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!!!!!! SKIP 15 POINTS WORTH OF QUESTIONS. !!!!!

This is an open-book exam. You have 80 minutes. Cross out the ques-

tions you skip. Write all of your answers directly on the paper. Make your

answers as concise as possible. Sentence fragments ok.

NOTE: We will take off points if a correct answer also includes

incorrect or irrelevant information. (I.e., don’t put in everything

you know in hopes of saying the correct buzzword.)

Question Score

1-11 (55 points)

12 (10 points)

13 (10 points)

total (max: 60 points — skip 15):
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Short answer questions: in a sentence or two, say why your answer holds.
(5 points each).

1. We don’t need binary rewriting to detect many threading problems.
Explain how you can change a threading library’s code to detect both
(1) if cooperative threads run “too long” and (2) priority inversion.
(Aside: I don’t know why more people don’t do this.)

(a) When you schedule a thread, record the start time and when it
blocks, record the end time. Check the difference and give an error
if it’s “too long.” Alternatively, set a watchdog timer and “feed”
it every time you schedule a thread. If it fires, the thread ran “too
long”.

(b) For each lock (or blocking resource), record the thread priority that
holds it, if higher priority thread waits on the lock/resource, give
an error.

2. You build the network system in the livelock paper on top of MESA.
There are two threads, both have the same priority. One thread runs
the code for screend (translated into MESA). The other thread calls
process pkts in the following Network monitor:

// network hardware notifies this condition variable

// using the "well-known" wakeup waiting switch

condition_var has_packet;

ENTRY get_packet() -> packet BEGIN

// if network interface has no packet, wait.

while(nic.empty())

wait(nic.has_packet);

// pull packet off the nic and consume it.

return nic.get_packet();

END

EXTERN process_pkts() BEGIN

while(1) {

// <forward> puts the packet on the

// appropriate queue.

forward(get_packet());

END
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What two problems that the livelock paper discusses will this code
have? How would you fix the code using MESA-appropriate versions
of their solutions?
First problem, the process pkts code does polling without a quota so if
packets come in fast enough it will run and never give screend a chance
to run. Add a quota to the loop, when exceeded yield() which will
run the other thread. (Answer should probably have some description
of what to do when quota reached.)

Second problem: the implementation never disables the nic if the screend
queue fills up. To do so the packet processing thread (in the given code)
can check the screend queue and if full, sleep for 1ms or so (as in
livelock.)

3. Assume: volatile works as discussed in class: it guarantees the com-
piler will will not reorder volatile accesses with respect to each other,
nor will it insert or eliminate volatile references.

Assume as discussed in class that we have a simple compiler “memory
barrier” that prevents the compiler from moving loads or stores across
the barrier and forces all live registers to be written to memory before
it and loaded from memory after.

From the buggy code examples in the “threads can’t be implemented
as a library” paper: (1) explain one the programmer could prevent
using either volatile or a barrier, and (2) explain one that neither
volatile nor barriers could be used to eliminate.
Could prevent both the speculation bug in 4.1 (since it would prevent
speculation) and the speculation bug in 4.3 (since the compiler could
not insert extra loads or stores to the protected data). Neither can
eliminate the modification of “variables not mentioned in the source”
or the problem of non-atomic stores/loads.

4. Eraser+Mesa: the eraser authors compare themselves to Mesa in the
related work. Is their comparison completely accurate? Justify your
answer.
The wording is a bit confusing, but one reading is that they claim that
MESA montiors (not just Hoare monitors) do not support “dynamically
allocated shared variables.” This is, of course, false since MESA has
monitored records.
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5. Eraser: the interrupt discussion in the Eraser paper is arguably a bit
dubious. Assume the checked code runs on a uniprocessor and has a
routine disable() to disable interrupts and enable() to enable them,
but no notion of priority levels. Explain how to adapt eraser to catch
bugs where non-interrupt code does not protect data shared with in-
terrupt code.
Goal: If non-interrupt code reads/writes data written by the interrupt
handler without disabling interrupts you want to flag an error. How:
It’s a bit logically awkward but you could use annotations to have eraser
believe disable() and enable() acquire/release a global interrupt lock, as
does the interrupt handler. If this “lockset” goes to empthy flag the
data. This isn’t entirely direct but does not require modifying eraser.

6. Observation games: you see the following routine:

int foo(void) {

int x,y=3;

memcpy(&x,&y,sizeof x);

return x;

}

You compile foo with an optimizing compiler that understands the C
standard library. What is the shortest equivalant code the compiler
could generate for foo? Explain your reasoning.
as discussed in class: if the compiler understands memcpy it can de-
termine that its invocation in this code is equivalant to the assignment
x=y. Since the compiler knows y==3, then x==3, thus the entire routine
reduces to the assembly code equivalant return 3;. Note that this isn’t
theoretical: the current (somewhat old) version of gcc on my laptop
does this — I’d suggest trying with clang or gcc on yours!

7. For “Knot-A” and “Knot-C” in Figure 3 (Section 5) in the “Why events
are a bad idea.” Use ideas from the livelock paper to (at least partly)
explain the performance difference of these curves.
Knot-A: favors accept, so will keep accepting work even when it cannot
keep up with existing work (so is a push architecture). Thus, at a high
enough rate, the throughput goes down dramatically (possibly down to
0). Knot-C: is similar to livelock solution in that it is “pull” archi-
tecture that goes an pulls more work when it has finished its existing
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work. This means it doesn’t get stuck in earlier pipeline stages given
a high input rate. Nor will it discard packets that it has spent cycles
working on. While the knot application has similarities to the livelock
approach, we don’t know about the underlying OS, which could have the
same vulnerabilities. The paper speculates that interrupt overhead leads
to the degredation. May well not account for fairness, but we can’t see
from the graph afaik.

8. You are running an identical, multiprogrammed workload in two virtual
machines, A and B, on two separate physical machines. The following
events transpire:

(a) On the first physical machine, ESX enters the hard state and
forcibly reclaims a host physical page from virtual machine A,
writing the page contents to disk.

(b) On the second physical machine, B’s kernel evicts a page from a
user process.

Would A’s expected throughput degrade more than B’s, vice versa, or
neither? Justify your answer.
A’s expected performance would degrade more.

From ESX’s point of view the guest OS is largely a black box. ESX has
no way to “switch threads” in the guest. Thus, if a guestOS faults on a
PPN that is paged out, the guestOS’s whole virtual CPU is blocked. In
contrast, a guestOS can easily switch to another process if one process
blocks on a paged-out PPN.

There were some answers that talked about blocking the guestOS on
eviction, but that doesn’t appear to be necessary — ESX can page out
asynchronously.

9. Superpages: Assume we run the all the benchmarks in Table 1 con-
currently (all at the same time), rather than sequentially (one-after-
another) on the exact Alpha machine used in the paper. What broad
changes would you expect for all the columns, especially the 4MB col-
umn?
We should see a shift leftwards for the superpage usage columns—there
should be many more base pages in use, and fewer large pages (maybe
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even no 4mb pages). The runtimes will get slower (probably signifi-
cantly), so the speedups will be negligible since many reservations would
fail. We don’t expect things to get much worse than baseline (running
concurrently on an unmodified system), since even with all the promo-
tion overhead in the adversarial experiments there isn’t much degra-
dation. We expect more TLB misses due to the smaller pages, and
therefore a lower miss reduction percentage.

10. In a parallel universe, NaCl is wildly successful and x86 adds a NaCl
jump instruction that performs both the and and indirect jump in a
single instruction. What problem does this get rid of? Explain how
you would change the verifier (figure 3) to make it as simple as possible
and justify your answer.
If nacl-jump is a single instruction, you don’t have to worry about evil
code jumping over the and instruction used to 32-byte align the target.
Since its no longer a 2-instruction sequence, we don’t have to do the
special check for the jump. As a result the if-statement that checks
the nacl jump goes away, and the verifier simply always adds IP to
JumpTargets (versus eliding indirect jumps.)

11. The nacl group does the following optimization: if there is only a single
call to a given routine foo, they replace the original call instruction to
foo with a simple direct jump (that does not write the return address
register), and foo’s return instruction (ret) with a direct jump back.
Assume they do this transformation correctly: what speed and space
improvement could this achieve?
A direct jump is faster than the nacl-jump (both b/c less instructions
and b/c you don’t get a possible misprediction (you don’t need this
point)). Also, as they state: since indirect jumps can only jump to the
start of a block, this forces any call instruction to be the last instruction
in the block (otherwise the indirect jump done by return couldn’t jump
to the instruction after the call). Thus this constraint causes internal
block fragmentation — which goes away without it.

Problem 12: superpages (10 points) Assuming Carl is willing to by de-
fault allocate machine memory in 4MB contiguous, superpage-aligned chunks:
How could ESX be modified to transparently support guestOSes that imple-
ment superpages? How would page sharing complicate this approach?
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Recall: The ESX paper talks about how to remap a GuestOS’s virtual
memory by (partially) translating the guest’s page tables to shadow page
tables controlled by ESX. You may need to propagate superpage information
from the guestOS page table to the shadow page tables.
If we have 4mb-aligned machine pages that correspond to 4mb physical pages,
the superpage hack should just work. Each 4mb superpage chunk that the
guestOS uses would correspond to a correctly-aligned 4mb machine page that
can be used interchangeably.

As ESX constructs shadow page tables, it can simply propogate whether
the guestOS entry was a superpage or not, and (again) should should be able
to simply relabel the PPN as its corresponding MPN without any problem
since alignment is preserved.

With that said, ESX page sharing works at the level of 8k pages (base
pages) and if you share pages these can split up large super pages. So the
implementation would have to decide whether it wanted sharing more or su-
perpages more or share at the level of superpages (maybe a good idea anyway!
if one page is sharable, good chance the ones adjacent are as well).

Problem 13: Bugs and observations(10 points)
The Eraser paper states that the bug in section 4.2 is a serious race

because of the lack of memory barriers. Let’s say we go wild and throw
memory barrier() calls around the statements guarded by the if-condition
on the true path:

Combine::XorFPTag::FPVal() {

if(!this->validFP) {

barrier();

NamesFP(fps, bv, this->fp, imap);

this->validFP = true;

barrier();

}

return this->fp;

}

Assume:

1. The compiler does not move code in either direction across barrier()
calls and these calls work as expected by the Eraser paper.

2. That we simplify even further by only running the code on a uni-
processor.
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3. That the compiler can see the implementation of NamesFP.

Two part question:

1. What are two ways variants of the problem could still arise because of
transformations by an aggressively optimizing compiler? (Hint: for one
problem, you may have to assume that the compiler does not consider
the implicit ”else” (false) path of the if-statement as having a memory
barrier.)
First, if we assume the compiler sees the implementation of NamesFP
(e.g., its an inline function). The compiler can potentially reorder set-
ting validFP to true with some of the statements that initialize fp.

Second, since fp and validFP are known to be disjoint fields, the C++
compiler could potentially hoist the read of this->fp before the check.
This wouldn’t break sequential code, but can break our threaded code.

2. If you can fix this code by adding barriers, do so. If not argue why you
can’t.
easiest fix is to put a barrier before the return and between the NamesFP
and validFP=true statements (to preserve ordering).
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