

CS 240 - Midterm Exam

Stanford University
Computer Science Department

May 5, 2015

!!!!! SKIP 20 POINTS WORTH OF QUESTIONS. !!!!!

This is an open-book (but closed-laptop) exam. You have 75 minutes. Cross out the
questions you skip. Write all of your answers directly on the paper. Make your answers as
concise as possible. Sentence fragments ok. NOTE: We will deduct points if a correct
answer includes incorrect or irrelevant information. (I.e., don’t put in everything
you know in hopes of saying the correct buzzword.)

Question Points Score

1 10

2 5

3 15

4 5

5 5

6 10

7 10

8 15

9 15

10 10

Total: 100

Stanford University Honor Code In Accordance with both the letter and the spirit of
the Honor Code, I did not cheat on this exam nor will I assist someone else in cheating.

Name, SUNetID, and Stanford ID number:

Signature:

1

CS 240 Midterm - Page 2 of 13 5/5/2015

1. (10 points) Eraser

(a) (5 points) You program uses lock-unlock functions Eraser does not know about:
what happens? Your program uses a alloc-free functions eraser does not know
about: what happens?

Solution: Lock-unlock: You will get false positives everywhere, since locksets
will be incomplete. Alloc-free: false positives. The main problem is that eraser
must know about re-allocation of memory so that it can reset the locksets associ-
ated with the re-allocated memory (since no thread that was using the memory
before free should be reusing it and thus intersecting the previous locksets
would give false positives).

(b) (5 points) You run the code in Section 4.1 in the Boehm paper using Eraser. As-
sume the program has no other uses (reads or writes) of x or y. Will Eraser detect
an error? If not, why not? If so, give the exact series of events that lead to the
error, including which Eraser state machine transitions happen.

Solution: Will detect if a scheduling switch happens after the initial ++x or
++y. Consider the x case: initially it’s in the virgin state. The pre-increment
++x takes it to the Exclusive state. If a switch happens here, the read x != 1 will
transition to Shared with the (empty) candidate set of the current thread. When
the system eventually switches back to the first thread, we will then transition to
Shared-modified and give an error (since the candidate set is empty). Without
this transiton, the writes ++x and --x will be counted as initialization, leaving us
in the exclusive state. The subsequent read x != 0 will just put us in Exclusive.

CS 240 Midterm - Page 3 of 13 5/5/2015

2. (5 points) The C standards people get sick of listening to Boehm complain, so decree
that any volatile variable v has the following two guarantees: (1) no additional loads
or stores can be done to v other than what appear in the program text and (2) an access
to v cannot be reordered with any other volatile access or lock call. Which problems (if
any) in Section 4 would this fix?

Solution: It should preclude speculation in loads and stores, which fixes both 4.1
and 4.3. It arguably fixes the global variable problem in 4.2 but we didn’t require
you say so.

CS 240 Midterm - Page 4 of 13 5/5/2015

3. (15 points) ESX

(a) (5 points) 0000 tells you that an implicit page fault where ESX has invisibly evicted
a page and must later fetch it from disk in response to a guest OS reference hurts
performance much more than an explicit page fault where a guest OS has explicitly
evicted a page to disk and later has to fetch it back into main memory. 1111 tells
you that this is complete nonsense because Carl, who stood to make money from
this fact, never mentioned it. Who is right?

Solution: You expect invisible page faults to hurt throughput much more than
visible ones. For invisible faults, ESX will have to block the guest OS completely
since it has no visibility inside of it to run a di↵erent kernel thread or process. In
contrast, with explicit faults, the guest OS can just switch to another process.
(If you just mentioned double paging from the paper, you were given partial
credit.)

(b) (5 points) figure 6: give two ways that this figure could change if ESX did a poor
job for this experiment. Figure 7: why do both alloc lines converge to about 179MB
rather than some other number?

Solution: Figure 6: from the guest OS’s perspective, good = one of the lines
is above toucher at all times since that means the guest OS will get enough
memory. From the systems’ perspective: the lines should not be dramatically
higher than toucher since that means the system would allocate more memory
than it should. Figure 7: Both processes are fully active and so get allocated half
of available memory. While the machine has 512MB, only 360MB is available
for use (since each VMM has a 32MB of overhead). Thus both guest OSes get
about 180MB.

CS 240 Midterm - Page 5 of 13 5/5/2015

(c) (5 points) Recall that the guest OS’s page tables map VPNs to PPNs and that
ESX’s page tables map VPN’s to MPNs. What does it mean if there is a VPN
mapped to an MPN in ESX, but there is no equivalent VPN in the guest OS page
table? What happens if there is VPN mapped to a PPN in the guest OS, but no
equivalent mapping in ESX?

Solution: If ESX maps a VMP to anything but the guest OS does not, that is
a likely bug —- on the real machine, an access to that VPN would fault, but on
ESX it will silently succeed. If there is no mapping in ESX this is safe: when
the fault happens ESX can forward the page fault to the guest OSes page fault
handler (similar to how the real hardware would).

CS 240 Midterm - Page 6 of 13 5/5/2015

4. (5 points) Figure 8 in the LFS paper compares LFS’s performance to FFS. You redo this
experiment, measuring the performance of running one NFS server on top of LFS and
one NFS server running on top of FFS (SunOS). Roughly speaking what do you expect
to happen to the relative performance di↵erence between NFS+LFS and NFS+FFS?

Solution: We would expect the relative performance di↵erence to significantly de-
crease. LFS’s big win was from large writes (512K - 1MB in the paper) which can’t
happen with the NFS file system since writes are broken up and synchronously forced
to disk before reply. I.e., each FS will have to write to disk before sending an ACK
back to the client. LFS can collapse a bunch of these writes, but it can only do one
file operation at a time, which will be much less data than a 512K or 1MB segment
size. However, LFS may still perform better b/c while it will have one sync write,
FFS can have many more because it gives stronger meta data guarantees.

5. (5 points) Leases+NFS: sketch two ways you could use leases in the original NFS paper
to significantly improve performance or consistency.

Solution: Attribute cache; file caching in general.

CS 240 Midterm - Page 7 of 13 5/5/2015

6. (10 points) LFS

(a) (5 points) Segment S contains a live inode 5 that points to data block 10. Must 10
be live? Segment S contains a dead inode 5 that points to data block 10. Must 10
be dead?

Solution: It must be live. If block 10 was dead, the inode would have been
modified to reflect that and would thus be written to a new location. If inode 5
is dead, data block 10 may or may not be dead. A write could have happened
to a di↵erent data block the inode pointed to, changing it’s location and causing
the inode to move.

(b) (5 points) Give three clear, obvious examples drawn from di↵erent papers where
a system has exploited the fact that it is supposed to do X but did Y instead
(for speed, reliability, space, etc) because no observer should be able to tell the
di↵erence. These examples can be incidental to the actual contributions of the
paper themselves.

Solution: Concurrency: critical sections. VMware: lying that you are running
on the underlying machine. The notion that a program runs sequentially when
in fact it’s interlaced. compiler optimizations: code reordering, etc. (If all three
of your examples were examples from section 4.1, 4.2, 4.3 of Boehm paper, you
were given partial credit.)

CS 240 Midterm - Page 8 of 13 5/5/2015

7. (10 points) Linux Scalability

(a) (5 points) Imagine a resource in an operating system kernel that is garbage col-
lected using a global reference count. The increment and decrement operations
on the reference count are implemented using locks: a lock is taken before/after the
increment/decrement. It is observed that the global reference count is leading to
poor scalability in the operating system. Will removing the lock and using atomic
instructions to perform the increment/decrement result in perfect scaling as far as
the reference count goes?

Solution: No. The central issue is that the shared resource causes cache co-
herence to run when the reference count is modified. Even if an atomic is used,
the cache line corresponding to the reference count will continue to be shared
amongst the cores.

(b) (5 points) Multiple cores are attempting to lock a variable. The lock is a traditional
ticket lock. Explain how the lock causes high levels of cache coherence tra�c when
multiple cores are waiting for the lock and the core holding the lock releases it.

Solution: Right before the core holding the lock releases it, every core has the
lock’s cache line in a shared state. When the core releases the lock by writing to
a field inside the lock’s allocated memory, the CPU must invalidate every core’s
cache line and give exclusive access to the unlocking core, causing heavy tra�c.
Every core continues to spin on the lock, and so immediately, the CPU returns
the cache line state of every core to shared, again causing heavy tra�c.

CS 240 Midterm - Page 9 of 13 5/5/2015

8. (15 points) The Hoard authors decide to change their superblock implementation so
that there is a single block size class. That is, all superblocks are divided into the same
number of blocks, and all blocks are the same size. Each superblock is of size S and each
block is of size B. Allocations follow the following algorithm:

void ⇤ a l l o c (s i z e t num bytes) {
i f (num bytes <= B) {

return f r e e b l o c k () ;
}

i f (num bytes <= S) {
return f r e e s up e r b l o c k () ;

}

return mmap(NULL, num bytes , . . .) ;
}

Any allocation less than or equal to the size of a block is returned a free block from
the per-processor heap. Any allocation less than or equal to the size of a super block is
returned a free super block from the per-processor heap. Any allocation greater than the
size of a superblock is fulfilled using mmap(). The free block and free superblock

functions obtain a free block or superblock in the same way the original Hoard did.

(a) (5 points) In the original Hoard, internal fragmentation was bounded to a factor of
b. What design decisions and characteristics of Hoard led to this bound?

Solution: The use of block class sizes b1, b2, ..., bn for some n led to this bound.

CS 240 Midterm - Page 10 of 13 5/5/2015

(b) (5 points) Assume B <<< S. Also assume B ⇡ b. Does the new algorithm increase
or decrease internal fragmentation? What about external fragmentation? Why?

Solution: Internal fragmentation is increased but external fragmentation re-
mains roughly the same.

Internal fragmentation is increased because an allocation greater than size B
but less than S wastes at most S � (B + 1) ⇡ S bytes since B <<< S. The
internal fragmentation of the original Hoard was b. Since B ⇡ b and B <<< S,
b <<< S.

External fragmentation tracks how many superblocks remain fully unused. Be-
cause there are no significant di↵erences in how any portion of a superblock is
used or full superblocks are freed, external fragmentation remains the same.

(c) (5 points) How does the new algorithm for allocation a↵ect blowup in the producer-
consumer pattern where a producer on one thread allocates an object that is then
freed by a consumer on a di↵erent thread?

Solution: It doesn’t. The bounds on blowup are still constant. Blowup was
bounded by moving superblocks between per-core and global heaps. The allo-
cation scheme had nothing to do with bounding blowup.

CS 240 Midterm - Page 11 of 13 5/5/2015

9. (15 points) Alyssa recently read the The Scalable Commutativity Rule and is excited to
apply the commutativity rule to her new email sending library, ”BitMail”. So far, her
interface for sending mail is as follows:

/⇤⇤
⇤ Sends a message wi th t e x t ‘msg ‘ to the emai l address
⇤ ‘ r e c i p i en t ‘ . Messages are sen t to each r e c i p i e n t in the
⇤ order t h i s f unc t i on i s c a l l e d .
⇤/

void send message (char ⇤ r e c i p i e n t , char ⇤msg) ;

(a) (5 points) She analyzed the send message API using ANALYZER and determined
that send message does not commute with itself when the recipient parameter
is the same. Why?

Solution: In short, the state of which messages have been sent directly reflects
the order in which send message is called. Because we can tell the order of
operations by examining the state, they clearly don’t commute.

(b) (5 points) How can the send message interface be changed so that two sends to
the same recipient commute?

Solution: Remove the requirement that messages are sent in the order the
function is called.

CS 240 Midterm - Page 12 of 13 5/5/2015

Alyssa took your advice and ANALYZER now reports that send message commutes
with itself when the recipient parameter is the same. Alyssa then asked Ben to im-
plement the function in a scalable way. Unfortunately Ben’s code does not pass the
TESTGEN generated tests:

// per�core message queues , none shar ing cache l i n e s
// add messages to a queue to have the message be sen t
queue ⇤ p e r c o r e q s [NUMCORES] ;

void send message (char ⇤ r e c i p i e n t , char ⇤ t ex t) {
// msg t i s a queue node f o r the message
msg t ⇤msg = create msg (r e c i p i e n t , t ex t) ;
long msg hash = hash (msg) ;

queue ⇤q = pe r c o r e q s [msg hash % NUMCORES] ;

l o ck (q) ;
q�>t a i l�>next = msg ;
q�>t a i l = msg ;
unlock (q) ;

}

(c) (5 points) When (under what conditions) and why do the TESTGEN tests fail?
What is Ben doing wrong, and how can he fix his problem?

Solution: The TESTGEN tests will fail when msg hash % NUM CORES evaluate
to the same value on two di↵erent cores.

Ben is improperly using the per core queue array. In his implementation, he’s
essentially selecting a per core queue pseudorandomly, so two send message

calls on two di↵erent cores will share memory when the hash modulo the number
of cores evaluates to the same value on both cores. To fix this, he could use the
current core’s number as an index into the per core queue.

CS 240 Midterm - Page 13 of 13 5/5/2015

10. (10 points) Lab 1

(a) (5 points) Ben argues that Lab 1 is an example showing that threads can be imple-
mented in C and that the Threads Cannot be Implemented as a Library is therefore
wrong, but Alyssa argues against him. Who’s right and why? Hint: Think about
what the word ”thread” means in each implementation.

Solution: Without the extra credit, threads are cooperating. Because the com-
piler will see a yield call as an opaque function, no unknown races, like those
demonstrated in Boehm’s paper, can occur.

With the extra credit, preemption occurs, so the same issues as presented in the
paper apply to the lab 1 threads.

In either case, Boehm’s paper was discussing preemptive threads, so it could
be said that Alyssa is correct because even if Ben was arguing for cooperative
threads, which can be implemented without fearing the issues presented in the
paper, this is not what Boehm was arguing against. (Note: Depending on your
viewpoint, either person could be right. As long as the explanation was valid,
full points were awarded.)

(b) (5 points) Ben Bitdiddle wants to extend lab 1 so that the initial function of a
thread is passed in a void * parameter containing a pointer to any data its parent
wants it to have access to. Will Ben have to modify his spawn stack layout code to
accomplish this? Why or why not?

Solution: He will not have to modify the stack layout code. As per the System-
V x64 ABI, the first parameter is passed inside register %rdi.

