
Lecture 12: Fast Reinforcement Learning

Emma Brunskill

CS234 Reinforcement Learning

Spring 2024

With some slides from or derived from David Silver, Examples new

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 1 / 59

Refresh Your Understanding: Multi-armed Bandits

Select all that are true:
1 Algorithms that minimize regret also maximize reward
2 Up to variations in constants, UCB selects the arm with

argmaxa Q̂t(a) +
√

1
Nt(a)

log(1/δ)

3 Over an infinite trajectory, UCB will sample all arms an infinite number
of times

4 UCB still would learn to pull the optimal arm more than other arms if
we instead used argmaxa Q̂t(a) +

√
1√
Nt(a)

log(t/δ)

5 UCB uses argmaxa Q̂t(a) + b where b is a bonus term. Consider b = 5.
This will make the algorithm optimistic with respect to the empirical
rewards but it may still cause such an algorithm to suffer linear regret.

6 A k-armed multi-armed bandit is like a single state MDP with k actions
7 Not Sure

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 2 / 59

Refresh Your Understanding: Multi-armed Bandits Solution

Select all that are true:
1 Algorithms that minimize regret also maximize reward
2 Up to variations in constants, UCB selects the arm with

argmaxa Q̂t(a) +
√

1
Nt(a)

log(1/δ)

3 Over an infinite trajectory, UCB will sample all arms an infinite number
of times

4 UCB still would learn to pull the optimal arm more than other arms if
we instead used argmaxa Q̂t(a) +

√
1√
Nt(a)

log(t/δ)

5 UCB uses argmaxa Q̂t(a) + b where b is a bonus term. Consider b = 5.
This will make the algorithm optimistic with respect to the empirical
rewards but it may still cause such an algorithm to suffer linear regret.

6 A k-armed multi-armed bandit is like a single state MDP with k actions
7 Not Sure

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 3 / 59

Where We are

Last time: Bandits and regret and UCB (fast learning)

This time: Bayesian bandits (fast learning)

Next time: MDPs (fast learning)

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 4 / 59

Deciding Who To Test for Covid. Bastani et al. Nature
2001

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 5 / 59

Deciding Who To Test for Covid. Bastani et al. Nature
2001

A ”nonstationary, contextual, batched bandit problem with delayed
feedback and constraints”

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 6 / 59

Today

Bandits and Probably Approximately Correct

Bayesian bandits

Thompson sampling

Bayesian Regret

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 7 / 59

Multiarmed Bandits Notation Recap

Multi-armed bandit is a tuple of (A,R)

A : known set of m actions (arms)

Ra(r) = P[r | a] is an unknown probability distribution over rewards

At each step t the agent selects an action at ∈ A
The environment generates a reward rt ∼ Rat

Goal: Maximize cumulative reward
∑t

τ=1 rτ

Regret is the opportunity loss for one step

lt = E[V ∗ − Q(at)]

Total Regret is the total opportunity loss

Lt = E[
t∑

τ=1

V ∗ − Q(aτ)]

Maximize cumulative reward ⇐⇒ minimize total regret

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 8 / 59

Simpler Optimism

Last time saw UCB, an optimism under uncertainty approach, which
has sublinear regret bounds

Do we need to formally model uncertainty to get the right form of
optimism?

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 9 / 59

Optimistic Initialization with Greedy Bandit Algorithms

Simple and practical idea: initialize Q̂(s, a) to high value

Update action value by incremental Monte-Carlo evaluation

Starting with N(a) > 0

Q̂t(at) = Q̂t−1 +
1

Nt(at)
(rt − Q̂t−1)

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 10 / 59

Optimistic Initialization with Greedy Bandit Algorithms

Simple and practical idea: initialize Q̂(s, a) to high value

Update action value by incremental Monte-Carlo evaluation

Starting with N(a) > 0

Q̂t(at) = Q̂t−1 +
1

Nt(at)
(rt − Q̂t−1)

Encourages systematic exploration early on

But can still lock onto suboptimal action

Depends on how high initialize Q

Check your understanding: What is the downside to initializing Q too
high?

Check your understanding: Is this trivial to do with function
approximation? Why or why not?

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 11 / 59

Optimistic Initialization with Greedy Bandit Algorithms

Simple and practical idea: initialize Q(a) to high value

Update action value by incremental Monte-Carlo evaluation

Starting with N(a) > 0

Q̂t(at) = Q̂t−1 +
1

Nt(at)
(rt − Q̂t−1)

Will turn out that if carefully choose the initialization value, can get
good performance

Under a new measure for evaluating algorithms

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 12 / 59

Framework: Regret

Theoretical regret bounds specify how regret grows with T

Could be making lots of little mistakes or infrequent large ones

May care about bounding the number of non-small errors

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 13 / 59

Framework: Probably Approximately Correct

Theoretical regret bounds specify how regret grows with T

Could be making lots of little mistakes or infrequent large ones

May care about bounding the number of non-small errors

More formally, probably approximately correct (PAC) algorithms

on each time step, choose an action a
whose value is ϵ-optimal: Q(a) ≥ Q(a∗)− ϵ
with probability at least 1− δ
on all but a polynomial number of time steps

Polynomial in the problem parameters (#actions, ϵ, δ, etc)

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 14 / 59

Probably Approximately Correct Algorithms

Theoretical regret bounds specify how regret grows with T

Could be making lots of little mistakes or infrequent large ones

May care about bounding the number of non-small errors

More formally, probably approximately correct (PAC) algorithms

on each time step, choose an action a
whose value is ϵ-optimal: Q(a) ≥ Q(a∗)− ϵ
with probability at least 1− δ
on all but a polynomial number of time steps

Polynomial in the problem parameters (#actions, ϵ, δ, etc)

Most PAC algorithms based on optimism or Thompson sampling

Some PAC algorithms using optimism simply initialize all values to a
(specific to the problem) high value

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 15 / 59

Toy Example: Probably Approximately Correct and Regret

Surgery: ϕ1 = .95 / Taping: ϕ2 = .9 / Nothing: ϕ3 = .1

Let ϵ = 0.05

O = Optimism, TS = Thompson Sampling: W/in
ϵ = I(Q(at) ≥ Q(a∗)− ϵ)

O Optimal O Regret O W/in ϵ

a1 a1 0

a2 a1 0.05

a3 a1 0.85

a1 a1 0

a2 a1 0.05

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 16 / 59

Greedy Bandit Algorithms vs Optimistic Initialization

Greedy: Linear total regret

Constant ϵ-greedy: Linear total regret

Decaying ϵ-greedy: Sublinear regret but schedule for decaying ϵ
requires knowledge of gaps, which are unknown

Optimistic initialization: Sublinear regret if initialize values
sufficiently optimistically, else linear regret

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 17 / 59

Today

Bandits and Probably Approximately Correct

Bayesian Bandits

Thompson Sampling

Bayesian Regret

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 18 / 59

Bayesian Bandits

So far we have made no assumptions about the reward distribution R
Except bounds on rewards

Bayesian bandits exploit prior knowledge of rewards, p[R]

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 19 / 59

Short Refresher / Review on Bayesian Inference

In Bayesian view, we start with a prior over the unknown parameters

Here the unknown distribution over the rewards for each arm

Given observations / data about that parameter, update our
uncertainty over the unknown parameters using Bayes Rule

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 20 / 59

Short Refresher / Review on Bayesian Inference

In Bayesian view, we start with a prior over the unknown parameters

Here the unknown distribution over the rewards for each arm

Given observations / data about that parameter, update our
uncertainty over the unknown parameters using Bayes Rule

For example, let the reward of arm i be a probability distribution that
depends on parameter ϕi

Initial prior over ϕi is p(ϕi)

Pull arm i and observe reward ri1

Use Bays rule to update estimate over ϕi :

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 21 / 59

Short Refresher / Review on Bayesian Inference

In Bayesian view, we start with a prior over the unknown parameters

Here the unknown distribution over the rewards for each arm

Given observations / data about that parameter, update our
uncertainty over the unknown parameters using Bayes Rule

For example, let the reward of arm i be a probability distribution that
depends on parameter ϕi

Initial prior over ϕi is p(ϕi)

Pull arm i and observe reward ri1

Use Bays rule to update estimate over ϕi :

p(ϕi |ri1) =
p(ri1|ϕi)p(ϕi)

p(ri1)
=

p(ri1|ϕi)p(ϕi)∫
ϕi
p(ri1|ϕi)p(ϕi)dϕi

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 22 / 59

Short Refresher / Review on Bayesian Inference II

In Bayesian view, we start with a prior over the unknown parameters

Give observations / data about that parameter, update our
uncertainty over the unknown parameters using Bayes Rule

p(ϕi |ri1) =
p(ri1|ϕi)p(ϕi)∫

ϕi
p(ri1|ϕi)p(ϕi)dϕi

In general computing this update may be tricky to do exactly with no
additional structure on the form of the prior and data likelihood

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 23 / 59

Short Refresher / Review on Bayesian Inference: Conjugate

In Bayesian view, we start with a prior over the unknown parameters

Give observations / data about that parameter, update our
uncertainty over the unknown parameters using Bayes Rule

p(ϕi |ri1) =
p(ri1|ϕi)p(ϕi)∫

ϕi
p(ri1|ϕi)p(ϕi)dϕi

In general computing this update may be tricky

But sometimes can be done analytically

If the parametric representation of the prior and posterior is the same,
the prior and model are called conjugate

For example, exponential families have conjugate priors

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 24 / 59

Short Refresher / Review on Bayesian Inference: Bernoulli

Consider a bandit problem where the reward of an arm is a binary
outcome 0, 1, sampled from a Bernoulli with parameter θ

E.g. Advertisement click through rate, patient treatment success/fails,
...

The Beta distribution Beta(α, β) is conjugate for the Bernoulli
distribution

p(θ|α, β) = θα−1(1− θ)β−1 Γ(α+ β)

Γ(α)Γ(β)

where Γ(x) is the Gamma family

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 25 / 59

Short Refresher / Review on Bayesian Inference: Bernoulli

Consider a bandit problem where the reward of an arm is a binary
outcome 0, 1, sampled from a Bernoulli with parameter θ

E.g. Advertisement click through rate, patient treatment success/fails,
...

The Beta distribution Beta(α, β) is conjugate for the Bernoulli
distribution

p(θ|α, β) = θα−1(1− θ)β−1 Γ(α+ β)

Γ(α)Γ(β)

where Γ(x) is the Gamma family

Assume the prior over θ is Beta(α, β) as above

Then after observed a reward r ∈ {0, 1} then updated posterior over
θ is Beta(r + α, 1− r + β)

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 26 / 59

Bayesian Inference for Decision Making

Maintain distribution over reward parameters

Use this to inform action selection

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 27 / 59

Bayesian Bandits Overview

So far we have made no assumptions about the reward distribution R
Except bounds on rewards

Bayesian bandits exploit prior knowledge of rewards, p[R]

They compute posterior distribution of rewards p[R | ht], where
ht = (a1, r1, . . . , at−1, rt−1)

Use posterior to guide exploration

Upper confidence bounds (Bayesian UCB)
Probability matching (Thompson Sampling)

Better performance if prior knowledge is accurate

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 28 / 59

Today

Bandits and Probably Approximately Correct

Bayesian Bandits

Thompson Sampling

Bayesian Regret

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 29 / 59

Probability Matching

Assume have a parametric distribution over rewards for each arm

Probability matching selects action a according to probability that a
is the optimal action

π(a | ht) = P[Q(a) > Q(a′), ∀a′ ̸= a | ht]

Probability matching is often optimistic in the face of uncertainty

Uncertain actions have higher probability of being max

Can be difficult to compute probability that an action is optimal
analytically from posterior

Somewhat incredibly, a simple approach implements probability
matching

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 30 / 59

Thompson Sampling

1: Initialize prior over each arm a, p(Ra)
2: for iteration=1, 2, . . . do
3: For each arm a sample a reward distribution Ra from posterior
4: Compute action-value function Q(a) = E[Ra]
5: at = argmaxa∈AQ(a)
6: Observe reward r
7: Update posterior p(Ra) using Bayes Rule
8: end for

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 31 / 59

Thompson sampling implements probability matching

Thompson sampling:

π(a | ht) = P[Q(a) > Q(a′), ∀a′ ̸= a | ht]

= ER|ht

[
1(a = argmax

a∈A
Q(a))

]

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 32 / 59

Toy Example: Ways to Treat Broken Toes, Thompson
Sampling

True (unknown) Bernoulli parameters for each arm/action

Surgery: θ1 = .95 / Taping: θ2 = .9 / Nothing: θ3 = .1

Thompson sampling:

Place a prior over each arm’s parameter. Here choose Beta(1,1)
(Uniform)

1 Sample a Bernoulli parameter given current prior over each arm
Beta(1,1), Beta(1,1), Beta(1,1):

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 33 / 59

Toy Example: Ways to Treat Broken Toes, Thompson
Sampling1

True (unknown) Bernoulli parameters for each arm/action

Surgery: θ1 = .95 / Taping: θ2 = .9 / Nothing: θ3 = .1

Thompson sampling:

Place a prior over each arm’s parameter. Here choose Beta(1,1)
1 Sample a Bernoulli parameter given current prior over each arm

Beta(1,1), Beta(1,1), Beta(1,1): 0.3 0.5 0.6
2 Select a = argmaxa∈A Q(a) = argmaxainA θ(a) =

1Note:This is a made up example. This is not the actual expected efficacies of the
various treatment options for a broken toe

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 34 / 59

Toy Example: Ways to Treat Broken Toes, Thompson
Sampling

True (unknown) Bernoulli parameters for each arm/action

Surgery: θ1 = .95 / Taping: θ2 = .9 / Nothing: θ3 = .1

Thompson sampling:

Place a prior over each arm’s parameter. Here choose θi ∼Beta(1,1)
1 Per arm, sample a Bernoulli θ given prior: 0.3 0.5 0.6
2 Select at = argmaxa∈A Q(a) = argmaxainA θ(a) = 3
3 Observe the patient outcome’s outcome: 0
4 Update the posterior over the Q(at) = Q(a3) value for the arm pulled

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 35 / 59

Toy Example: Ways to Treat Broken Toes, Thompson
Sampling

True (unknown) Bernoulli parameters for each arm/action

Surgery: θ1 = .95 / Taping: θ2 = .9 / Nothing: θ3 = .1

Thompson sampling:

Place a prior over each arm’s parameter. Here choose θi ∼Beta(1,1)
1 Sample a Bernoulli parameter given current prior over each arm

Beta(1,1), Beta(1,1), Beta(1,1): 0.3 0.5 0.6
2 Select at = argmaxa∈A Q(a) = argmaxainA θ(a) = 3
3 Observe the patient outcome’s outcome: 0
4 Update the posterior over the Q(at) = Q(a1) value for the arm pulled

Beta(c1, c2) is the conjugate distribution for Bernoulli
If observe 1, c1 + 1 else if observe 0 c2 + 1

5 New posterior over Q value for arm pulled is:
6 New posterior p(Q(a3)) = p(θ(a3) = Beta(1, 2)

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 36 / 59

Toy Example: Ways to Treat Broken Toes, Thompson
Sampling

True (unknown) Bernoulli parameters for each arm/action

Surgery: θ1 = .95 / Taping: θ2 = .9 / Nothing: θ3 = .1

Thompson sampling:

Place a prior over each arm’s parameter. Here choose θi ∼Beta(1,1)
1 Sample a Bernoulli parameter given current prior over each arm

Beta(1,1), Beta(1,1), Beta(1,1): 0.3 0.5 0.6
2 Select at = argmaxa∈A Q(a) = argmaxainA θ(a) = 1
3 Observe the patient outcome’s outcome: 0
4 New posterior p(Q(a1)) = p(θ(a1) = Beta(1, 2)

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 37 / 59

Toy Example: Ways to Treat Broken Toes, Thompson
Sampling

True (unknown) Bernoulli parameters for each arm/action

Surgery: θ1 = .95 / Taping: θ2 = .9 / Nothing: θ3 = .1

Thompson sampling:

Place a prior over each arm’s parameter. Here choose θi ∼Beta(1,1)
1 Sample a Bernoulli parameter given current prior over each arm

Beta(1,1), Beta(1,1), Beta(1,2): 0.7, 0.5, 0.3

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 38 / 59

Toy Example: Ways to Treat Broken Toes, Thompson
Sampling

True (unknown) Bernoulli parameters for each arm/action

Surgery: θ1 = .95 / Taping: θ2 = .9 / Nothing: θ3 = .1

Thompson sampling:

Place a prior over each arm’s parameter. Here choose θi ∼Beta(1,1)
1 Sample a Bernoulli parameter given current prior over each arm

Beta(1,1), Beta(1,1), Beta(1,2): 0.7, 0.5, 0.3
2 Select at = argmaxa∈A Q(a) = argmaxainA θ(a) = 1
3 Observe the patient outcome’s outcome: 1
4 New posterior p(Q(a1)) = p(θ(a1) = Beta(2, 1)

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 39 / 59

Toy Example: Ways to Treat Broken Toes, Thompson
Sampling

True (unknown) Bernoulli parameters for each arm/action

Surgery: θ1 = .95 / Taping: θ2 = .9 / Nothing: θ3 = .1

Thompson sampling:

Place a prior over each arm’s parameter. Here choose θi ∼Beta(1,1)
1 Sample a Bernoulli parameter given current prior over each arm

Beta(2,1), Beta(1,1), Beta(1,2): 0.71, 0.65, 0.1
2 Select at = argmaxa∈A Q(a) = argmaxainA θ(a) = 1
3 Observe the patient outcome’s outcome: 1
4 New posterior p(Q(a1)) = p(θ(a1) = Beta(3, 1)

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 40 / 59

Toy Example: Ways to Treat Broken Toes, Thompson
Sampling

True (unknown) Bernoulli parameters for each arm/action

Surgery: θ1 = .95 / Taping: θ2 = .9 / Nothing: θ3 = .1

Thompson sampling:
Place a prior over each arm’s parameter. Here choose θi ∼Beta(1,1)

1 Sample a Bernoulli parameter given current prior over each arm
Beta(2,1), Beta(1,1), Beta(1,2): 0.75, 0.45, 0.4

2 Select at = argmaxa∈A Q(a) = argmaxainA θ(a) = 1
3 Observe the patient outcome’s outcome: 1
4 New posterior p(Q(a1)) = p(θ(a1) = Beta(4, 1)

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 41 / 59

Toy Example: Ways to Treat Broken Toes, Thompson
Sampling vs Optimism

Surgery: θ1 = .95 / Taping: θ2 = .9 / Nothing: θ3 = .1

How does the sequence of arm pulls compare in this example so far?
Optimism TS Optimal Regret Optimism Regret TS

a1 a3

a2 a1

a3 a1

a1 a1

a2 a1

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 42 / 59

Toy Example: Ways to Treat Broken Toes, Thompson
Sampling vs Optimism

Surgery: θ1 = .95 / Taping: θ2 = .9 / Nothing: θ3 = .1

Incurred regret?
Optimism TS Optimal Regret Optimism Regret TS

a1 a3 a1 0 0

a2 a1 a1 0.05

a3 a1 a1 0.85

a1 a1 a1 0

a2 a1 a1 0.05

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 43 / 59

On to General Setting for Thompson Sampling

Now we will see how Thompson sampling works in general, and what
it is doing

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 44 / 59

Today

Bandits and Probably Approximately Correct

Bayesian Bandits

Thompson Sampling

Bayesian Regret

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 45 / 59

Framework: Regret and Bayesian Regret

How do we evaluate performance in the Bayesian setting?

Frequentist regret assumes a true (unknown) set of parameters

Regret(A,T ; θ) = Eτ

[
T∑
t=1

Q(a∗)− Q(at)|θ

]

where Eτ denotes an expectation with respect to the history of
actions taken and rewards observed given an algorithm A.

Bayesian regret assumes there is a prior over parameters

BayesRegret(A,T ; θ) =Eθ∼pθ,τ

[
T∑
t=1

Q(a∗)− Q(at)|θ

]

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 46 / 59

Bounding Regret Using Optimism

How do we evaluate performance in the Bayesian setting?

Frequentist regret assumes a true (unknown) set of parameters

Regret(A,T ; θ) = Eτ

[
T∑
t=1

Q(a∗)− Q(at)|θ

]
≤ Eτ

[
T∑
t=1

Ut(at)− Q(at)|θ

]

where Eτ denotes an expectation with respect to the history of
actions taken and rewards observed given an algorithm A (under
event that Ut is an upper bound).

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 47 / 59

Bayesian Regret Proof Sketch

BayesRegret(A,T ; θ) = Eθ∼pθ,τ

[
T∑
t=1

Q(a∗)− Q(at)|θ

]

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 48 / 59

Thompson sampling implements probability matching

Frequentist bounds for standard* Thompson sampling do not* (last
checked) match best bounds for frequentist algorithms

Empirically Thompson sampling can be effective, especially in
contextual multi-armed bandits

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 49 / 59

Thompson Sampling for News Article Recommendation
(Chapelle and Li, 2010)

Contextual bandit: input context which impacts reward of each arm,
context sampled iid each step

Arms = articles

Reward = click (+1) on article (Q(a)=click through rate)

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 50 / 59

Check Your Understanding: Thompson Sampling and
Optimism

Consider an online news website with thousands of people logging on
each second. Frequently a new person will come online before we see
whether the last person has clicked (or not). Select all that are true:

1 Thompson sampling would be better than optimism here, because
optimism algorithms are deterministic and would select the same action
until we get feedback (click or not)

2 Optimism algorithms would be better than TS here, because they have
stronger regret bounds for this setting

3 Thompson sampling could cause much worse performance than
optimism if the initial prior is very misleading.

4 Not sure

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 51 / 59

Check Your Understanding: Thompson Sampling and
Optimism Solutions

Consider an online news website with thousands of people logging on
each second. Frequently a new person will come online before we see
whether the last person has clicked (or not). Select all that are true:

1 Thompson sampling would be better than optimism here, because
optimism algorithms are deterministic and would select the same action
until we get feedback (click or not)

2 Optimism algorithms would be better than TS here, because they have
stronger regret bounds for this setting

3 Thompson sampling could cause much worse performance than
optimism if the initial prior is very misleading.

4 Not sure

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 52 / 59

Optimal Policy for Bayesian Bandits?

Thompson Sampling often works well, but is it optimal?

Given prior, and known horizon, could compute decision policy that
would maximize expected rewards given the available horizon

Computational challenge: naively this would create a decision policy
that is a function of the history to the next arm to pull

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 53 / 59

Gittins Index for Bayesian Bandits

Thompson Sampling often works well, but is it optimal?

Given prior, and known horizon, could compute decision policy that
would maximize expected rewards given the available horizon

Computational challenge: naively this would create a decision policy
that is a function of the history to the next arm to pull

Index policy: a decision policy that computes a ”real-valued index
for each arm and plays the arm with the largest index,” using
statistics only from that arm and the horizon (definition from
Lattimore and Svespari 2019 Bandit Algorithms)

Gittins index: optimal policy for maximizing expected discounted
reward in a Bayesian multi-armed bandit

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 54 / 59

Today

Bandits and Probably Approximately Correct

Bayesian Bandits

Thompson Sampling

Bayesian Regret

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 55 / 59

What You Should Understand

Understand how multi-armed bandits relate to MDPs

Be able to define regret and PAC

Be able to prove why UCB bandit algorithm has sublinear regret

Understand (be able to give an example) why e-greedy and greedy
and pessimism can result in linear regret

Be able to implement Thompson Sampling for bernoulli or Gaussian
rewards

Be able to implement UCB bandit algorithm

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 56 / 59

Where We are

Last time: Bandits and regret and UCB (fast learning)

This time: Bayesian bandits (fast learning)

Next time: MDPs (fast learning)

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 57 / 59

Bayesian Regret Bounds for Thompson Sampling

Regret(UCB,T)

BayesRegret(TS ,T) = Eθ∼pθ

[
T∑
t=1

f ∗(a∗)− f ∗(at)

]

Posterior sampling has the same (ignoring constants) regret bounds
as UCB

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 58 / 59

Toy Example: Probably Approximately Correct and Regret

Surgery: ϕ1 = .95 / Taping: ϕ2 = .9 / Nothing: ϕ3 = .1

Let ϵ = 0.05

O = Optimism, TS = Thompson Sampling: W/in
ϵ = I(Q(at) ≥ Q(a∗)− ϵ)

O TS Optimal O Regret O W/in ϵ TS Regret TS W/in ϵ

a1 a3 a1 0 Y 0.85 N

a2 a1 a1 0.05 Y 0 Y

a3 a1 a1 0.85 N 0 Y

a1 a1 a1 0 Y 0 Y

a2 a1 a1 0.05 Y 0 Y

Emma Brunskill (CS234 Reinforcement Learning)Lecture 12: Fast Reinforcement Learning Spring 2024 59 / 59

