = k)
= P(x_{1}...x_{i}, \pi_{i} = k) P(x_{i+1}...x_{N} | \pi_{i} = k)

Forward, $f_k(i)$ Backward, $b_k(i)$

Then, $P(\pi_i = k | x) = P(\pi_i = k, x) / P(x)$

Define the backward probability:

 $b_k(i) = P(x_{i+1}...x_N | \pi_i = k)$ "starting from *i*th state = k, generate rest of x"

$$= \sum_{\pi i+1...\pi N} P(x_{i+1}, x_{i+2}, ..., x_N, \pi_{i+1}, ..., \pi_N \mid \pi_i = k)$$

$$= \sum_{I} \sum_{\pi i+1...\pi N} \mathsf{P}(\mathsf{x}_{i+1},\mathsf{x}_{i+2}, ..., \mathsf{x}_{N}, \pi_{i+1} = \mathsf{I}, \pi_{i+2}, ..., \pi_{N} \mid \pi_{i} = \mathsf{k})$$

$$= \sum_{i} e_{i}(x_{i+1}) a_{ki} \sum_{\pi i+1...\pi N} P(x_{i+2}, ..., x_{N}, \pi_{i+2}, ..., \pi_{N} \mid \pi_{i+1} = I)$$

 $= \sum_{i} e_{i}(x_{i+1}) a_{ki} b_{i}(i+1)$

We can compute $b_k(i)$ for all k, i, using dynamic programming

Initialization:

 $b_k(N) = 1$, for all k

Iteration:

 $b_k(i) = \sum_{i} e_i(x_{i+1}) a_{ki} b_i(i+1)$

Termination:

$$P(x) = \sum_{i} a_{0i} e_{i}(x_{1}) b_{i}(1)$$

What is the running time, and space required, for Forward, and Backward?

Time: O(K²N) Space: O(KN)

Useful implementation technique to avoid underflows

Viterbi:sum of logsForward/Backward:rescaling at each few positions by multiplying by a
constant

Posterior Decoding

We can now calculate		$P(\pi_{i} = k \mid x) =$		
	f (i) b (i)	$P(\pi_{i} = k , x) / P(x) =$		
P(π _i = k x) =	$I_k(I) D_k(I)$	$P(x_1,, x_i, \pi_i = k, x_{i+1},, x_n) / P(x) =$		
	P(x)	$P(x_1,, x_i, \pi_i = k) P(x_{i+1},, x_n \pi_i = k) / P(x) =$		
Then, we can ask		f _k (i) b _k (i) / P(x)		

What is the most likely state at position i of sequence x:

Define π^{\wedge} by Posterior Decoding:

$$\pi_i^{*} = \operatorname{argmax}_k P(\pi_i = k \mid x)$$

Posterior Decoding

- For each state,
 - Posterior Decoding gives us a curve of likelihood of state for each position
 - That is sometimes more informative than Viterbi path π^*
- Posterior Decoding may give an invalid sequence of states (of prob 0)
 - Why?

Posterior Decoding

•
$$P(\pi_i = k \mid x) = \sum_{\pi} P(\pi \mid x) \mathbf{1}(\pi_i = k)$$

= $\sum_{\pi:\pi[i] = k} P(\pi \mid x)$

 $f(\psi) = 1$, if ψ is true 0, otherwise

Viterbi, Forward, Backward

VITERBI	FORWARD	BACKWARD
$\frac{\text{Initialization:}}{V_0(0) = 1}$ $V_k(0) = 0, \text{ for all } k > 0$	$\frac{\text{Initialization:}}{f_0(0) = 1}$ $f_k(0) = 0, \text{ for all } k > 0$	<u>Initialization:</u> b _k (N) = 1, for all k
Iteration:	Iteration:	Iteration:
$V_{I}(i) = e_{I}(x_{i}) \max_{k} V_{k}(i-1) a_{kI}$	$f_{i}(i) = e_{i}(x_{i}) \sum_{k} f_{k}(i-1) a_{ki}$	$b_{i}(i) = \sum_{k} e_{i}(x_{i}+1) a_{ki} b_{k}(i+1)$
<u>Termination:</u>	<u>Termination:</u>	Termination:
$P(x,\pi^*)=\max_{k}V_{k}(N)$	$P(x) = \sum_{k} f_{k}(N)$	$P(x) = \sum_{k} a_{0k} e_{k}(x_{1}) b_{k}(1)$