; Grade Distribution

0O 4 8 13 17 22 26 31 35 40 44 49 53 58 62 67

Mean: 45.81 | Median: 50.00 | Std. Dev: 14.58

CS 240 Midterm

Stanford University
Computer Science Department

April 28, 2016

This is an open-book (but closed-laptop) exam. You have 80 minutes. Cross out the
questions you skip. Write all of your answers directly on the paper. Make your answers
as concise as possible. Sentence fragments ok. NOTE: We will deduct points if a
correct answer includes incorrect or irrelevant information. (i.e., don’t write in
everything you know in hopes of saying the correct buzzword.)

Question | Points | Score
1 15
2 10
3 10
4 5
5 10
6 10
7 15
8 5
9 15
Total: 95

Stanford University Honor Code In accordance with both the letter and the spirit of
the Honor Code, I will not cheat on this exam nor will I assist anyone else in cheating.

Name, SUNetID, and Stanford ID number:

SOLUTIONS

Signature:

CS240 Midterm - Page 2 of 17 5/28/2016

1. (15 points) Ben Bitdiddle just finished reading §3 of Hoard. After reading, “In the
implementation we actually use 2P heaps |[...| in order to decrease the probability that
concurrently-executing threads use the same heap,” Ben decides to take this idea to the
maz and forks Hoard on Github. He modifies Hoard to have per-thread heaps instead
of per-processor heaps. As such, a thread’s malloc() will be handled by the per-thread
heap and free()’d memory will be returned to the heap where the memory allocation
occurred. Ben doesn’t change anything else about Hoard. Ben names his modified
version of Hoard, Stockpile.

(a) (5 points) Describe why Stockpile might perform allocations faster than Hoard.

Solution: Concurrently executing threads can no longer block on trying to
aquire the per-processor heap lock.

(b) (5 points) Recall that threads can migrate between processors. In comparison to
Hoard, does thread migration on a system running Stockpile lead to more, less, or
about the same amount of false sharing? Explain your answer.

Solution: Less. Say you have a thread A and thread B on processor P1 and P2,
respectively. On Hoard, if A migrates to P2 and B migrates to P1, allocations
from A and B may result in cache line sharing. This can’t happen in Stockpile
since it gives each thread a different heap.

CS240 Midterm - Page 3 of 17 5/28/2016

(c) (5 points) Describe a scenario where Stockpile allocates significantly more memory
from the operating system than Hoard.

Solution: Say we have one processor and N threads, each of which makes
a single allocation of the same size s. This requires Stockpile to allocate N
superblocks. Hoard would have only allocated (N * s)/S superblocks. If s is
small and S is somewhat large, then Stockpile allocates N times more memory
from the OS than Hoard.

CS240 Midterm - Page 4 of 17 5/28/2016

2. (10 points) Trust

(a) (5 points) Consider the string declaration “char s[1” in Thompson’s first Figure.
Where does the beginning >\t’>, °0’, ... correspond to in the code? What is the
last character of the deleted 213 lines?

Solution: The last part of the array. '{’ or possibly \n’.

(b) (5 points) In at most 10 lines, write the pseudo-code for “bug 2” in figure 3.3
using ideas from the paper; you can refer to other figures in the paper. What is the
intuition for why you need self-replication?

Solution: Basic idea: you need an array that contains the code for the if-
statements and two bugs. You print this out a character at a time and then
print the whole thing as with the original self-replicating code. If you just inject
the attack, then if the compiler is used to compile itself the attack will be lost.

CS240

Midterm - Page 5 of 17 5/28/2016

3. (10 points) After developing Goroutines (user-level threads) for the Go programming
language, developers at Google encounter some of the same issues raised by the Scheduler
Activations paper. In particular, they’'re concerned about the time it takes to context
switch between kernel-level threads, as well as with the inability to control which user-
level threads are scheduled when.

To solve these issues, the engineers abandon user-level threads and instead map each
Goroutine to a lightweight kernel-level thread. Then, they propose (they really did, in
2013!) and implement a switch_to(tid) system call in Linux. The specification is below:

/

* K K X X X ¥

*/

Set the current thread’s state to WAITING and the thread with
‘“tid ‘’s state to RUNNABLE. The current thread will not resume
auvtomatically; it must be ‘switch_to ‘d. The thread with ‘tid ‘
will be scheduled as soon as possible.

@param tid The thread id of the thread to switch to.

void switch to(int tid);

(a) (5 points) The Google engineers benchmark sched_yield(), a syscall that asks

Linux to find a new thread and run it, against switch_to and find that switch_to
is 20x faster. After profiling, they determine that much of the cost is due to what
was happening inside the kernel and not due to the cost of context-switching in and
out of kernel-space. What could the kernel be doing in one case that it doesn’t have
to do in the other that could lead to such a drastic performance difference?

Solution: The operating system is no longer making scheduling decisions as it
was with sched_yield(). As such, it really only need to change the state of
the threads to handle switch_to().

CS240 Midterm - Page 6 of 17 5/28/2016

(b) (2 ¥ points) Is a user-level threading library that uses switch_to susceptible to
the spin-lock problem in §2.2 of Scheduler Activations? Why or why not?

Solution: Yes. These are just preemptive kernel-level threads with no notifica-
tion of preemption. Thus, the library can’t run critical sections to completion
when a thread in a critical section is preempted.

Alternatively, one could successfully argue that an implementation of locking
(that first checks if the lock is held and switch_to()s the thread holding the
lock if it is not already running) ameliorates the situation. This means that a
user would have to always use the library’s lock implementation. In a language
like Go, this is achievable.

(c) (2 % points) What are two clear advantages that this approach has when compared
to the solution presented in the Scheduler Activations paper?

Solution:
e Now longer have the large cost of scheduler activations.
e The API is way simpler.

e All the tools should work just fine since we’re doing 1:1.

CS240 Midterm - Page 7 of 17 5/28/2016

4. (5 points) Eraser

(a) (5 points) Draw the state diagram if you deleted their “initialization hack” but kept
the reasonable restriction that you should not give error messages for memory only
accessed by one thread. Then, give a short (3 line or less) code snippet with two
threads that contains a legitimate bug that Eraser will now flag and explain why.

Solution: This is a little tricky if we want to make sure that a r/w on private
memory does not give an error. A common mistake was to have an exclusive
state where R/W by the first thread stays, and a subsequent read by another
thread goes to a ReadOnly state — this would not flag an error if the first
thread wrote and a second thread read (i.e., the init hack they did). V goes
to WriteExclusive and stays there for all writes by the first thread, intersect-
ing the lockset. A write by a new thread goes to SharedModified; an error is
flagged if the lockset is empty. V on read goes to ReadExclusive, stays there
for all subsequent reads by the same thread, intersecting the lockset. A write
by the same thread goes to WriteExclusive. A write by another thread goes to
SharedModified (and gives an error for an empty lockset). A read by another
thread goes to ReadOnly and stays there for subsequent reads (lockset is being
intersected). Write goes to shared modified; error on empty lockset. Note you'll
have to add some memory to hold the TID.

T1 T2
x=1;
X4+ // mo concurrency control.
could happen in either order.

CS240 Midterm - Page 8 of 17 5/28/2016

5. (10 points) Boehm is looking for something new to whine about. He starts complaining
that file locks can’t be implemented in an isolated lock server, but rather that they must
cooperate at some level with NFS (despite the NFS paper’s suggestion to the contrary).
As an example of a typical problem, he points to the following code that acquires a lock
1’ from a remote lock server, does a sequence of operations to a remote file served by
an NSF server:

fd = open("/remote/a"); // remote file —— served over NFS
lock server lock("1");

read (fd, ...);

write(fd, ...);

lock server unlock("1");

close (fd);

(a) (5 points) Using reasoning similar to that in the Boehm paper (where everything
not explicitly forbidden is permitted), give two examples of how the code could have
it’s intended mutual exclusion violated. Which code fragment in the Boehm paper
has the most similar problem to the above code and why?

Solution: Writes can be pushed below the unlock. Reads could be prefetched
before the lock (e.g., at the open). Seems most similar to the last loop example
where writes are pushed outside of the loop’s critical section.

CS240 Midterm - Page 9 of 17 5/28/2016

(b) (5 points) What is the simple, but perhaps inefficient change to only the NFS client
code that fixes these problems? How can you solve these problems more efficiently
by changing both the lock server client code and NFS client code?

Solution: The simple, inefficient solution is to do all operations synchronously
so they occur in program order — force all writes to the server when they occur
and fetch all reads when (and only when) they occur. A bit more clever is to
do the analogue of a memory barrier — flush all outstanding operations to the
server at each lock and unlock. Generally we took points off if your solution
didn’t work, or went if a client crashed.

CS240 Midterm - Page 10 of 17 5/28/2016

6. (10 points) Livelock

Your ¢s140 partner says that livelock can be solved by wrapping the network process-
ing code in a monitor and having the NIC simply use “the well-known wakeup wait-
ing switch” to signal when packets arrive. Assume the network monitor provides two
routines, “msg *receive(void)” which returns a received packet and “void send(msg
*m)” which sends one. With this interface, the kernel packet forwarding example in the
paper can be written roughly as:

ENTRY forward () {
message *m;
while ((m = receive()))
send (m);

}

(a) (5 points) Will this implementation livelock? Explain why or why not. If it live-
locks, what mistakes does it make that are similar to the livelock-prone in-kernel
forwarding code in the livelock paper? If it does not livelock, how does it prevent
doing so in ways similar to the paper’s fixed version?

Solution: Won’t livelock. The key problem in the livelock paper was that
packet handling code was always scheduled when packets arrived (on interrupt).
This meant that transmit and anything else would not run if packets arrived
quickly enough. In a sense it was a “push” architecture where packets were
shoved in the system whether it was able to process them or not. The code
above is a “pull” architecture where there are no interrupts and the code pulls
packets only when it is able to process them.

CS240

Midterm - Page 11 of 17 5/28/2016

(b) (5 points) Assume that you either fix the issues in the previous part or that it had

none. You have a routine display() for displaying running statistics about the
packet forwarding that works by repeatedly sleeping for a second and displaying
the forwarding statistics. You simply fork the forwarding routine and the display
procedure so they run concurrently:

fork forward;
fork display;

Based on your knowledge of MESA (assume it never preempts threads at the same
priority level): Will this always, sometimes, or never have the problems described
in the livelock paper? Why or why not?

Solution: Since forward spins in a tight loop and receive will only yield the
processor when it needs to wait for a packet, then as long as packets arrive
quickly enough, forward will always run, starving display.

CS240 Midterm - Page 12 of 17 5/28/2016

7. (15 points) Scalable Commutativity

Consider the following interface specification, which is similar to the specification in the
Scalable Commutativity reading question:

Ve
x After this call, the global wvalue of ‘GLOBAL‘ is 0.
*/

void reset ();

Ve
x Returns the global value of ‘GLOBAL‘.

*/

int get ();

/%
x After this call, the global wvalue of ‘GLOBAL‘ is ‘x°.

*/

void set (int x);

/%
x Increments the global value of ‘GLOBAL‘ by 1.

*/
void inc ();

Also consider the following histories:

1. T1: set(x) reset

T2: reset
2. T1: inc set(x)
T2: reset
3. Tl: get

T2: set (y)

CS240 Midterm - Page 13 of 17 5/28/2016

We copy the corrected! version of the definition of SIM-commutativity below:

Definition. An action sequence Y SIM-commutes in a history H = X || Y when for any
prefix P of any reordering of Y (including P =Y’), P Sl-commutes in X || P.

(a) (3 points) Which histories are not SI-commutative under all possible states and
parameters? You needn’t explain why:.

Solution: 2, 3

(b) (6 points) Which histories are SI-commutative under certain or all states and/or
invocation parameters? For each answer, say whether a certain state is required
and explain the state or parameters that would be required, if any.

Solution:

1. (any x, any state)
2. (x=0)

3. (y = GLOBAL)

(c) (6 points) Which histories are SIM-commutative under certain or all states and /or
invocation parameters? For each answer, say whether a certain state is required and
explain the state or parameters that would be required, if any.

Solution:
1. (x=0)
3. (y = GLOBAL)

!The paper uses the word some instead of any in “of any reordering of Y”. This wording was later changed
in Austin’s thesis.

CS240 Midterm - Page 14 of 17 5/28/2016

8. (5 points) Lab 1
Imagine that the grn_thread structure was modified to be:

typedef struct grn thread struct {
grn context xcontext;

} grn_ thread;

...where grn_context continues to be defined as:

typedef struct grn context struct {
uint64 t rsp;

uint64 t rbp;
} grn_context;

Note that context is now a pointer in grn_thread where it was previously a value. The
definition for context_switch is changed accordingly:

extern void grn context switch(grn context *%, grn context xx);

(a) (5 points) Finish the implementation of grn_context_switch below by inserting
code between the comments that makes grn_context_switch correct.(Hint: You
can do this in 2 instructions.)

grn_context switch:
push %rbp
push %rbx
push %r12
push %r13
push %r14
push %rl5
push %rsp
/% your code below x/

/% end your code x/
pop %rsp
pop %rlb
pop %rl4
pop %rl3
pop %rl2
pop Y%rbx
pop %rbp

ret

CS240

Midterm - Page 15 of 17

5,/28,/2016

Solution:

grn_context switch:
push %rbp
push %rbx
push %r12
push %r13
push %r14
push %rl5
push %rsp

/x your code below

mov %rsp, (%rdi)
mov (%rsi), %rsp

/% end your code

pop %rsp
pop %rlb
pop %rl4
pop %rl3
pop %rl2
pop Y%rbx
pop %rbp

ret

*/

*/

CS240 Midterm - Page 16 of 17 5/28/2016

9. (15 points) NFS
(a) (5 points) As discussed in class, NFS clients defer flushing data to the server until
file close. What happens if another client reads the file while close is occurring?
Sketch how to fix this problem if NFS provides an atomic rename operation. (Hint:
we discussed this method in class on tuesday.)

Solution: It does not flush the data atomically, so a client that reads at the
same time can see a mishmash of old and new data. The “easy” fix is to write all
the data back to the NFS server in a temporary file, flush, and then atomically
rename it.

CS240

Midterm - Page 17 of 17 5/28/2016

(b) (10 points) You can view file read and write as loads and stores. Assume the NFS

guys build an EraserNFS that runs on an NFS server and uses logic identical to the
Eraser paper to flag potential races in file data accesses of NFS clients by monitoring
their read and write calls. Sketch how to handle the following two issues. One, since
NF'S does not have locks, what problem does this cause, and what’s a intuition for
how to partially address the problem without adding them? Two, Eraser must know

about malloc and free — what is the analogous problem here and how could you
fix it?

Solution: We took a variety of answers for this question. One argument is that
without locks there is no way for multiple processes to write to the same file,
even if these writes were separated logically across time. One partial hack to
would be track open and close and only warn when multiple clients wrote to the
same open file. A second argument is that most files have a single writer and
many readers of the given copy (e.g., emacs can write a file, gee will read it, we
might count it, grep might be used to look for an identifier in it). In this case
eraser’s initialization hack will solve the issue until the next “complete write” of
the file (e.g., when emacs writes out a new version). An easy hack would be to
have a complete overwrite set the blocks to virgin. Two: you must have some
notion of when data blocks are reused for a new file. One possible hack is the
code that increments the generation number for an inode on free also goes and
resets all the data blocks to the virgin state (you also do this on truncate.)

