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L11N1 Refresh Your Knowledge.

Importance sampling leverages the Markov assumption to improve
accuracy

1 True
2 False.
3 Not sure

We can use the performance difference lemma / relative policy
performance to: (Select all that are true )

1 Bound the difference in value between two policies using the advantage
function of one policy, and samples from the other policy

2 Approximately bound the difference in value between two policies using
the advantage function of policy 1, importance weights between the
two policies, and samples from policy 1

3 The approximation error in the relative policy performance bounds is
bounded by the KL divergence between the states visited under one
policy, vs the other

4 These ideas are used in PPO
5 Not sure
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L11N1 Refresh Your Knowledge. Answers

Importance sampling leverages the Markov assumption to improve accuracy

1 True
2 False.
3 Not sure
4 False.

We can use the performance difference lemma / relative policy performance to:

(Select all that are true )
1 Bound the difference in value between two policies using the advantage

function of one policy, and samples from the other policy
2 Approximately bound the difference in value between two policies using the

advantage function of policy 1, importance weights between the two policies,
and samples from policy 1

3 The approximation error in the relative policy performance bounds is
bounded by the KL divergence between the states visited under one policy, vs
the other

4 These ideas are used in PPO

Answer: Importance sampling does not use the Markov assumption. For the second
question, 1, 2 and 4 are true. The approximation error is bounded by the average (over
the states visited by one policy) of KL divergence between the two policies.
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Class Structure

Last time: Learning from past data

This time: Data Efficient Reinforcement Learning – Bandits

Next time: Data Efficient Reinforcement Learning
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Computational Efficiency and Sample Efficiency

Computational Efficiency Sample Efficiency
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Evaluation Criteria

How do we evaluate how ”good” an algorithm is?

If converges?

If converges to optimal policy?

How quickly reaches optimal policy?

Mistakes make along the way?

Will introduce different measures to evaluate RL algorithms
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Settings, Frameworks & Approaches

Over next couple lectures will consider 2 settings, multiple
frameworks, and approaches

Settings: Bandits (single decisions), MDPs

Frameworks: evaluation criteria for formally assessing the quality of a
RL algorithm

Approaches: Classes of algorithms for achieving particular evaluation
criteria in a certain set

Note: We will see that some approaches can achieve multiple
frameworks in multiple settings
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Today

Setting: Introduction to multi-armed bandits & Approach: greedy
methods

Framework: Regret

Approach: ϵ-greedy methods

Approach: Optimism under uncertainty

Framework: Bayesian regret

Approach: Probability matching / Thompson sampling
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Multiarmed Bandits

Multi-armed bandit is a tuple of (A,R)

A : known set of m actions (arms)

Ra(r) = P[r | a] is an unknown probability distribution over rewards

At each step t the agent selects an action at ∈ A
The environment generates a reward rt ∼ Rat

Goal: Maximize cumulative reward
∑t

τ=1 rτ
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Toy Example: Ways to Treat Broken Toes

Consider deciding how to best treat patients with broken toes

Imagine have 3 possible options: (1) surgery (2) buddy taping the
broken toe with another toe, (3) do nothing

Outcome measure / reward is binary variable: whether the toe has
healed (+1) or not healed (0) after 6 weeks, as assessed by x-ray

Note: This is a made up example. This is not the actual expected
efficacies of the various treatment options for a broken toe
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L11N2 Check Your Understanding: Bandit Toes

Consider deciding how to best treat patients with broken toes

Imagine have 3 common options: (1) surgery (2) buddy taping the
broken toe with another toe (3) doing nothing

Outcome measure is binary variable: whether the toe has healed (+1)
or not (0) after 6 weeks, as assessed by x-ray

Model as a multi-armed bandit with 3 arms, where each arm is a
Bernoulli variable with an unknown parameter θi
Select all that are true

1 Pulling an arm / taking an action corresponds to whether the toe has
healed or not

2 A multi-armed bandit is a better fit to this problem than a MDP
because treating each patient involves multiple decisions

3 After treating a patient, if θi ̸= 0 and θi ̸= 1 ∀i sometimes a patient’s
toe will heal and sometimes it may not

4 Not sure
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L11N2 Check Your Understanding: Bandit Toes Solution

Consider deciding how to best treat patients with broken toes

Imagine have 3 common options: (1) surgery (2) buddy taping the broken toe with
another toe (3) doing nothing

Outcome measure is binary variable: whether the toe has healed (+1) or not (0)
after 6 weeks, as assessed by x-ray

Model as a multi-armed bandit with 3 arms, where each arm is a Bernoulli variable
with an unknown parameter θi

Select all that are true

1 Pulling an arm / taking an action corresponds to whether the toe has
healed or not

2 A multi-armed bandit is a better fit to this problem than a MDP
because treating each patient involves multiple decisions

3 After treating a patient, if θi ̸= 0 and θi ̸= 1 ∀i sometimes a patient’s
toe will heal and sometimes it may not

4 Not sure
3 is true. Pulling an arm corresponds to treating a patient. A MAB is a better fit
than a MDP, because actions correspond to treating a patient, and the treatment
of one patient does not influence that next patient that comes to be treated.
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Greedy Algorithm

We consider algorithms that estimate Q̂t(a) ≈ Q(a) = E [R(a)]

Estimate the value of each action by Monte-Carlo evaluation

Q̂t(a) =
1

Nt(a)

t−1∑
i=1

ri1(ai = a)

The greedy algorithm selects the action with highest value

a∗t = argmax
a∈A

Q̂t(a)
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Toy Example: Ways to Treat Broken Toes

Imagine true (unknown) Bernoulli reward parameters for each arm
(action) are

surgery: Q(a1) = θ1 = .95
buddy taping: Q(a2) = θ2 = .9
doing nothing: Q(a3) = θ3 = .1
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Toy Example: Ways to Treat Broken Toes, Greedy

Imagine true (unknown) Bernoulli reward parameters for each arm
(action) are

surgery: Q(a1) = θ1 = .95
buddy taping: Q(a2) = θ2 = .9
doing nothing: Q(a3) = θ3 = .1

Greedy
1 Sample each arm once

Take action a1 (r ∼Bernoulli(0.95)), get 0, Q̂(a1) = 0
Take action a2 (r ∼Bernoulli(0.90)), get +1, Q̂(a2) = 1

Take action a3 (r ∼Bernoulli(0.1)), get 0, Q̂(a3) = 0
2 What is the probability of greedy selecting each arm next? Assume ties

are split uniformly.
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Toy Example: Ways to Treat Broken Toes, Greedy

Imagine true (unknown) Bernoulli reward parameters for each arm
(action) are

surgery: Q(a1) = θ1 = .95
buddy taping: Q(a2) = θ2 = .9
doing nothing: Q(a3) = θ3 = .1

Greedy
1 Sample each arm once

Take action a1 (r ∼Bernoulli(0.95)), get 0, Q̂(a1) = 0
Take action a2 (r ∼Bernoulli(0.90)), get +1, Q̂(a2) = 1

Take action a3 (r ∼Bernoulli(0.1)), get 0, Q̂(a3) = 0
2 Will the greedy algorithm ever find the best arm in this case?
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Greedy Algorithm

We consider algorithms that estimate Q̂t(a) ≈ Q(a) = E [R(a)]

Estimate the value of each action by Monte-Carlo evaluation

Q̂t(a) =
1

Nt(a)

T∑
t=1

rt1(at = a)

The greedy algorithm selects the action with highest value

a∗t = argmax
a∈A

Q̂t(a)

Greedy can lock onto suboptimal action, forever
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Today

Setting: Introduction to multi-armed bandits & Approach: greedy
methods

Framework: Regret

Approach: ϵ-greedy methods

Approach: Optimism under uncertainty

Framework: Bayesian regret

Approach: Probability matching / Thompson sampling
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Assessing the Performance of Algorithms

How do we evaluate the quality of a RL (or bandit) algorithm?

So far: computational complexity, convergence, convergence to a
fixed point, & empirical performance performance

Today: introduce a formal measure of how well a RL/bandit
algorithm will do in any environment, compared to optimal
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Regret

Action-value is the mean reward for action a

Q(a) = E[r | a]

Optimal value V ∗

V ∗ = Q(a∗) = max
a∈A

Q(a)

Regret is the opportunity loss for one step

lt = E[V ∗ − Q(at)]
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Regret

Action-value is the mean reward for action a

Q(a) = E[r | a]

Optimal value V ∗

V ∗ = Q(a∗) = max
a∈A

Q(a)

Regret is the opportunity loss for one step

lt = E[V ∗ − Q(at)]

Total Regret is the total opportunity loss

Lt = E[
t∑

τ=1

V ∗ − Q(aτ )]

Maximize cumulative reward ⇐⇒ minimize total regret
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Evaluating Regret

Count Nt(a) is number of times action a has been selected

Gap ∆a is the difference in value between action a and optimal
action a∗, ∆i = V ∗ − Q(ai )

Regret is a function of gaps and counts

Lt = E

[
t∑

τ=1

V ∗ − Q(aτ )

]
=

∑
a∈A

E[Nt(a)](V
∗ − Q(a))

=
∑
a∈A

E[Nt(a)]∆a

A good algorithm ensures small counts for large gap,s but gaps are
not known
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Toy Example: Ways to Treat Broken Toes, Optimism,
Assessing Regret of Greedy

True (unknown) Bernoulli reward parameters for each arm (action)
are

surgery: Q(a1) = θ1 = .95
buddy taping: Q(a2) = θ2 = .9
doing nothing: Q(a3) = θ3 = .1

Greedy
Action Optimal Action Observed Reward Regret

a1 a1 0

a2 a1 1

a3 a1 0

a2 a1 1

a2 a1 0
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Toy Example: Ways to Treat Broken Toes, Optimism,
Assessing Regret of Greedy

True (unknown) Bernoulli reward parameters for each arm (action)
are

surgery: Q(a1) = θ1 = .95
buddy taping: Q(a2) = θ2 = .9
doing nothing: Q(a3) = θ3 = .1

Greedy
Action Optimal Action Observed Reward Regret

a1 a1 0 0

a2 a1 1 0.05

a3 a1 0 0.85

a2 a1 1 0.05

a2 a1 0 0.05

Regret for greedy methods can be linear in the number of decisions
made (timestep)
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Toy Example: Ways to Treat Broken Toes, Optimism,
Assessing Regret of Greedy

Greedy
Action Optimal Action Observed Reward Regret

a1 a1 0 0

a2 a1 1 0.05

a3 a1 0 0.85

a2 a1 1 0.05

a2 a1 0 0.05

Note: in real settings we cannot evaluate the regret because it
requires knowledge of the expected reward of the true best
action.

Instead we can prove an upper bound on the potential regret of an
algorithm in any bandit problem
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Today

Setting: Introduction to multi-armed bandits & Approach: greedy
methods

Framework: Regret

Approach: ϵ-greedy methods

Approach: Optimism under uncertainty

Framework: Bayesian regret

Approach: Probability matching / Thompson sampling
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ϵ-Greedy Algorithm

The ϵ-greedy algorithm proceeds as follows:

With probability 1− ϵ select at = argmaxa∈A Q̂t(a)
With probability ϵ select a random action

Always will be making a sub-optimal decision ϵ fraction of the time

Already used this in prior homeworks
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Toy Example: Ways to Treat Broken Toes, ϵ-Greedy

Imagine true (unknown) Bernoulli reward parameters for each arm
(action) are

surgery: Q(a1) = θ1 = .95
buddy taping: Q(a2) = θ2 = .9
doing nothing: Q(a3) = θ3 = .1

ϵ-greedy
1 Sample each arm once

Take action a1 (r ∼Bernoulli(0.95)), get +1, Q̂(a1) = 1
Take action a2 (r ∼Bernoulli(0.90)), get +1, Q̂(a2) = 1

Take action a3 (r ∼Bernoulli(0.1)), get 0, Q̂(a3) = 0
2 Let ϵ = 0.1
3 What is the probability ϵ-greedy will pull each arm next? Assume ties

are split uniformly.
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Toy Example: Ways to Treat Broken Toes, Optimism,
Assessing Regret of Greedy

True (unknown) Bernoulli reward parameters for each arm (action)
are

surgery: Q(a1) = θ1 = .95
buddy taping: Q(a2) = θ2 = .9
doing nothing: Q(a3) = θ3 = .1

UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
Action Optimal Action Regret

a1 a1

a2 a1

a3 a1

a1 a1

a2 a1

Will ϵ-greedy ever select a3 again? If ϵ is fixed, how many times will
each arm be selected?
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Recall: Bandit Regret

Count Nt(a) is expected number of selections for action a

Gap ∆a is the difference in value between action a and optimal
action a∗, ∆i = V ∗ − Q(ai )

Regret is a function of gaps and counts

Lt = E

[
t∑

τ=1

V ∗ − Q(aτ )

]
=

∑
a∈A

E[Nt(a)](V
∗ − Q(a))

=
∑
a∈A

E[Nt(a)]∆a

A good algorithm ensures small counts for large gap, but gaps are not
known
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L11N3 Check Your Understanding: ϵ-greedy Bandit Regret

Count Nt(a) is expected number of selections for action a

Gap ∆a is the difference in value between action a and optimal
action a∗, ∆i = V ∗ − Q(ai )

Regret is a function of gaps and counts

Lt =
∑
a∈A

E[Nt(a)]∆a

Informally an algorithm has linear regret if it takes a non-optimal
action a constant fraction of the time

Assume ∃a s.t. ∆a > 0

Select all
1 ϵ = 0.1 ϵ-greedy can have linear regret
2 ϵ = 0 ϵ-greedy can have linear regret
3 Not sure
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L11N3 Check Your Understanding: ϵ-greedy Bandit Regret
Answer

Count Nt(a) is expected number of selections for action a

Gap ∆a is the difference in value between action a and optimal
action a∗, ∆i = V ∗ − Q(ai )

Regret is a function of gaps and counts

Lt =
∑
a∈A

E[Nt(a)]∆a

Informally an algorithm has linear regret if it takes a non-optimal
action a constant fraction of the time

Assume ∃a s.t. ∆a > 0
Select all

1 ϵ = 0.1 ϵ-greedy can have linear regret
2 ϵ = 0 ϵ-greedy can have linear regret
3 Not sure

Both can have linear regret.
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”Good”: Sublinear or below regret

Explore forever: have linear total regret

Explore never: have linear total regret

Is it possible to achieve sublinear (in the time steps/number of
decisions made) regret?
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Types of Regret bounds

Problem independent: Bound how regret grows as a function of T ,
the total number of time steps the algorithm operates for

Problem dependent: Bound regret as a function of the number of
times we pull each arm and the gap between the reward for the pulled
arm and a∗
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Lower Bound

Use lower bound to determine how hard this problem is

The performance of any algorithm is determined by similarity between
optimal arm and other arms

Hard problems have similar looking arms with different means

This is described formally by the gap ∆a and the similarity in
distributions DKL(Ra∥Ra∗)

Theorem (Lai and Robbins): Asymptotic total regret is at least
logarithmic in number of steps

lim
t→∞

Lt ≥ log t
∑

a|∆a>0

∆a

DKL(Ra∥Ra∗)

Promising in that lower bound is sublinear
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Today

Setting: Introduction to multi-armed bandits & Approach: greedy
methods

Framework: Regret

Approach: ϵ-greedy methods

Approach: Optimism under uncertainty

Framework: Bayesian regret

Approach: Probability matching / Thompson sampling
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Approach: Optimism in the Face of Uncertainty

Choose actions that that might have a high value

Why?

Two outcomes:
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Approach: Optimism in the Face of Uncertainty

Choose actions that that might have a high value

Why?

Two outcomes:

Getting high reward: if the arm really has a high mean reward
Learn something: if the arm really has a lower mean reward, pulling it
will (in expectation) reduce its average reward and the uncertainty over
its value
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Upper Confidence Bounds

Estimate an upper confidence Ut(a) for each action value, such that
Q(a) ≤ Ut(a) with high probability

This depends on the number of times Nt(a) action a has been selected

Select action maximizing Upper Confidence Bound (UCB)

at = argmax
a∈A

[Ut(a)]
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Hoeffding’s Inequality

Theorem (Hoeffding’s Inequality): Let X1, . . . ,Xn be i.i.d. random
variables in [0, 1], and let X̄n = 1

n

∑n
τ=1 Xτ be the sample mean. Then

P
[
E [X ] > X̄n + u

]
≤ exp(−2nu2)
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UCB Bandit Regret

This leads to the UCB1 algorithm

at = argmax
a∈A

Q̂(a) +

√
2 log 1

δ

Nt(a)


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Toy Example: Ways to Treat Broken Toes, Thompson
Sampling1

True (unknown) parameters for each arm (action) are

surgery: Q(a1) = θ1 = .95
buddy taping: Q(a2) = θ2 = .9
doing nothing: Q(a3) = θ3 = .1

Optimism under uncertainty, UCB1 (Auer, Cesa-Bianchi, Fischer
2002)

1 Sample each arm once

1Note:This is a made up example. This is not the actual expected efficacies of the
various treatment options for a broken toe
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Toy Example: Ways to Treat Broken Toes, Optimism1

True (unknown) parameters for each arm (action) are

surgery: Q(a1) = θ1 = .95
buddy taping: Q(a2) = θ2 = .9
doing nothing: Q(a3) = θ3 = .1

UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
1 Sample each arm once

Take action a1 (r ∼Bernoulli(0.95)), get +1, Q̂(a1) = 1
Take action a2 (r ∼Bernoulli(0.90)), get +1, Q̂(a2) = 1
Take action a3 (r ∼Bernoulli(0.1)), get 0, Q̂(a3) = 0

1Note:This is a made up example. This is not the actual expected efficacies of the
various treatment options for a broken toe
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Toy Example: Ways to Treat Broken Toes, Optimism1

True (unknown) parameters for each arm (action) are

surgery: Q(a1) = θ1 = .95
buddy taping: Q(a2) = θ2 = .9
doing nothing: Q(a3) = θ3 = .1

UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
1 Sample each arm once

Take action a1 (r ∼Bernoulli(0.95)), get +1, Q̂(a1) = 1
Take action a2 (r ∼Bernoulli(0.90)), get +1, Q̂(a2) = 1

Take action a3 (r ∼Bernoulli(0.1)), get 0, Q̂(a3) = 0
2 Set t = 3, Compute upper confidence bound on each action

UCB(a) = Q̂(a) +

√
2 log 1

δ

Nt(a)

1Note:This is a made up example. This is not the actual expected efficacies of the
various treatment options for a broken toe
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Toy Example: Ways to Treat Broken Toes, Optimism1

True (unknown) parameters for each arm (action) are
surgery: Q(a1) = θ1 = .95
buddy taping: Q(a2) = θ2 = .9
doing nothing: Q(a3) = θ3 = .1

UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
1 Sample each arm once

Take action a1 (r ∼Bernoulli(0.95)), get +1, Q̂(a1) = 1
Take action a2 (r ∼Bernoulli(0.90)), get +1, Q̂(a2) = 1

Take action a3 (r ∼Bernoulli(0.1)), get 0, Q̂(a3) = 0
2 Set t = 3, Compute upper confidence bound on each action

UCB(a) = Q̂(a) +

√
2 log 1

δ

Nt(a)

3 t = 3, Select action at = argmaxa UCB(a),
4 Observe reward 1
5 Compute upper confidence bound on each action

1Note:This is a made up example. This is not the actual expected efficacies of the
various treatment options for a broken toe
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Toy Example: Ways to Treat Broken Toes, Optimism1

True (unknown) parameters for each arm (action) are
surgery: Q(a1) = θ1 = .95
buddy taping: Q(a2) = θ2 = .9
doing nothing: Q(a3) = θ3 = .1

UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
1 Sample each arm once

Take action a1 (r ∼Bernoulli(0.95)), get +1, Q̂(a1) = 1
Take action a2 (r ∼Bernoulli(0.90)), get +1, Q̂(a2) = 1

Take action a3 (r ∼Bernoulli(0.1)), get 0, Q̂(a3) = 0
2 Set t = 3, Compute upper confidence bound on each action

UCB(a) = Q̂(a) +

√
2 log 1

δ

Nt(a)

3 t = t + 1, Select action at = argmaxa UCB(a),
4 Observe reward 1
5 Compute upper confidence bound on each action

1Note:This is a made up example. This is not the actual expected efficacies of the
various treatment options for a broken toe
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Toy Example: Ways to Treat Broken Toes, Optimism,
Assessing Regret

True (unknown) parameters for each arm (action) are

surgery: Q(a1) = θ1 = .95
buddy taping: Q(a2) = θ2 = .9
doing nothing: Q(a3) = θ3 = .1

UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
Action Optimal Action Regret

a1 a1

a2 a1

a3 a1

a1 a1

a2 a1
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Confidence Level δ

Subtle

If there are a fixed number of time steps T for the problem setting, can set δ = δ
T

Union bound: P(∪Ei ) ≤
∑

i P(Ei )

Often want to do this in other settings
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Regret Bound for UCB Multi-armed Bandit Sketch

Any sub-optimal arm a ̸= a∗ is pulled by UCB at most ENT (a) ≤ C ′ log 1
δ

∆2
a

+ π2

3
+1.

So the regret of UCB is bounded by
∑

a ∆aENT (a) ≤
∑

a C
′ log T

∆a
+ |A|(π

2

3
+ 1).

(Arm means ∈ [0, 1])

P

|Q(a)− Q̂t(a)| ≥

√
Clog 1

δ

Nt(a)

 ≤ δ

T
(1)
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Regret Bound for UCB Multi-armed Bandit Sketch

Any sub-optimal arm a ̸= a∗ is pulled by UCB at most ENT (a) ≤ C ′ log 1
δ

∆2
a

+ π2

3
+1.

So the regret of UCB is bounded by
∑

a ∆aENT (a) ≤
∑

a C
′ log T

∆a
+ |A|(π

2

3
+ 1).

(Arm means ∈ [0, 1])

Q(a)−

√
Clog 1

δ

Nt(a)
≤ Q̂t(a) ≤ Q(a) +

√
Clog 1

δ

Nt(a)
(2)

Q̂t(a) +

√
Clog 1

δ

Nt(a)
≥ Q̂t(a

∗) +

√
Clog 1

δ

Nt(a∗)
≥ Q(a∗) (3)

Q(a) + 2

√
Clog 1

δ

Nt(a)
≥ Q(a∗) (4)

2

√
C log 1

δ

Nt(a)
≥ Q(a∗)− Q(a) = ∆a (5)

Nt(a) ≤
4C log 1

δ

∆2
a

(6)
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UCB Bandit Regret

This leads to the UCB1 algorithm

at = argmax
a∈A

[
Q̂(a) +

√
2 log t

Nt(a)

]
Theorem: The UCB algorithm achieves logarithmic asymptotic total
regret

lim
t→∞

Lt ≤ 8 log t
∑

a|∆a>0

1

∆a
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Optional Check Your Understanding

An alternative would be to always select the arm with the highest
lower bound

Why can this yield linear regret?

Consider a two arm case for simplicity
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Today

Setting: Introduction to multi-armed bandits & Approach: greedy
methods

Framework: Regret

Approach: ϵ-greedy methods

Approach: Optimism under uncertainty

Note: bandits are a simpler place to see these ideas, but these ideas
will extend to MDPs

Next time: more fast learning
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