5

10

15 20 25 30 35 40 45 50 55 60 65 70

Mean: 53.60 | Median: 54.00 | Std. Dev: 11.23

75

CS 240 Final Exam

Stanford University
Computer Science Department

June 2, 2015

This is an open-book (but closed-laptop) exam. You have 75 minutes. Cross out the
questions you skip. Write all of your answers directly on the paper. Make your answers
as concise as possible. Sentence fragments ok. NOTE: We will deduct points if a
correct answer includes incorrect or irrelevant information. (i.e., don’t write in
everything you know in hopes of saying the correct buzzword.)

Question | Points | Score
1 15
2 10
3 20
4 10
5 10
6 10
7 10
8 15
Total: 100

Stanford University Honor Code In accordance with both the letter and the spirit of
the Honor Code, I will not cheat on this exam nor will I assist anyone else in cheating.

Name, SUNetID, and Stanford ID number:

SOLUTIONS

Signature:

CS 240

Final Exam - Page 2 of 12 6/2/2015

1. (15 points) Battle of the Xs: EXO vs ESX

(a)

(5 points) Carl says that since any unprivileged user can write a guest OS it’s easy
for ESX to export an exokernel disk interface: just give each guest OS a raw disk
partition. State the main way this approach arguably satisfies exokernel principles;
give the main way it arguably violates them.

Solution: For: it’s low level, physical names, could have complete control over
the partition (depending). Against: coarse-grain, hard (or impossible) to share.
Exokernel wants fine-grained control.

(5 points) The exokernel people say that one trivial disk interface would be to
associate a capability with each disk block using an on-disk table. That way if you
had a capability you could read or write blocks as you wanted. Carl says this will
perform much more slowly than a raw partition and, plus, be vulnerable to crashes.
Is he right? Why or why not?

Solution: Really bad idea. On-disk table = in worst case two disk reads to
access a block (the block itself and the block that holds the needed capabilities),
also two writes. Caching could mitigate this, but it’s burning more memory than
a non-exo system. Also, two locations means you can crash after writing the
first but before the second, which can leave you in a bad state (e.g., access to
blocks you should not have, or not having access to blocks you should have).

CS 240 Final Exam - Page 3 of 12 6/2/2015

(c) (5 points) Give an intuitive explanation for how to use an exokernel’s fast page fault
handling to reimplenment Eraser-like race detection without rewriting the binary
(you may assume you can relink applications).

Solution: Protect the heap. Every load or store would trap: you can do lockset
calculations here. You can relink to change malloc/free/lock/unlock etc to be
wrappers that call into your system so you can track things just like Eraser
does. Given how slow eraser was, this approach may not in fact be too bad in
comparision.

CS 240 Final Exam - Page 4 of 12 6/2/2015

2. (10 points) Rethink this.

(a) (5 points) Ignore cleaner overhead for this question. Mendel says that with a 30
second flush, LFS should be at least as fast as xsyncfs. What is the intuition for
why this could be true? If we assume it is true, is there any good reason to prefer
xsynfs over LFS?

Solution: It could be faster: it will group commit everything into one place
and since it flushes every 30 sec it doesn’t pause otherwise. The lack of pause
+ group commit was xsyncfs’s big win, so LFS should at least be in the same
ballpark (possibly better). On the flip side, if the user does sync() it will be
slower (since it will block then) and it also has weaker guarantees — i.e., it
can return from a system call, the program could then print or send a network
message implying/stating the operation completed, but a crash would kill the
data.

(b) (5 points) In the midterm, running NFS on top of LFS removed much of the per-
formance gain of LFS. If we run an NFS server on top of an xsyncfs system, does
something similar happen? Why or why not?

Solution: Observability requires xsyncfs writes to disk before replying to a
network message, which obviates most of it’s benefit. This is similar to how
LFS had to write to disk before replying, removing most of the benefit since it
could no longer do large sequential log writes. xsynfs still can improve when
there are multiple clients.

CS 240 Final Exam - Page 5 of 12 6/2/2015

3. (20 points) Deviant stuff.

(a) (5 points) There are a variety of procedures you cannot call from a Linux kernel
interrupt handler. Assuming you have a list of interrupt handlers, and by construc-
tion, non-interrupt handlers, explain how to do a MAY belief checker to catch such
mistakes, ranking them from most to least likely.

Solution:

1. Count the number of times £ a function is called from call chains that
(transitively) start from an interrupt handler.

2. Count the number of times S a function is called from call chains that
(transitively) do not start from an interrupt handler (e.g., system calls,
the boot code).

3. Flag calls in (1) based on the test statistic value based on E and S —
functions with high values for S and low values for E are likely mistakes.

(b) (5 points) You have a preexisting checker that can flag when code uses network
data without first sanitizing it. The checker is having a hard time flagging code
on a new kernel that does not clearly indicate data coming from the network. You
notice the kernel frequently calls ntohl and ntohs which convert 32-bit and 16-bit
integers from “network byte order” to “host order.” How can the checker use these
calls to find errors?

Solution: Passing a value x to ntohl(x) or ntohs(x) implies it came from a
network message. You can mark the buffer x came from as network data and x
as tainted.

CS 240 Final Exam - Page 6 of 12 6/2/2015

(c¢) (10 points) Sketch, by providing pseudocode or intuition, a brand new belief-style
checker (either MUST or MAY) for some important bug type of your choice. Hint:
It may help to think about common bugs you find in your own programs.

CS 240 Final Exam - Page 7 of 12 6/2/2015

4. (10 points) Native client: consider the code in figure 3

(a) (2.5 points) A code modification makes inst_is_disallowed a nop (no op). What
is an externally visible action (in the sense of what xsyncfs would consider externally
visible) that an attacker could now perform that native client is trying to prevent?

Solution: Issue a system call instruction to send a network packet or write to
disk.

(b) (2.5 points) Does this code force direct jumps to be aligned to 32-bytes? Why or
why not?

Solution: You know where direct jumps go, so they don’t have to be aligned;
therefore they don’t have to end a 32-byte block.

(¢) (2.5 points) For the check Block(StartAddr [icount-2] != Block(IP)), what is
the opcode for the instruction IP points to?

Solution: Put the first instruction of a nacl jump at the end of one block (B1)
and the indirect jump in the next (B2). Jumping to B2 will skip the alignment
instruction.

(d) (2.5 points) What is an attack if you delete the else branch?

Solution: Similar to previous question: JumpTargets will contain indirect jumps
as valid targets. A direct jump can jump right to them.

CS 240 Final Exam - Page 8 of 12 6/2/2015

5. (10 points) For each statement about Singularity below, choose true if you believe the
statement is true. If you believe it is false, choose false and provide brief justification.

(a) (2.5 points) true — false
Singularity would remain just as secure if SIPs were not compiled in the kernel.

Solution: False. SIPs needs to be compiled at install time in the kernel to
ensure that all of the language invariants are indeed maintained. If the SIP
is compiled outside of the kernel, the necessary type and memory information
would be lost.

(b) (2.5 points) true — false
As long as the references point to different memory locations, it is possible for two
SIPs to hold memory references to the same exchange heap.

Solution: True.

(c) (2.5 points) true — false
A SIP uses channels to communicate with other SIPs and the kernel.

Solution: False. SIPs communicate with the kernel through ABI calls.

(d) (2.5 points) true — false
Singularity is based on a microkernel-like architecture.

Solution: True.

CS 240 Final Exam - Page 9 of 12 6/2/2015

6. (10 points) Singularity

(a) (5 points) The system-wide state isolation invariant allows Singularity to garbage
collect each SIP independently. Explain why a SIP not maintaining the SI invariant
would not be able to be garbage collected independently.

Solution: One possible violation of the SI invariant involves a SIP holding a
reference to an object in another SIP. In order for the garbage collector to free
that object, the GC would need to inspect both SIPs and thus would not be
able to garbage collect each SIP independently.

(b) (5 points) How do Singularity’s kernel calls (ABI calls) differ from typical Unix
kernel calls (system calls)?

Solution: 1) Singularity’s ABI calls are function calls; the calls do not cross
protection domains and no address space switch is made. Typical Unix kernel
calls use the syscall instruction to switch address spaces and protection rings.
That is, Singularity’s ABI calls don’t involve crossing hardware protection bar-
riers.

2) Singularity’s ABI is strongly versioned. A SIP must describe explicitly in its
manifest which version of the ABI to use.

3) Singularity’s ABI cannot be used to alter the state of any other SIP but the
calling SIP. This contrasts Unix where calles like signal change the state of
other processes.

CS 240 Final Exam - Page 10 of 12 6/2/2015

7. (10 points) Ben Bitdiddle is attempting to use your Lab 2 SNF'S server to write to a file
located at path /a/b/c.txt. His client has mounted and obtained the root file handle
0xFOOD; his client hasn’t done anything else.

(a) (5 points) Describe the series of messages Ben’s client must send to the server to
write " Hello, world!” to the beginning of /a/b/c.txt. Hint: Ben’s client must send
at least 4 messages to the server.

Solution:

LOOKUP(0xF00D, "a”) -> a_th
LOOKUP(a_fh, "b”) -> b_fh
LOOKUP(b_th, "c.txt”) -> c_th
WRITE(c_fh, 0, 13, "Hello, world!”) -> 13

(b) (5 points) Ben is trying to extend the server to support a REMOVE(dir, name)
operation, which, given a file handle dir for a directory and a file name name,
unlinks the file named name from the directory pointed to by the handle. Besides
unlinking the file in the file system, what else must the SNFS server do to ensure
successful removal?

Solution: The entries (name -> th and fh -> name) in the file handle database
must also be removed. If they are not removed, the server will be internally
inconsistent.

CS 240 Final Exam - Page 11 of 12 6/2/2015

8. (15 points) Assume the following MapReduce interface has been provided to you:

map([terator it) —> List<Pair<Key, Value>>
reduce (Key k, List<Value> vals) —> List<Pair<Key, Value>>

That is, your map method takes as its parameter an iterator and returns (by calling emit)
a list of key value pairs. Your reduce function takes in a key and all of its associated
values and returns a list (by calling emit) of values. Using this interface, a word count
MapReduce program could be written in pseudocode as follows:
def map(it):
for word in it:
emit (word, 1)

def reduce(k, vals):
emit (k, len(vals))

(a) (5 points) Complete the pseudocode below for a MapReduce program that inverts
an index. An index is a mapping from word to location; an inverted index is a
mapping from location to word.

Solution:

def map(it):
for (word, location) in it:
emit (location , word)

def reduce(k, vals):
emit (k, vals)

(b) (5 points) Complete the pseudocode below for a MapReduce program that filters
the corpus of text to only those words that appear more than "N’ number of times.
You may use 'N’ in your program.

Solution:

def map(it):
for word in it:
emit (word, 1)

def reduce(k, vals):
if len(vals) > N:
emit (k)

CS 240 Final Exam - Page 12 of 12 6/2/2015

(c) (5 points) With The Scalable Commutativity Rule paper in mind, do two map op-
erations in the MapReduce interface always commute? What about two reduce
operations? Why or why not?

Solution: Yes, two map operations (almost) always commute and two reduce
operations (almost) always commute. Regardless of the order they are run, map
and reduce operations will always return the same results. Note: It is not
the case that map operations always commute with reduce operations. Note:
Successful arguments can be made that non-deterministic map or reduce tasks
do not commute. Note: An argument can be made that in the case of two
redundant reduce tasks, only the output of the first reduce task to finish will be
visible thus exposing an ordering.

