Lecture 11: Fast Reinforcement Learning

Emma Brunskill

CS234 Reinforcement Learning

Spring 2024

Slides from or derived from David Silver, Examples new.

L11N1 Refresh Your Knowledge.

Importance sampling leverages the Markov assumption to improve accuracy

- Not sure
- We can use the performance difference lemma / relative policy performance to: (Select all that are true)
 - Bound the difference in value between two policies using the advantage function of one policy, and samples from the other policy
 - Approximately bound the difference in value between two policies using the advantage function of policy 1, importance weights between the two policies, and samples from policy 1
 - The approximation error in the relative policy performance bounds is bounded by the KL divergence between the states visited under one policy, vs the other
 - These ideas are used in PPO
 - Not sure

L11N1 Refresh Your Knowledge. Answers

- Importance sampling leverages the Markov assumption to improve accuracy
 - True
 - Palse.
 - Not sure
 - False.
- We can use the performance difference lemma / relative policy performance to: (Select all that are true)
 - Bound the difference in value between two policies using the advantage function of one policy, and samples from the other policy
 - Approximately bound the difference in value between two policies using the advantage function of policy 1, importance weights between the two policies, and samples from policy 1
 - The approximation error in the relative policy performance bounds is bounded by the KL divergence between the states visited under one policy, vs the other
 - These ideas are used in PPO

Answer: Importance sampling does not use the Markov assumption. For the second question, 1, 2 and 4 are true. The approximation error is bounded by the average (over the states visited by one policy) of KL divergence between the two policies.

Class Structure

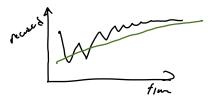
- Last time: Learning from past data
- This time: Data Efficient Reinforcement Learning Bandits
- Next time: Data Efficient Reinforcement Learning

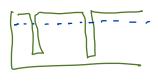
Computational Efficiency and Sample Efficiency

Computational Efficiency	Sample Efficiency (da Fa)
Atzri	mobile phones for health inferred fors
MUjuco	Consumer marketing educational tack
	educational tech

Evaluation Criteria

- How do we evaluate how "good" an algorithm is?
- · If converges? deadly triad not guaranteed
- If converges to optimal policy?
- · How quickly reaches optimal policy? how much dufe
- Mistakes make along the way?
- Will introduce different measures to evaluate RL algorithms





Settings, Frameworks & Approaches

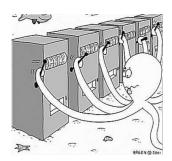
- Over next couple lectures will consider 2 settings, multiple frameworks, and approaches
- Settings: Bandits (single decisions), MDPs
- Frameworks: evaluation criteria for formally assessing the quality of a RL algorithm
- Approaches: Classes of algorithms for achieving particular evaluation criteria in a certain set
- Note: We will see that some approaches can achieve multiple frameworks in multiple settings

Today

- Setting: Introduction to multi-armed bandits & Approach: greedy methods
- Framework: Regret
- Approach: ϵ -greedy methods
- Approach: Optimism under uncertainty
- Framework: Bayesian regret
- Approach: Probability matching / Thompson sampling

Multiarmed Bandits

- Multi-armed bandit is a tuple of (A, R)
- A: known set of m actions (arms)
- $\mathcal{R}^a(r) = \mathbb{P}[r \mid a]$ is an unknown probability distribution over rewards
- ullet At each step t the agent selects an action $a_t \in \mathcal{A}$
- ullet The environment generates a reward $r_t \sim \mathcal{R}^{a_t}$
- Goal: Maximize cumulative reward $\sum_{ au=1}^t r_ au$



Toy Example: Ways to Treat Broken Toes

- Consider deciding how to best treat patients with broken toes
- Imagine have 3 possible options: (1) surgery (2) buddy taping the broken toe with another toe, (3) do nothing
- Outcome measure / reward is binary variable: whether the toe has healed (+1) or not healed (0) after 6 weeks, as assessed by x-ray

Note: This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe

L11N2 Check Your Understanding: Bandit Toes

- Consider deciding how to best treat patients with broken toes
- Imagine have 3 common options: (1) surgery (2) buddy taping the broken toe with another toe (3) doing nothing
- Outcome measure is binary variable: whether the toe has healed (+1) or not (0) after 6 weeks, as assessed by x-ray
- Model as a multi-armed bandit with 3 arms, where each arm is a Bernoulli variable with an unknown parameter θ_i
- Select all that are true
 - Pulling an arm / taking an action corresponds to whether the toe has healed or not
 - A multi-armed bandit is a better fit to this problem than a MDP because treating each patient involves multiple decisions
 - **3** After treating a patient, if $\theta_i \neq 0$ and $\theta_i \neq 1 \ \forall i$ sometimes a patient's toe will heal and sometimes it may not
 - On Not sure

L11N2 Check Your Understanding: Bandit Toes Solution

- Consider deciding how to best treat patients with broken toes
- Imagine have 3 common options: (1) surgery (2) buddy taping the broken toe with another toe (3) doing nothing
- Outcome measure is binary variable: whether the toe has healed (+1) or not (0) after 6 weeks, as assessed by x-ray
- ullet Model as a multi-armed bandit with 3 arms, where each arm is a Bernoulli variable with an unknown parameter $heta_i$
- Select all that are true
 - Pulling an arm / taking an action corresponds to whether the toe has healed or not
 - A multi-armed bandit is a better fit to this problem than a MDP because treating each patient involves multiple decisions
 - **3** After treating a patient, if $\theta_i \neq 0$ and $\theta_i \neq 1 \ \forall i$ sometimes a patient's toe will heal and sometimes it may not
 - 4 Not sure

3 is true. Pulling an arm corresponds to treating a patient. A MAB is a better fit than a MDP, because actions correspond to treating a patient, and the treatment of one patient does not influence that next patient that comes to be treated.

Greedy Algorithm

- ullet We consider algorithms that estimate $\hat{Q}_t(a)pprox Q(a)=\mathbb{E}\left[R(a)
 ight]$
- Estimate the value of each action by Monte-Carlo evaluation

$$\hat{Q}_t(a) = \frac{1}{N_t(a)} \sum_{i=1}^{t-1} r_i \mathbb{1}(a_i = a)$$

The greedy algorithm selects the action with highest value

$$a_t^* = rg \max_{a \in \mathcal{A}} \hat{Q}_t(a)$$

Toy Example: Ways to Treat Broken Toes

- Imagine true (unknown) Bernoulli reward parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$

Toy Example: Ways to Treat Broken Toes, Greedy

- Imagine true (unknown) Bernoulli reward parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- Greedy
 - Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$), get 0, $\hat{Q}(a^1) = 0$
 - Take action a^2 ($r \sim \text{Bernoulli}(0.90)$), get +1, $\hat{Q}(a^2) = 1$
 - Take action a^3 ($r \sim \text{Bernoulli}(0.1)$), get 0, $\hat{Q}(a^3) = 0$
 - What is the probability of greedy selecting each arm next? Assume ties are split uniformly. p(az) = (

Toy Example: Ways to Treat Broken Toes, Greedy

- Imagine true (unknown) Bernoulli reward parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- Greedy
 - Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$), get 0, $\hat{Q}(a^1) = 0$
 - Take action a^2 $(r \sim \text{Bernoulli}(0.90))$, get +1, $\hat{Q}(a^2) = 1$
 - Take action a^3 $(r \sim \text{Bernoulli}(0.1))$, get 0, $\hat{Q}(a^3) = 0$
 - Will the greedy algorithm ever find the best arm in this case?

Greedy Algorithm

- ullet We consider algorithms that estimate $\hat{Q}_t(a)pprox Q(a)=\mathbb{E}\left[R(a)
 ight]$
- Estimate the value of each action by Monte-Carlo evaluation

$$\hat{Q}_t(a) = \frac{1}{N_t(a)} \sum_{t=1}^T r_t \mathbb{1}(a_t = a)$$

The greedy algorithm selects the action with highest value

$$a_t^* = \arg\max_{a \in \mathcal{A}} \hat{Q}_t(a)$$

Greedy can lock onto suboptimal action, forever

Today

- Setting: Introduction to multi-armed bandits & Approach: greedy methods
- Framework: Regret
- Approach: ϵ -greedy methods
- Approach: Optimism under uncertainty
- Framework: Bayesian regret
- Approach: Probability matching / Thompson sampling

Assessing the Performance of Algorithms

- How do we evaluate the quality of a RL (or bandit) algorithm?
- So far: computational complexity, convergence, convergence to a fixed point, & empirical performance performance
- Today: introduce a formal measure of how well a RL/bandit algorithm will do in any environment, compared to optimal

Regret

• Action-value is the mean reward for action a

$$Q(a) = \mathbb{E}[r \mid a]$$

Optimal value V*

$$V^* = Q(a^*) = \max_{a \in \mathcal{A}} Q(a)$$

• Regret is the opportunity loss for one step

$$I_t = \mathbb{E}[V^* - Q(a_t)]$$

Regret

Action-value is the mean reward for action a

$$Q(a) = \mathbb{E}[r \mid a]$$

Optimal value V*

$$V^* = Q(a^*) = \max_{a \in \mathcal{A}} Q(a)$$

• Regret is the opportunity loss for one step

$$I_t = \mathbb{E}[V^* - Q(a_t)]$$

Total Regret is the total opportunity loss

$$L_t = \mathbb{E}[\sum_{\tau=1}^t V^* - Q(a_\tau)]$$

Maximize cumulative reward ←⇒ minimize total regret

Evaluating Regret

- Count N_t(a) is number of times action a has been selected at fine the first that a supply and the country of the c action a^* , $\Delta_i = V^* - Q(a_i)$
- Regret is a function of gaps and counts

$$egin{aligned} L_t &= \mathbb{E}\left[\sum_{ au=1}^t V^* - Q(a_ au)
ight] \ &= \sum_{a \in \mathcal{A}} \mathbb{E}[N_t(a)](V^* - Q(a)) \ &= \sum_{a \in \mathcal{A}} \mathbb{E}[N_t(a)]\Delta_a \end{aligned}$$

 A good algorithm ensures small counts for large gap,s but gaps are not known

- True (unknown) Bernoulli reward parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- Greedy

	Greedy			
7	Action	Optimal Action	Observed Reward	Regret
j	a^1	a^1	0	ව
2	a ²	a^1	1	,95-,9=,05
3	a^3	a^1 J	0	78.=1,-29,
٧	a^2	a^1	1	
ح	a^2	a^1	0	

True (unknown) Bernoulli reward parameters for each arm (action) are

• surgery: $Q(a^1) = \theta_1 = .95$

• buddy taping: $Q(a^2) = \theta_2 = .9$

• doing nothing: $Q(a^3) = \theta_3 = .1$

Greedy

Action	Optimal Action	Observed Reward	Regret
a^1	a^1	0	0
a^2	a^1	1	0.05
a^3	a^1	0	0.85
a^2	a^1	1	0.05
a^2	a^1	0	0.05

 Regret for greedy methods can be linear in the number of decisions made (timestep)

Greedy

Action	Optimal Action	Observed Reward	Regret
a^1	a^1	0	0
a^2	a^1	1	0.05
a^3	a^1	0	0.85
a^2	a^1	1	0.05
a^2	a^1	0	0.05

- Note: in real settings we cannot evaluate the regret because it requires knowledge of the expected reward of the true best action.
- Instead we can prove an upper bound on the potential regret of an algorithm in any bandit problem

Today

- Setting: Introduction to multi-armed bandits & Approach: greedy methods
- Framework: Regret
- Approach: ϵ -greedy methods
- Approach: Optimism under uncertainty
- Framework: Bayesian regret
- Approach: Probability matching / Thompson sampling

ϵ-Greedy Algorithm

- The ϵ -greedy algorithm proceeds as follows:
 - With probability 1ϵ select $a_t = \arg\max_{a \in \mathcal{A}} \hat{Q}_t(a)$
 - ullet With probability ϵ select a random action
- ullet Always will be making a sub-optimal decision ϵ fraction of the time
- Already used this in prior homeworks

Toy Example: Ways to Treat Broken Toes, ϵ -**Greedy**

- Imagine true (unknown) Bernoulli reward parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- \bullet ϵ -greedy
 - Sample each arm once
 - Take action a^1 $(r \sim \text{Bernoulli}(0.95))$, get +1, $\hat{Q}(a^1) = 1$
 - Take action a^2 ($r \sim \text{Bernoulli}(0.90)$), get +1, $\hat{Q}(a^2) = 1$
 - Take action a^3 $(r \sim \text{Bernoulli}(0.1))$, get 0, $\hat{Q}(a^3) = 0$
 - **2** Let $\epsilon = 0.1$
 - What is the probability ε-greedy will pull each arm next? Assume ties are split uniformly. 90% prob greedy a, \$a₂ ε₂ς 45%
 11,7%
 3.3% a, a; a;

- True (unknown) Bernoulli reward parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)

0 0 2 1 (* 140 1.) 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Action Optimal Action		Regret	
a^1	a^1		
a^2	a^1		
a^3	a^1		
a^1	a^1		
a^2	a^1		

• Will ϵ -greedy ever select a^3 again? If ϵ is fixed, how many times will each arm be selected?

Recall: Bandit Regret

- Count $N_t(a)$ is expected number of selections for action a
- Gap Δ_a is the difference in value between action a and optimal action a^* , $\Delta_i = V^* Q(a_i)$
- Regret is a function of gaps and counts

$$egin{aligned} L_t &= \mathbb{E}\left[\sum_{ au=1}^t V^* - Q(a_ au)
ight] \ &= \sum_{a \in \mathcal{A}} \mathbb{E}[N_t(a)](V^* - Q(a)) \ &= \sum_{a \in \mathcal{A}} \mathbb{E}[N_t(a)]\Delta_a \end{aligned}$$

 A good algorithm ensures small counts for large gap, but gaps are not known

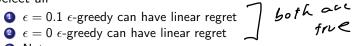
L11N3 Check Your Understanding: ϵ -greedy Bandit Regret

- Count $N_t(a)$ is expected number of selections for action a
- Gap Δ_a is the difference in value between action a and optimal action a^* , $\Delta_i = V^* - Q(a_i)$
- = Sa FT Da f ... • Regret is a function of gaps and counts

$$L_t = \sum_{a \in \mathcal{A}} \mathbb{E}[N_t(a)] \Delta_a$$

- Informally an algorithm has linear regret if it takes a non-optimal action a constant fraction of the time
- Assume $\exists a \ s.t. \ \Delta_a > 0$
- Select all

 - Not sure



L11N3 Check Your Understanding: ϵ -greedy Bandit Regret Answer

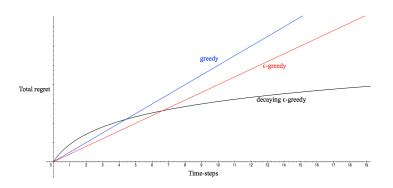
- Count $N_t(a)$ is expected number of selections for action a
- Gap Δ_a is the difference in value between action a and optimal action a^* , $\Delta_i = V^* Q(a_i)$
- Regret is a function of gaps and counts

$$L_t = \sum_{a \in \mathcal{A}} \mathbb{E}[N_t(a)] \Delta_a$$

- Informally an algorithm has linear regret if it takes a non-optimal action a constant fraction of the time
- Assume $\exists a \ s.t. \ \Delta_a > 0$
- Select all
 - **1** $\epsilon = 0.1 \epsilon$ -greedy can have linear regret
 - 2 $\epsilon = 0$ ϵ -greedy can have linear regret
 - Not sure

Both can have linear regret.

"Good": Sublinear or below regret



- Explore forever: have linear total regret
- Explore never: have linear total regret
- Is it possible to achieve sublinear (in the time steps/number of decisions made) regret?

Types of Regret bounds

- **Problem independent**: Bound how regret grows as a function of T, the total number of time steps the algorithm operates for
- Problem dependent: Bound regret as a function of the number of times we pull each arm and the gap between the reward for the pulled arm and a*

Lower Bound

- Use lower bound to determine how hard this problem is
- The performance of any algorithm is determined by similarity between optimal arm and other arms
- Hard problems have similar looking arms with different means
- This is described formally by the gap Δ_a and the similarity in distributions $D_{KL}(\mathcal{R}^a || \mathcal{R}^{a^*})$
- Theorem (Lai and Robbins): Asymptotic total regret is at least logarithmic in number of steps

$$\lim_{t\to\infty} L_t \geq \log t \sum_{a|\Delta_a>0} \frac{\Delta_a}{D_{\mathsf{KL}}(\mathcal{R}^a\|\mathcal{R}^{a^*})}$$

Promising in that lower bound is sublinear

Today

- Setting: Introduction to multi-armed bandits & Approach: greedy methods
- Framework: Regret
- Approach: ϵ -greedy methods
- Approach: Optimism under uncertainty
- Framework: Bayesian regret
- Approach: Probability matching / Thompson sampling

Approach: Optimism in the Face of Uncertainty

- Choose actions that that might have a high value
- Why?
- Two outcomes:

Approach: Optimism in the Face of Uncertainty

uncertainty

- Choose actions that that might have a high value
- Why?
- Two outcomes:
 - Getting high reward: if the arm really has a high mean reward
 - Learn something: if the arm really has a lower mean reward, pulling it will (in expectation) reduce its average reward and the uncertainty over its value

Upper Confidence Bounds

- Estimate an upper confidence $U_t(a)$ for each action value, such that $Q(a) \leq U_t(a)$ with high probability
- ullet This depends on the number of times $N_t(a)$ action a has been selected
- Select action maximizing Upper Confidence Bound (UCB)

$$a_t = \arg\max_{a \in \mathcal{A}} [U_t(a)]$$
 a Gorithms

Hoeffding's Inequality

• Theorem (Hoeffding's Inequality): Let X_1, \ldots, X_n be i.i.d. random variables in [0,1], and let $\bar{X}_n = \frac{1}{n} \sum_{\tau=1}^n X_{\tau}$ be the sample mean. Then

$$P[E[X] > \bar{X}_n + u] \leq \exp(-2nu^2) \qquad C_m$$

$$P(|E(X) - \bar{X}_n| > U) \leq 2\exp(-2nu^2) = 8$$

$$\exp(-2nu^2) = 8/2$$

$$U^2 = \frac{1}{n}\log^{2/8}$$

$$U = \sqrt{\frac{\log^{2/8}}{n}}$$

$$X_n - U \leq E[X] \leq X_n + U$$

$$W/\rho nb \geq 1-8$$

UCB Bandit Regret

• This leads to the UCB1 algorithm

JCB1 algorithm $a_t = \arg\max_{a \in \mathcal{A}} \left[\hat{Q}(a) + \sqrt{\frac{2\log\frac{1}{\delta}}{N_t(a)}} \right]$

Ku ou?

Toy Example: Ways to Treat Broken Toes, Thompson Sampling¹

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- Optimism under uncertainty, UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
 - Sample each arm once

¹Note:This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
 - Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$), get +1, $\hat{Q}(a^1) = 1$
 - Take action a^2 ($r \sim \text{Bernoulli}(0.90)$), get +1, $\hat{Q}(a^2) = 1$
 - Take action a^3 ($r \sim \text{Bernoulli}(0.1)$), get 0, $\hat{Q}(a^3) = 0$

¹Note:This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
 - Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$), get +1, $\hat{Q}(a^1) = 1$
 - Take action a^2 ($r \sim \text{Bernoulli}(0.90)$), get +1, $\hat{Q}(a^2) = 1$
 - Take action a^3 $(r \sim \text{Bernoulli}(0.1))$, get 0, $\hat{Q}(a^3) = 0$
 - ② Set t = 3, Compute upper confidence bound on each action

$$UCB(a) = \hat{Q}(a) + \sqrt{\frac{2\log\frac{1}{\delta}}{N_t(a)}}$$
 $UCB(a) = \hat{Q}(a) + \sqrt{\frac{2\log\frac{1}{\delta}}{N_t(a)}}$
 $UCB(a) = \hat{Q}(a) + \sqrt{\frac{2\log\frac{1}{\delta}}{N_t(a)}}$
 $UCB(a) = \hat{Q}(a) + \sqrt{\frac{2\log\frac{1}{\delta}}{N_t(a)}}$

¹Note:This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
 - Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$), get +1, $\hat{Q}(a^1) = 1$
 - Take action a^2 ($r \sim \text{Bernoulli}(0.90)$), get +1, $\hat{Q}(a^2) = 1$
 - Take action a^3 ($r \sim \text{Bernoulli}(0.1)$), get 0, $\hat{Q}(a^3) = 0$
 - ② Set t = 3, Compute upper confidence bound on each action

$$UCB(a) = \hat{Q}(a) + \sqrt{\frac{2 \log \frac{1}{\delta}}{N_t(a)}}$$

- 3 t=3, Select action $a_t=\arg\max_a UCB(a)$, a=13 Observe reward 1
 5 Compute upper confidence bound on each action $VCB(a_7)=1+\sqrt{2\log k}$ $VCB(a_3)=0+\sqrt{2\log k}$

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
 - Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$), get +1, $\hat{Q}(a^1) = 1$
 - Take action a^2 $(r \sim \text{Bernoulli}(0.90))$, get +1, $\hat{Q}(a^2) = 1$
 - Take action a^3 ($r \sim \text{Bernoulli}(0.1)$), get 0, $\hat{Q}(a^3) = 0$
 - ② Set t = 3, Compute upper confidence bound on each action

$$UCB(a) = \hat{Q}(a) + \sqrt{\frac{2\log \frac{1}{\delta}}{N_t(a)}}$$

- \bullet t = t + 1, Select action $a_t = \arg \max_a UCB(a)$,
- Observe reward 1
- Ompute upper confidence bound on each action

Toy Example: Ways to Treat Broken Toes, Optimism, Assessing Regret

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)

Action	Optimal Action	Regret
a^1	a^1	
a^2	a^1	
a^3	a^1	
a^1	a^1	
a^2	a^1	

Confidence Level δ

- Subtle
- ullet If there are a fixed number of time steps T for the problem setting, can set $\delta=rac{\delta}{T}$ /Al
 - Union bound: $P(\cup E_i) \leq \sum_i P(E_i)$
- Often want to do this in other settings

Regret Bound for UCB Multi-armed Bandit Sketch

Regret Bound for UCB Multi-armed Bandit Sketch

• Any sub-optimal arm $a \neq a^*$ is pulled by UCB at most $\mathbb{E}N_T(a) \leq C' \frac{\log \frac{1}{\Delta}}{\Delta_a^2} + \frac{\pi^2}{3} + 1$. So the regret of UCB is bounded by $\sum_a \Delta_a \mathbb{E}N_T(a) \leq \sum_a C' \frac{\log T}{\Delta_a} + |A| (\frac{\pi^2}{3} + 1)$. (Arm means $\in [0,1]$)

$$Q(a) - \sqrt{\frac{Clog\frac{1}{\delta}}{N_t(a)}} \le \hat{Q}_t(a) \le Q(a) + \sqrt{\frac{Clog\frac{1}{\delta}}{N_t(a)}}$$
 (2)

$$\hat{Q}_t(a) + \sqrt{\frac{Clog\frac{1}{\delta}}{N_t(a)}} \ge \hat{Q}_t(a^*) + \sqrt{\frac{Clog\frac{1}{\delta}}{N_t(a^*)}} \ge Q(a^*)$$
 (3)

$$Q(a) + 2\sqrt{\frac{Clog\frac{1}{\delta}}{N_t(a)}} \ge Q(a^*)$$
 (4)

$$2\sqrt{\frac{C\log\frac{1}{\delta}}{N_t(a)}} \ge Q(a^*) - Q(a) = \Delta_a$$
 (5)

$$\frac{C \log^{1/2} S}{N_{f}(a)} \ge \frac{\Delta^{2}}{N_{f}(a)} \le \frac{4C \log \frac{1}{\delta}}{\Delta_{a}^{2}} \tag{6}$$

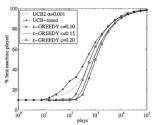
UCB Bandit Regret

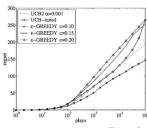
This leads to the UCB1 algorithm

$$a_t = rg \max_{a \in \mathcal{A}} \left[\hat{Q}(a) + \sqrt{rac{2 \log t}{N_t(a)}}
ight]$$

 Theorem: The UCB algorithm achieves logarithmic asymptotic total regret

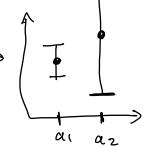
$$\lim_{t\to\infty} L_t \le 8\log t \sum_{a|\Delta_a>0} \frac{1}{\Delta_a}$$





Optional Check Your Understanding

- An alternative would be to always select the arm with the highest lower bound
- Why can this yield linear regret?
- Consider a two arm case for simplicity



Today

- Setting: Introduction to multi-armed bandits & Approach: greedy methods
- Framework: Regret
- Approach: ϵ -greedy methods
- Approach: Optimism under uncertainty
- Note: bandits are a simpler place to see these ideas, but these ideas will extend to MDPs
- Next time: more fast learning