Lecture 14: Monte Carlo Tree Search

Emma Brunskill

CS234 Reinforcement Learning.

Spring 2024

With many slides from or derived from David Silver

Refresh Your Understanding

Select all that are true:

- Upper confidence bounds are used to balance exploration and leveraging the acquired information to achieve high reward
- These algorithms can be used in bandits and Markov decision processes
- If the reward model is known, there is no benefit to using an upper confidence bound algorithm

Refresh Your Understanding

Select all that are true:

- Upper confidence bounds are used to balance exploration and leveraging the acquired information to achieve high reward
- These algorithms can be used in bandits and Markov decision processes
- If the reward model is known, there is no benefit to using an upper confidence bound algorithm

Class Structure

• Last time: Fast / sample efficient Reinforcement Learning

This Time: MCTS

• Next time: Rewards in RL

AlphaZero and Monte Carlo Tree Search

- Responsible in part for one of the greatest achievements in AI in the last decade—becoming a better Go player than any human
- Incorporates a number of interesting ideas

Table of Contents

Simulation-Based Search

2 AlphaZero

Computing Action for Current State Only

- So far in class, compute a policy for whole state space
- Key idea: can prioritize some additional local computation to make a better decision for right now

Simple Monte-Carlo Search

- ullet Given a model $\mathcal{M}_{oldsymbol{v}}$ and a simulation policy π
- For each action $a \in \mathcal{A}$
 - Simulate K episodes from current (real) state s_t

$$\{s_t, a, R_{t+1}^k, ..., S_T^k\}_{k=1}^K \sim \mathcal{M}_v, \pi$$

Evaluate actions by mean return (Monte-Carlo evaluation)

$$Q(s_t, a) = \frac{1}{K} \sum_{k=1}^{K} G_t \xrightarrow{P} q_{\pi}(s_t, a)$$
 (1)

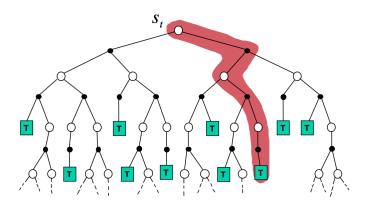
Select current (real) action with maximum value

$$a_t = \operatorname*{argmax}_{a \in A} Q(s_t, a)$$

This is essentially doing 1 step of policy improvement

Simulation-Based Search

- Simulate episodes of experience from now with the model
- Apply model-free RL to simulated episodes

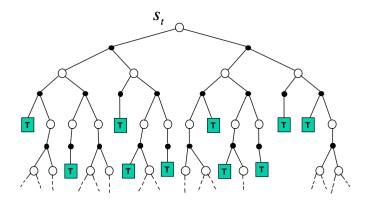


Expectimax Tree

- Can we do better than 1 step of policy improvement?
- If have a MDP model \mathcal{M}_{v}
- Can compute optimal Q(s, a) values for current state by constructing an **expectimax** tree

Forward Search Expectimax Tree

- Forward search algorithms select the best action by lookahead
- They build a search tree with the current state st at the root
- Using a model of the MDP to look ahead



No need to solve whole MDP, just sub-MDP starting from now

Expectimax Tree

- Can we do better than 1 step of policy improvement?
- If have a MDP model \mathcal{M}_{v}
- Can compute optimal q(s, a) values for current state by constructing an expectimax tree
- Limitations: Size of tree scales as $(|S||A|)^H$

Monte-Carlo **Tree** Search (MCTS)

- Given a model \mathcal{M}_{v}
- Build a search tree rooted at the current state s_t
- Samples actions and next states
- Iteratively construct and update tree by performing *K* simulation episodes starting from the root state
- After search is finished, select current (real) action with maximum value in search tree

$$a_t = \operatorname*{argmax} Q(s_t, a)$$

 Check your understanding: How does this differ from Monte Carlo Simulated Search?

Check Your Understanding: MCTS

- MCTS involves deciding on an action to take by doing tree search where it picks actions to maximize Q(S,A) and samples states. Select all
 - Given a MDP, MCTS may be a good choice for short horizon problems with a small number of states and actions.
 - ② Given a MDP, MCTS may be a good choice for long horizon problems with a large action space and a small state space
 - 3 Given a MDP, MCTS may be a good choice for long horizon problems with a large state space and small action space
 - 4 Not sure

Upper Confidence Tree (UCT) Search

• How to select what action to take during a simulated episode?

Upper Confidence Tree (UCT) Search

- How to select what action to take during a simulated episode?
- UCT: borrow idea from bandit literature and treat each node where can select actions as a multi-armed bandit (MAB) problem
- Maintain an upper confidence bound over reward of each arm

Upper Confidence Tree (UCT) Search

- How to select what action to take during a simulated episode?
- UCT: borrow idea from bandit literature and treat each node where can select actions as a multi-armed bandit (MAB) problem
- Maintain an upper confidence bound over reward of each arm at a node

$$Q(s, a, i) = \frac{1}{N(i, a)} \sum_{k=1}^{N(i, a)} G_k(i, a) + c \sqrt{\frac{O(\log N(i))}{N(i, a)}}$$

- where N(i, a) is the number of times selected arm a at node i, $G_k(i,a)$ is the k-th return (discounted sum of rewards) from node i following action a, and
- For simulated episode k at node i, select action/arm with highest upper bound to simulate and expand (or evaluate) in the tree

$$a_{ik} = \arg\max Q(s, a, i)$$

 This implies that the policy used to simulate episodes with (and expand/update the tree) can change across each episode

Advantages of MC Tree Search

- Highly selective best-first search
- Evaluates states dynamically (unlike e.g. DP)
- Uses sampling to break curse of dimensionality
- Works for "black-box" models (only requires samples)
- Computationally efficient, anytime, parallelisable

Table of Contents

Simulation-Based Search

2 AlphaZero

AlphaGo

▶ AlphaGo trailer link

Case Study: the Game of Go

- Go is 2500 years old
- Hardest classic board game
- Grand challenge task (John McCarthy)
- Traditional game-tree search has failed in Go
- Check your understanding: does playing Go involve learning to make decisions in a world where dynamics and reward model are unknown?

Rules of Go

- Usually played on 19x19, also 13x13 or 9x9 board
- Simple rules, complex strategy
- Black and white place down stones alternately
- Surrounded stones are captured and removed
- The player with more territory wins the game

AlphaGo and AlphaZero

- Self Play
- Strategic Computation
- Highly selective best-first search
- Power of Averaging
- Local Computation
- Learn and Update Heuristics

Self Play for Go

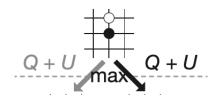
- Key idea: have agent play itself
- Game operates by computing best move at current state, then, for opponent move, doing the same
- Bottleneck is only computation, no humans needed
- Self-play also provides a well-matched player
- Check your understanding: how does this help with policy training?
 What is the reward density?

Self Play for Go: Solution

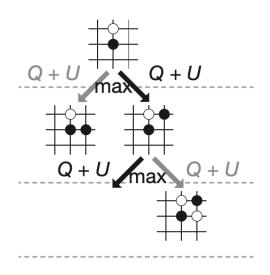
- Key idea: have agent play itself
- Game operates by computing best move at current state, then, for opponent move, doing the same
- Bottleneck is only computation, no humans needed
- Self-play also provides a well-matched player
- Check your understanding: how does this help with policy training?
 What is the reward density?

Selecting a Move in a Single Game: Start at Root¹

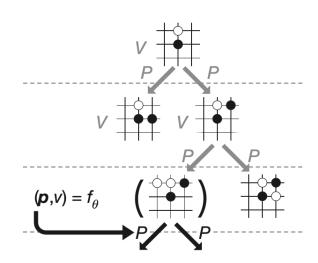
Inspired by Upper Confidence Tree Search but many changes



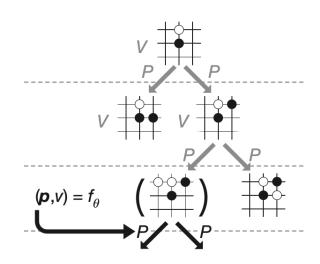
Selecting a Move in a Single Game: Repeatedly Expand²



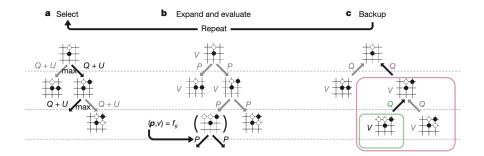
Selecting a Move in a Single Game: Note Using Network Predictions for Action Probabilities³



Selecting a Move in a Single Game: At Leaf, Plug in Network Predictions for Value⁴

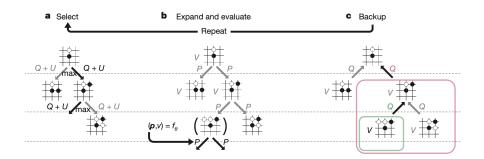


Selecting a Move in a Single Game: Update Ancestors⁵



⁵Images from Silver et al. Nature 2017

Selecting a Move in a Single Game: Repeat Many Times⁶

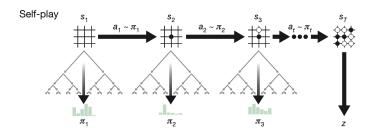


- Repeat roll out and backup process many times
- Note: inside the network alternating whether opponent or agent is "maximizing" its value. Therefore tree is mimicking a min-max tree
- At end, compute a policy for root node by

$$\pi(s) \propto N(s,a)^{\frac{1}{\tau}} \tag{2}$$

⁶Images from Silver et al. Nature 2017

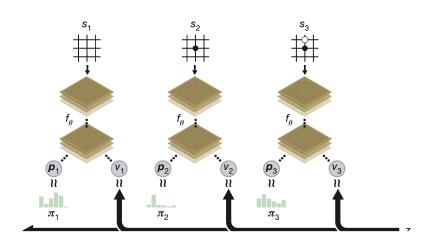
Self Play a Game⁷



- Select an action according to root policy, take action, and repeat whole process
- Repeat until game ends* and observe a win or loss

⁷Images from Silver et al. Nature 2017

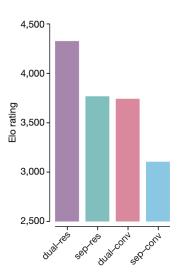
Train Neural Network to Predict Policies and Values footnotelmages from Silver et al. Nature 2017



AlphaGo and AlphaZero: Recap and Evaluation

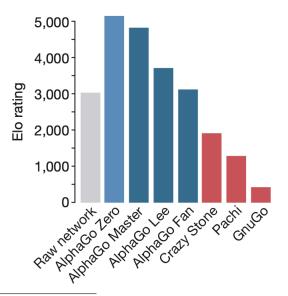
- Features:
 - Self Play
 - Strategic Computation
 - Highly selective best-first search
 - Power of Averaging
 - Local Computation
 - Learn and Update Heuristics
- Evaluation Questions
 - What is the influence of architecture?
 - What is the impact of using MCTS (on top of learning a policy / value function)?
 - How does it compare to human play or using human play?

Impact of Architecture⁸



⁸Images from Silver et al. Nature 2017

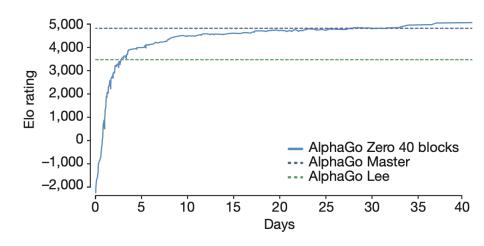
Impact of MCTS⁹



⁹Images from Silver et al. Nature 2017

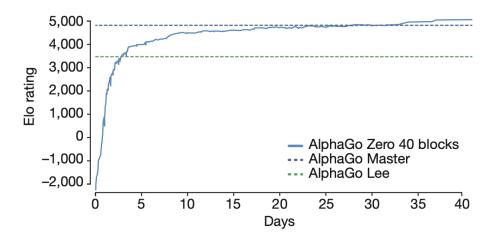
4 D > 4 A > 4 B > 4 B > 9 Q P

Overall performance¹⁰



¹⁰Images from Silver et al. Nature 2017

Need for Human Data?¹¹



¹¹Images from Silver et al. Nature 2017

4□ > 4□ > 4□ > 4□ > 4□ > 4□

In more depth: Upper Confidence Tree (UCT) Search

- UCT: borrow idea from bandit literature and treat each tree node where can select actions as a multi-armed bandit (MAB) problem
- Maintain an upper confidence bound over reward of each arm and select the best arm
- Check your understanding: Why is this slightly strange? Hint: why
 were upper confidence bounds a good idea for exploration/
 exploitation? Is there an exploration/ exploitation problem during
 simulated episodes?¹²

¹²Relates to metalevel reasoning (for an example related to Go see "Selecting Computations: Theory and Applications", Hay, Russell, Tolpin and Shimony 2012).

Check Your Understanding: UCT Search

- In Upper Confidence Tree (UCT) search we treat each tree node as a multi-armed bandit (MAB) problem, and use an upper confidence bound over the future value of each action to help select actions for later rollouts. Select all that are true
 - This may be useful since it will prioritize actions that lead to later good rewards
 - UCB minimizes regret. UCT is minimizing regret within rollouts of the tree. (If this is true, think about if this a good idea?)
 - Not sure

In more depth: Upper Confidence Tree (UCT) Search

- UCT: borrow idea from bandit literature and treat each tree node where can select actions as a multi-armed bandit (MAB) problem
- Maintain an upper confidence bound over reward of each arm and select the best arm
- Hint: why were upper confidence bounds a good idea for exploration/ exploitation? Is there an exploration/ exploitation problem during simulated episodes?¹³

¹³Relates to metalevel reasoning (for an example related to Go see "Selecting Computations: Theory and Applications", Hay, Russell, Tolpin and Shimony 2012).

Class Structure

Last time: Fast Learning

This Time: MCTS

• Next time: Rewards in RL