Review: Suffix Arrays and BWT

A\$BANAN ANA\$BAN ANANA\$B BANANA\$

NA\$BANA NANA\$BA

Suffixes are sorted in the BWT matrix

Define suffix array S:

 $S(i) = j$, where X_i ... X_n is the i-th suffix **lexicographically**

BWT(X) constructed from S: At each position, take the letter to the left of the one pointed by S

Review: Reconstructing BANANA

BWT matrix of string 'BANANA'

$$
S := CS;
$$

\n
$$
r := LF(r);
$$

\n
$$
c := BWT(r);
$$

Credit: Ben Langmead thesis

Searching for query "ANA"

}

\$BANANA A\$BANAN ANA\$BAN ANANA\$B BANANA\$ NA\$BANA NANA\$BA

BWT matrix of string 'BANANA'

```
Let 
LFC(r, a) = C(a) + i, where i = \frac{\pi}{a}'s up to r in BWT
ExactMatch(W[1...k]) \{a := W[k];
   low := C(a) + 1;high := C(a+1); // a+1: lexicographically next char
   i := k - 1;
   while (low \le high && i >= 1) {
         a = W[i];
         low = LFC(low - 1, a) + 1;high = LFC(high, a);
         i := i - 1; return (low, high);
```
Credit: Ben Langmead thesis

BWT Index Construction

Credit: Victoria Popic

BWA Inexact Match

Allow up to **n** mismatches/gaps

Backward search: Given read W, keep track of multiple partial alignments

```
Partial alignment: (i, z, L, U)
```
- i: current position
- z: remaining non-matches allowed
- L: current low
- U: current high

 $I \leftarrow \emptyset$ $I \leftarrow I \cup \text{INEXRECUR}(W, i-1, z-1, k, l)$ for each $b \in \{A, C, G, T\}$ do $k \leftarrow C(b) + O(b, k-1) + 1$ $l \leftarrow C(b) + O(b, l)$ if $k < l$ then $I \leftarrow I \cup \text{INEXRECUR}(W, i, z-1, k, l)$ if $b = W[i]$ then $I \leftarrow I \cup \text{INEXRECUR}(W, i-1, z, k, l)$ else $I \leftarrow I \cup \text{INEXRECUR}(W, i-1, z-1, k, l)$

BWA Inexact Match

 $L^A=C(A) + O(A, L-1) + 1$ $U^A=C(A)+O(A, L)$

BWA Heuristics

• Lower bound array D, where $D(i) := LB$ on number of differences of exactly matching R[0,i] with the (can be computed in O(|R|) time \rightarrow check $n \le D(i)$ instead of $n \le 0$) reference

Process best partial alignments first: use a *min*-priority heap to store alignment entries (instead of recursion)

 \bullet Prune out alignments considered sub-optimal (although they might have fewer than *n* differences): dynamically adjust search parameters $(e.g. n)$:

(1) stop if # top hits exceeds a threshold $(=30)$,

(2) set $n = nbest + 1$, where *nbest* is the # of differences in top hit

- Seeding: limit the number of differences in the seed sequence (first k bp)
- Disallow indels at the ends of the read

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009. 7154 cites

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie2. Nature Methods, 2012. **3017 Cites** 3017 cites

Li H

Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM

Credit: Victoria Popic

Hidden Markov Models

Example: The Dishonest Casino

A casino has two dice:

- Fair die $P(1) = P(2) = P(3) = P(5) = P(6) = 1/6$
- Loaded die $P(1) = P(2) = P(3) = P(5) = 1/10$ $P(6) = 1/2$

Casino player switches back-&-forth between fair and loaded die once every 20 turns

Game:

- 1. You bet \$1
- 2. You roll (always with a fair die)
- 3. Casino player rolls (maybe with fair die, maybe with loaded die)
- 4. Highest number wins \$2

GIVEN

A sequence of rolls by the casino player

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the **EVALUATION** problem in HMMs

Question # 2 – Decoding

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

FAIR LOADED FAIR

QUESTION

What portion of the sequence was generated with the fair die, and what portion with the loaded die?

This is the **DECODING** question in HMMs

Question # 3 – Learning

GIVEN

A sequence of rolls by the casino player

QUESTION

How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?

This is the **LEARNING** question in HMMs

The dishonest casino model

A HMM is memory-less

At each time step t, the only thing that affects future states is the current state π_t

Definition: A hidden Markov model (HMM)

- Alphabet $\Sigma = \{ b_1, b_2, ..., b_M \}$
- Set of states $Q = \{ 1, ..., K \}$
- Transition probabilities between any two states

 a_{ii} = transition prob from state i to state j $a_{i1} + ... + a_{iK} = 1$, for all states i = 1...K

Start probabilities a_{0i}

 $a_{01} + ... + a_{0K} = 1$

• Emission probabilities within each state

 $e_i(b) = P(x_i = b | \pi_i = k)$ $e_i(b_1) + ... + e_i(b_M) = 1$, for all states i = 1...K

A HMM is memory-less

At each time step t, the only thing that affects future states is the current state π_t

 $P(\pi_{t+1} = k \mid \text{``whatever happened so far''}) =$ $P(\pi_{t+1} = k | \pi_1, \pi_2, ..., \pi_t, x_1, x_2, ..., x_t)$ = $P(\pi_{t+1} = k | \pi_t)$

A HMM is memory-less

At each time step t, the only thing that affects x_t is the current state π_t

$$
P(x_t = b \mid "whatever happened so far") =
$$

$$
P(x_t = b \mid \pi_1, \pi_2, ..., \pi_t, x_1, x_2, ..., x_{t-1}) =
$$

$$
P(x_t = b \mid \pi_t)
$$

A parse of a sequence

Given a sequence $x = x_1, \ldots, x_N$

A parse of x is a sequence of states $\pi = \pi_1, \dots, \pi_N$

Given a HMM, we can generate a sequence of length n as follows:

- 1. Start at state π_1 according to prob $a_{0\pi 1}$
- 2. Emit letter x_1 according to prob $e_{\pi 1}(x_1)$
- 3. Go to state π_2 according to prob $a_{\pi_1\pi_2}$
- 4. \dots until emitting x_n

Likelihood of a parse

Given a sequence $x = x_1, \ldots, x_N$ and a parse $\pi = \pi_1, \ldots, \pi_N$,

To find how likely this scenario is: (given our HMM)

$$
P(x, \pi) = P(x_1, ..., x_N, \pi_1, ..., \pi_N) =
$$

\n
$$
P(x_N | \pi_N) P(\pi_N | \pi_{N-1}) ... P(x_2 | \pi_2) P(\pi_2 | \pi_1) P(x_1 | \pi_1) P(\pi_1) =
$$

\n
$$
a_{0\pi 1} a_{\pi 1 \pi 2} a_{\pi N-1 \pi N} e_{\pi 1}(x_1) e_{\pi N}(x_N)
$$

Likelihood of a parse

Example: the dishonest casino

Let the sequence of rolls be:

 $x = 1, 2, 1, 5, 6, 2, 1, 5, 2, 4$

Then, what is the likelihood of

 π = Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs $a_{0.000} = \frac{1}{2}$, $a_{\text{ol oaded}} = \frac{1}{2}$)

 $\frac{1}{2} \times P(1 \mid \text{Fair}) P(\text{Fair} \mid \text{Fair}) P(2 \mid \text{Fair}) P(\text{Fair} \mid \text{Fair}) ... P(4 \mid \text{Fair}) =$

 $\frac{1}{2} \times (1/6)^{10} \times (0.95)^{9} = .00000000521158647211 \approx 0.5 \times 10^{-9}$

Example: the dishonest casino

So, the likelihood the die is fair in this run is just 0.521×10^{-9}

What is the likelihood of

 π = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded?

 $\frac{1}{2} \times P(1 \mid \text{Loaded}) P(\text{Loaded}, \text{Loaded}) \dots P(4 \mid \text{Loaded}) =$

 $\frac{1}{2} \times (1/10)^9 \times (1/2)^1 (0.95)^9 = .00000000015756235243 \approx 0.16 \times 10^{-9}$

Therefore, it somewhat more likely that all the rolls are done with the fair die, than that they are all done with the loaded die

Example: the dishonest casino

Let the sequence of rolls be:

 $x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6$

Now, what is the likelihood π = F, F, ..., F?

 $\frac{1}{2} \times (1/6)^{10} \times (0.95)^{9} \approx 0.5 \times 10^{-9}$, same as before

What is the likelihood

 π = L, L, ..., L?

 $\frac{1}{2} \times (1/10)^4 \times (1/2)^6 (0.95)^9 = .00000049238235134735 \approx 0.5 \times 10^{-7}$

So, it is 100 times more likely the die is loaded

GIVEN

A sequence of rolls by the casino player

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the **EVALUATION** problem in HMMs

Question # 2 – Decoding

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

FAIR LOADED FAIR

QUESTION

What portion of the sequence was generated with the fair die, and what portion with the loaded die?

This is the **DECODING** question in HMMs

Question # 3 – Learning

GIVEN

A sequence of rolls by the casino player

QUESTION

How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?

This is the **LEARNING** question in HMMs

The three main questions on HMMs

1. Evaluation

2. Decoding

3. Learning

- GIVEN a HMM M, with unspecified transition/emission probs., and a sequence x,
- FIND parameters $\theta = (e_i(.)$, a_{ij}) that maximize P[x | θ]

Problem 1: Decoding

Find the most likely parse of a sequence

Decoding

1

2

K

…

…

…

…

Find $\pi = \pi_1, \ldots, \pi_N$, to maximize P[x, π]

$$
\pi^* = \text{argmax}_{\pi} P[x, \pi]
$$

Maximizes $a_{0\pi1} e_{\pi1}(x_1) a_{\pi1\pi2} a_{\pi N\text{-}1\pi N} e_{\pi N}(x_N)$

Dynamic Programming!

$$
\text{minizes } \mathbf{a}_{0\pi 1} \mathbf{e}_{\pi 1}(\mathbf{x}_1) \mathbf{a}_{\pi 1\pi 2} \ldots \mathbf{a}_{\pi N \text{-} 1\pi N} \mathbf{e}_{\pi N}(\mathbf{x}_N)
$$

Given that we end up in state k at step i, maximize product to the left and right

$$
V_{k}(i) = max_{\{\pi 1...\pi i-1\}} P[x_{1}...x_{i-1}, \pi_{1}, ..., \pi_{i-1}, x_{i}, \pi_{i} = k]
$$

= Prob. of most likely sequence of states ending at state π_i = k

1

1

1

2

K

 x_1 x_2 x_3 x_K

…

2

K

…

2

…

K

Decoding – main idea

Inductive assumption: Given that for all states k, and for a fixed position i,

$$
V_{k}(i) = max_{\{\pi^{1}... \pi^{i-1}\}} P[x_{1}...x_{i-1}, \pi_{1}, ..., \pi_{i-1}, x_{i}, \pi_{i} = k]
$$

What is $\mathsf{V}_{\mathsf{I}}(\mathsf{i}+\mathsf{1})$?

From definition,

$$
V_{|}(i+1) = \max_{\{\pi_{1}...\pi_{i}\}} P[\ x_{1}...x_{i}, \pi_{1}, ..., \pi_{i}, x_{i+1}, \pi_{i+1} = 1]
$$

\n
$$
= \max_{\{\pi_{1}...\pi_{i}\}} P(x_{i+1}, \pi_{i+1} = 1 | x_{1}...x_{i}, \pi_{1}, ..., \pi_{i}) P[x_{1}...x_{i}, \pi_{1}, ..., \pi_{i}]
$$

\n
$$
= \max_{\{\pi_{1}...\pi_{i}\}} P(x_{i+1}, \pi_{i+1} = 1 | \pi_{i}) P[x_{1}...x_{i-1}, \pi_{1}, ..., \pi_{i-1}, x_{i}, \pi_{i}]
$$

\n
$$
= \max_{k} [P(x_{i+1}, \pi_{i+1} = 1 | \pi_{i} = k) \max_{\{\pi_{1}...\pi_{i-1}\}} P[x_{1}...x_{i-1}, \pi_{1}, ..., \pi_{i-1}, x_{i}, \pi_{i} = k]]
$$

\n
$$
= \max_{k} [P(x_{i+1} | \pi_{i+1} = 1) P(\pi_{i+1} = 1 | \pi_{i} = k) V_{k}(i)]
$$

\n
$$
= e_{|}(x_{i+1}) \max_{k} a_{k1} V_{k}(i)
$$

The Viterbi Algorithm

Input: $x = x_1$ …… x_N

Initialization:

 $V_k(0) = 0$, for all $k > 0$

 $V_0(0) = 1$ (0 is the imaginary first position)

Iteration:

 $V_i(i)$ (i) $= e_j(x_i) \times max_k a_{kj} V_k(i-1)$

 $Ptr_i(i)$ = argmax_k a_{ki} V_k(i – 1)

Termination: $P(x, \pi^*) = max_k V_k(N)$

Traceback:

 π_{N}^* = argmax_k $V_k(N)$ π_{i-1}^* = Ptr_{π_i} (i)

The Viterbi Algorithm

Similar to "aligning" a set of states to a sequence

Time:

 $O(K^2N)$

Space:

O(KN)

Underflows are a significant problem

P[$x_1, \ldots, x_i, \pi_1, \ldots, \pi_i$] = $a_{0\pi 1} a_{\pi 1\pi 2} \ldots a_{\pi i} e_{\pi 1}(x_1) \ldots a_{\pi i}(x_i)$

These numbers become extremely small – underflow

Solution: Take the logs of all values

 V_{\parallel} (i) = log $e_{k}(x_{i})$ + max_k [$V_{k}(i-1)$ + log a_{k}]

Let x be a long sequence with a portion of \sim 1/6 6's, followed by a portion of $\sim \frac{1}{2}$ 6's...

x = 123456123456…12345 6626364656…1626364656

Then, it is not hard to show that optimal parse is (exercise):

FFF…………………...F LLL………………………...L

6 characters "123456" parsed as F, contribute .95 $6 \times (1/6)^6$ = 1.6 \times 10⁻⁵ parsed as L, contribute $.95^6 \times (1/2)^1 \times (1/10)^5 = 0.4 \times 10^{-5}$

> "162636" parsed as F, contribute .95⁶ \times (1/6)⁶ = 1.6 \times 10⁻⁵ parsed as L, contribute .95⁶ \times (1/2)³ \times (1/10)³ = 9.0 \times 10⁻⁵

Problem 2: Evaluation

Find the likelihood a sequence is generated by the model

Given a HMM, we can generate a sequence of length n as follows:

- 1. Start at state π_1 according to prob $a_{0\pi 1}$
- 2. Emit letter x_1 according to prob $e_{\pi 1}(x_1)$
- 3. Go to state π_2 according to prob $a_{\pi_1\pi_2}$
- 4. \dots until emitting x_n

A couple of questions

Given a sequence x,

- What is the probability that \vert 1.49-9
- Given a position i, what is the Example: the dishonest ca 0.23-9 P(box: LLLLLLLLLLL) = $[(1/2)^{6} \cdot (1/10)^{5}] \cdot 0.95^{10} \cdot 0.05^{2} =$ $1.56*10^{-7}$ * 1.5^{-3} =

Say x = 12341...23162616364616234112...21341 **F F**

Most likely path: π = FF......F (too "unlikely" to transition $F \rightarrow L \rightarrow F$) However: marked letters more likely to be L than unmarked letters

 $P(box: FFFFFFFFFF) =$

 $(1/6)^{11}$ * 0.95¹² =

 $2.76 - 9 * 0.54 =$

We will develop algorithms that allow us to compute:

- $P(x)$ Probability of x given the model
- $P(X_i...X_j)$) Probability of a substring of x given the model

 $P(\pi_i = k \mid x)$ "Posterior" probability that the ith state is k, given x

A more refined measure of which states x may be in

We want to calculate

 $P(x)$ = probability of x, given the HMM

Sum over all possible ways of generating x:

$$
P(x) = \Sigma_{\pi} P(x, \pi) = \Sigma_{\pi} P(x | \pi) P(\pi)
$$

To avoid summing over an exponential number of paths π , define

 $f_k(i) = P(x_1...x_i, \pi_i = k)$ (the forward probability)

"generate i first characters of x and end up in state k"

The Forward Algorithm – derivation

Define the forward probability:

$$
f_k(i) = P(x_1...x_i, \pi_i = k)
$$

$$
= \sum_{\pi_1 \dots \pi_{i-1}} P(x_1 \dots x_{i-1}, \pi_1, \dots, \pi_{i-1}, \pi_i = k) e_k(x_i)
$$

$$
= \sum_{i=1}^N \sum_{\pi^{1} \dots \pi^{i-2}} P(x_1 \dots x_{i-1}, \pi_1, \dots, \pi_{i-2}, \pi_{i-1} = I) a_{ik} e_k(x_i)
$$

$$
= \sum_{i} P(x_{i}...x_{i-1}, \pi_{i-1} = I) a_{ik} e_{k}(x_{i})
$$

$$
=
$$
 e_k $(x_i) \sum_i f_i(i-1) a_{ik}$

We can compute $f_k(i)$ for all k, i, using dynamic programming!

Initialization:

 $f_0(0) = 1$ $f_k(0) = 0$, for all $k > 0$

Iteration:

 $f_{k}(i) = e_{k}(x_{i}) \sum_{i} f_{i}(i-1) a_{ik}$

Termination:

 $P(x) = \sum_{k} f_{k}(N)$

Relation between Forward and Viterbi

VITERBI

Initialization:

 $V_0(0) = 1$ $V_k(0) = 0$, for all $k > 0$

Iteration:

$$
V_j(i) = e_j(x_i) \, \max_k V_k(i-1) a_{kj}
$$

Termination:

$$
P(x, \pi^*) = \max_k V_k(N)
$$

FORWARD

Initialization: $f_0(0) = 1$ $f_k(0) = 0$, for all $k > 0$

Iteration:

$$
f_i(i) = e_i(x_i) \sum_{\mathbf{k}} f_{k}(i-1) a_{kl}
$$

Termination:

 $P(x) = \sum_{\mathbf{k}} f_{\mathbf{k}}(\mathsf{N})$

Motivation for the Backward Algorithm

We want to compute

$$
\mathsf{P}(\pi_{i} = k \mid x),
$$

the probability distribution on the ith position, given x

We start by computing

$$
P(\pi_i = k, x) = P(x_1...x_i, \pi_i = k, x_{i+1}...x_N)
$$

= P(x₁...x_i, \pi_i = k) P(x_{i+1}...x_N | x₁...x_i, \pi_i = k)
= P(x₁...x_i, \pi_i = k) P(x_{i+1}...x_N | \pi_i = k)

Forward, $f_k(i)$ Backward, $b_k(i)$

Then, $P(\pi_i = k | x) = P(\pi_i = k, x) / P(x)$

Define the backward probability:

 $b_k(i) = P(x_{i+1}...x_N \mid \pi_i = k)$ "starting from ith state = k , generate rest of x "

$$
= \sum_{\pi i + 1 \dots \pi N} P(x_{i+1}, x_{i+2}, \dots, x_N, \pi_{i+1}, \dots, \pi_N | \pi_i = k)
$$

$$
= \sum_{i} \sum_{\pi i+1 \dots \pi N} P(x_{i+1}, x_{i+2}, \dots, x_N, \pi_{i+1} = 1, \pi_{i+2}, \dots, \pi_N | \pi_i = k)
$$

$$
= \sum_{i} e_{i}(x_{i+1}) a_{ki} \sum_{\pi i+1 \dots \pi N} P(x_{i+2}, ..., x_{N}, \pi_{i+2}, ..., \pi_{N} | \pi_{i+1} = 1)
$$

 $=\sum_{i} e_i(x_{i+1}) a_{ki} b_i(i+1)$

We can compute $b_k(i)$ for all k, i, using dynamic programming

Initialization:

 $b_k(N) = 1$, for all k

Iteration:

 $b_{k}(i) = \sum_{i} e_{i}(x_{i+1}) a_{ki} b_{i}(i+1)$

Termination:

$$
P(x) = \sum_i a_{0i} e_i(x_1) b_i(1)
$$

What is the running time, and space required, for Forward, and Backward?

Time: $O(K^2N)$ Space: O(KN)

Useful implementation technique to avoid underflows

Viterbi: sum of logs **Forward/Backward:** rescaling at each few positions by multiplying by a constant

Posterior Decoding

What is the most likely state at position i of sequence x:

Define π^{\wedge} by Posterior Decoding:

$$
\pi_i' = \text{argmax}_k P(\pi_i = k \mid x)
$$

Posterior Decoding

- For each state,
	- Posterior Decoding gives us a curve of likelihood of state for each position
	- **That is sometimes more informative than Viterbi path** π^*
- Posterior Decoding may give an invalid sequence of states (of prob 0)
	- § Why?

Posterior Decoding

•
$$
P(\pi_i = k | x) = \sum_{\pi} P(\pi | x) \mathbf{1}(\pi_i = k)
$$

= $\sum_{\{\pi : \pi[i] = k\}} P(\pi | x)$

 $\mathbf{1}(\psi) = 1$, if ψ is true 0, otherwise

Viterbi, Forward, Backward

