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IMDb Sentiment Generation

1.0 - &
0.9 ” o® o .....0...
' ™ ...o.o" -
[&]
0.8 .O. ® ® ®
PP
o ¢ o o o...'..
@
E 0.7 1 ‘.. . ® i ® 2
= ' o e @ ©Opo
Q ° .'o o 0‘. ®e = '” o -
o 0.6 .‘ o0 & " . ™ o° 0 oo *° o
% °
054 ° "f ¢
. » DPO (Ours) e PPO-GT (Our impl.)
e Unlikelihood e PPO-GT (TRL)
044 e PPO (Ourimpl.) e Preferred-FT
0.0 25 5.0 75 10.0 12.5 15.0 17.5 20.0

KL(rtg || Trer)

Stanford University

w

Generate positive IMDB reviews from

GPT2-XL

Use pre-trained sentiment classifier as
Gold RM

Create preferences based on Gold RM
Optimize with PPO and DPO



Models Trained With DPO

|ajalalol

|ajalalalo

L I leing o0 O eeeRae « Aop Fies 0 ooy @ 1, @
& Open LLM Leaderboard
[ ranic
8 Submi s modetfor & onthe "Submit” page! the preat Elguther 14 “About”
poge!

2 LLMBenchmark  of Metrics through time @2 About o Submit

Q5o ¢ yorat meaded (1eparate wntiphe queries wit s prews ENTIR Maded types.

1] -] w @O Olase @
Sebect cobumed 10 show

[—

G mopl @ GQrenseny @ wiv B Todih B wesgande
Qreone Botos B Qar Qon 6

8 s Type Achiectire Precision Marped Wb Licemse
Model 0es (m s of v armeten]
WPaesre (8] LA d Modet sy
1 15 a3 @9 - a5 “0 0.

models.
T o4 model a Average U 4 ARC & D U . 4 Gamsx .
B wkai/Tordus 2 p Pa 74,66 7338 85.56 “wsz 86.66 7.7
B blgit/UNA-TheBeagle-7h-vi 2 p(O (. ‘NA) 72.87 73,04 88 63,48 69.85 82.16 66.72
B agilla/gistilaseled-Faxcoro1d-78-slexn pPo 73.63 7073 87.47 522 651 82.08 71.19
B slaonce/NeusalMassoredd-78 & p 0 ‘ 73.57 71.42  87.59 e840 6564 81.22 20.74
@ abicesa/Nexohistus-78 & I“U"C (.f DFG mo "’) ns 70.82 7.86 PRI TS 8485 20.36
B Muzonsvo/oesronove-TH-v.2 B D Po 7.4 7306 88.32 438 ne2 00,66 62.47
B arpillasdistilabeled-Mazcozeld-7B-slero-full = p'o 7.4 79,65  87.55 “»n wa 82 79,66
B culttiMistrallnie-vi D 73.39 72.27 ©8.33 628 M7 80.98 62,77
B rvasarOsingCatereillax & Dpo 73.33 72.53 88.34 65.26  70.9% 80.66 62.24
- Newrcosro/oeurocovs T8@.3 2 pPo 73.29 72.7  88.2¢ %1 .35 80.9 61,41
B ot = Vo ife b preb pro, given 7347 22,55 884 s N7 8.3 60,73
*  senix-faes/SaniineT-va "’,e ("'"- Dr‘) na .55 17.04 CEEENSE 8.69 n.72
-

Saniidateski/ielantos-0P0-78 & DPO .09 7.8 87.22 ot 67.77 59,02 68.46
-



Large-Scale DPO Training

Stanford University



Large-Scale DPO Training
Mistral

4 Instruction Fine-tuning

We train Mixtral — Instruct using supervised fine-tuning (SFT) on an instruction dataset followed by
Direct Preference Optimization (DPO) [25] on a paired feedback dataset. Mixtral — Instruct reaches a
score of 8.30 on MT-Bench [33] (see Table 2), making it the best open-weights model as of December
2023. Independent human evaluation conducted by LMSys is reported in Figure 6° and shows that
Mixtral — Instruct outperforms GPT-3.5-Turbo, Gemini Pro, Claude-2.1, and Llama 2 70B chat.

Model . Arena Elo rating + ./ MT-bench (score) + License .
GPT-4-Tuxrbo 1243 9.32 Proprietary

GPT-4-0314 1192 8.96 Proprietary

GPT-4-0613 1158 9.18 Proprietary

Claude-1 1149 7.9 Proprietary

Claude-2.9 1131 8.06 Proprietary
[Mixtral-Ex7b~Instxuctvv0A1 1121 8.3 Apache 2.0 }
Claude-2.1 1117 8.18 Proprietary
GPT-3.5-Turbo-0613 1117 8.39 Proprietary

Gemini Pro 1111 Proprietary
Claude-Instant-1 1110 7.85 Proprietary
Tuly-2-PPO-708 1110 7.89 AI2 ImpACT Low-risk
Yi-34B-Chat 1110 Yi License
GPT-3.5:Turbo-0314 1105 7.94 Proprietary
Llama-2-76b-chat 1077 6.86 Llama 2 Community

Figure 6: LMSys Leaderboard. (Screenshot from Dec 22, 2023) Mixtral 8x7B Instruct v0.1 achieves an Arena
Elo rating of 1121 outperforming Claude-2.1 (1117), all versions of GPT-3.5-Turbo (1117 best), Gemini Pro
(1111), and Llama-2-70b-chat (1077). Mixtral is currently the best open-weights model by a large margin.
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Yi-34B-Chat 1110 Yi License
GPT-3.5-Turbo-0314 1105 7.94 Proprietary
Llama-2-70b-chat 1077 6.86 Llama 2 Community

Figure 6: LMSys Leaderboard. (Screenshot from Dec 22, 2023) Mixtral 8x7B Instruct v0.1 achieves an Arena
Elo rating of 1121 outperforming Claude-2.1 (1117), all versions of GPT-3.5-Turbo (1117 best), Gemini Pro
(1111), and Llama-2-70b-chat (1077). Mixtral is currently the best open-weights model by a large margin.

Stanford University

LLaMa3

Instruction fine-tuning

To fully unlock the potential of our pretrained models in chat use cases, we innovated on our
approach to instruction-tuning as well. Our approach to post-training is a combination of
supervised fine-tuning (SFT), rejection sampling, proximal policy optimization (PPO), and
direct preference optimization (DPO). The quality of the prompts that are used in SFT and
the preference rankings that are used in PPO and DPO has an outsized influence on the
performance of aligned models. Some of our biggest improvements in model quality came
from carefully curating this data and performing multiple rounds of quality assurance on
annotations provided by human annotators.

Learning from preference rankings via PPO and m also greatly improved the performance
of Llama 3 on reasoning and coding tasks. We found that if you ask a model a reasoning
question that it struggles to answer, the model will sometimes produce the right reasoning
trace: The model knows how to produce the right answer, but it does not know how to select
it. Training on preference rankings enables the model to learn how to select it.
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DPO vs PPO: Empirics

Win Rates 1. DPO is trained only on the Reddit TL;DR
@ DPO W PPO feedback data.
2. PPO uses a trained reward function and
additional prompts for RL training.
3. We evaluate the trained policies on OOD
CNN/DailyMail news summarization task.

TL;DR (t=0)

TLDR (t=0.25)

CNN/DailyMail (t=0)

CNN/DailyMail
(t=0.25)
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DPO fits an implicit reward function:

1. Is the DPO implicit reward as good as the
explicit one?

2. Does using a weaker optimizer, such as PPO
provide a better solution (regularization).
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DPO vs PPO: Reward Function Quality - Chat

RewardBench: Evaluating Reward Models
Evaluating the capabilities, safety, and pitfalls of reward models
Code | Eval. Dataset | Prior Test Sets | Results | Paper | Total models: 74

¥ RewardBench Leaderboard @, RewardBench - Detailed Prior Test Sets ~ About Dataset Viewer

| Search (delimit with Seq. Classifiers DPO Custom Classifiers Generative AI2 Experiments
i
4 Model 4 Model Type 4 Score 4+ Chat + Chat Haxrd v Safety 4 Reasoning + Prior Sets (0.5 weight) » =
24 DPO 69.76 57.3 70.2 76.3 89.6 41.2
26  Qwen/Qwenl.5-7B-Chat DPO 68.75 53.6 69.1 74.8 90.4 42.9
12 ypstage/SOLAR-10.7B-Instruct-v1.9 DPO 73.99 81.6 68.6 85.5 725 49.5
29 DPO 68.21 62.3 66 72 85.5 42.3
3 Seq. Classifier 81.55 98 65.6 81.2 86.3 71.7
1 Custom Classifier 85.69 94.7 65.1 90.3 98.2 74.6
2 Seq. Classifier 83.62 99.4 65.1 87.8 86.4 74.9
11 DPO 74.74 95 64 73.4 78.7 50.3
33 DPO 67.54 72.9 63.2 67.8 77.4 45.4
49 DPO 55.01 35.5 62.9 66.1 59.8 46.3
17  HuggingFaceH4/zephyr-7b-beta DPO 71.77 95.3 62.7 61 279 52.2
48 Quen/Qwenl.5:4B DPO 56.14 38.8 62.7 61.8 66.9 44.7
13 HuggingFaceH4/zephyr-7h-alpha DPO 73.42 91.6 62.5 74.3 75.1 53.5
RewardBench: Evaluating Reward Models for Language Modeling, Lambert et. al. 863 8343 58:7
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DPO vs PPO: Reward Function Quality - Reasoning

RewardBench: Evaluating Reward Models
Evaluating the capabilities, safety, and pitfalls of reward models m
Code | Eval. Dataset | Prior Test Sets | Results | Paper | Total models: 74

¥ RewardBench Leaderboard 4 RewardBench - Detailed Prior Test Sets ~ About  Dataset Viewer

M delimit with Seq. Classifiers DPO Custom Classifiers Generative AI2 Experiments
Y
4 Model 4 Model Type 4 Score » Chat + Chat Haxrd + Safety 4 Reasoning v Prior Sets (0.5 weight) « 7
1 Custom Classifier 85.69 94.7 65.1 90.3 98.2 74.6
26 DPO 68.75 53.6 69.1 74.8 90.4 42.9
24 DPO 69.76 57.3 70.2 76.3 89.6 41.2
7 DPO 77.42 96.6 55.5 82.6 89.4 48.4
19 DPO F2125 93.9 55 61.5 88.9 44.9
22 DPO 71.19 89.4 57.7 58 88.5 53.5
4 Seq. Classifier 81.44 96.9 57.2 88.2 88.5 71.4
2 Seq. Classifier 83.62 99.4 65.1 87.8 86.4 74.9
3 Seq. Classifier 81.55 98 65.6 81.2 86.3 727
29 DPO 68.21 62.3 66 72 85.5 42.3
15 DPO 73.35 91.1 61 66.3 83.9 55.7
36 DPO 66.25 89.1 49.3 52.5 82.3 49.6
16  HuggingFaceH4/starchat2-15b-v0.1 DPO 72.08 93.9 555 65.8 81.6 55:0:

RewardBench: Evaluating Reward Models for Language Modeling, Lambert et. al. . ki 503
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DPO vs PPO: Reward Hacking
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DPO vs PPO: Reward Hacking

Real o >  Real | > Proxy RM
apeller Comparisons

Y

Proxy RM

Sy nthetic Real Gold RM Synthetic

Comparisons Comparisons

Scaling Laws for Reward Model Overoptimization, Gao et. al.
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DPO vs PPO: Reward Hacking
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Scaling Laws for Reward Model Overoptimization, Gao et. al.
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DPO vs PPO: Reward Hacking
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GPT4 winrate
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Conclusion

1. DPO optimizes the same classical RLHF objective
2. |Is simple and computationally cheap
3. Like classical RLHF it is prone to hacking
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Next Steps

1. How to optimize DPO robustly (prevent reward hacking)
2. Online fine-tuning (preference elicitation)

3. RLHF across modalities
a. Vision-Language Models
b. Diffusion Models
i. Text-to-image
i. Text-to-video
ii. Speech and music
c. Protein and molecule generation
d. Robot Safety

4. Multi-turn interactions
5. Agents, tool use, etc..

Stanford University



DPO for Aligning Modalities in VLMs
Language Response Xa...

Language Model f¢

O a0 aae
Projection W Z. H, fH

Vision Encoder

X, Image X4 Language Instruction

Figure 1: LLaVA network architecture.

Visual Instruction Tuning, Liu et. al.
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DPO for Aligning Modalities in VLMs

a. Hallucinating Image Captioning Tasks

Prompt: Describe this image.

Prompt: Is there a person standing next
to water in the image?

Preferred response

The image shows two men in a small boat on the water. One
man is standing near the center of the boat, while the other is
seated and rowing. The man wearing a headscarf is watching
television, which is placed on the boat, adding an interesting

element to the scene. There are a few other boats visible in the |

background, indicating that they might be in a city river or a
busy waterway. The presence of the television in the boat
adds a unique touch to their leisurely activity.

Dis-preferred response

The image shows two men in a small boat on the water,
equipped with fishing poles (hallucinatory entity) for their
leisurely activity. One man is sitting near the center of the
boat (entity attributes), fishing with his fishing pole
(hallucinatory entity) , while the other is seated and rowing.
They are both watching a television (logical relationship),
which is placed on the boat, adding an interesting element to
the scene. There are a few other boats visible in the
background, indicating that they might be in a city river or a
busy waterway. The presence of the fishing poles and the
television in the boat adds a unique touch to their relaxing day
on the water.

b. Hallucinating Reasoning Tasks

Preferred response

Reasoning: The picture depicts a sunset scene in which I see
a lake and open sky.

Answer: Yes, there is a person standing next to some blue
water in the image.

Dis-preferred response

Reasoning: The image depicts a sunset scene with a man
standing on an open ice field (false reasoning, hallucinatory
entities) with what appears to be a few buildings visible in
the distance.

Answer: No, the person is standing next to a vast snowy
field, not water (incorrect answer).

Aligning Modalities in Vision Large Language Models via Preference Fine-tuning, Zhou et. al.
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DPO for Aligning Modalities in VLMs

Prompt: Describe this image. Ours LLaVA 1.5

The image shows a man sitting down and brushing
the teeth of a cat with his fingers. The cat appears
to be reacting to or accepting the tooth brushing
process. The man and the cat are the main focus of
the scene.

The setting appears to be indoors, as there is a
person visible in the image along with the close
interaction between the man and the cat. The cat is
located near the center of the scene, while the man
is positioned on the left side of the image.

The image features a person brushing an open mouth
cat's teeth with a small electric toothbrush. They are
in a kitchen setting, focused on maintaining good oral
hygiene. An oven is visible in the background, adding
to the cozy kitchen environment.

There is also a tie in the scene, likely placed on or
hung up nearby, possibly indicating that someone's
clothing is being attended to or is hanging out to be
worn.

Visual tokens

Textual tokens

Aligning Modalities in Vision Large Language Models via Preference Fine-tuning, Zhou et. al.
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DPO for Aligning Modalities in VLMs

SciQA-IMG

MMHal - MMBench
67.5

25

POPE 86.25 82.5 78.75 N/A 27.2529!5| \31.75 MM-Vet

LLaVA-1.5
+ Vifeedback

. 71.25 + Human-Preference
100 - CHAIRI LLavA-Bench + RLHF-V
POVID (ours)
100 - CHAIRS

Aligning Modalities in Vision Large Language Models via Preference Fine-tuning, Zhou et. al.
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DPO for Diffusion

“Jedi duck holding a lightsaber”

“Two-faced biomechanical cyborg...” “A bird with 8 spider legs”

Diffusion Model Alignment Using Direct Preference Optimization, Wallace et. al.
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DPO for Diffusion

L(0) < ~Ey v et log o (~BTw(A) ( [l — ea@, )2 — € — ewr(@®, DI (€} — ea(@d, )2 — € — ews(ah, 1))

v

Ve
reward of preferred image reward of dispreferred image

“Dlffuse along the preferred image chain and
away from the dispreferred image chain”

Diffusion Model Alignment Using Direct Preference Optimization, Wallace et. al.
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DPO for Diffusion

; Partiprompts: General Preference HPS: General Preference
=
2}l Partiprompts: Visual Appeal HPS: Visual Appeal
E Partiprompts: Prompt Alignment A HPS: Prompt Alignment
=
0 20 40 60 80 100 0 20 40 60 80 100
A smiling beautiful sorceress
A monk in an orange robe by around wearing a high necked blue suit Concept art of a mythical sk B 0 SO g
% 3 5 G y 4 & & Y 2 3 P s p yi ¥ A galaxy-colored figurine is floating
window in a spaceship in dramatic surrounded by swirling rainbow alligator with wings, nature i
over the sea at sunset, photorealistic

¥}

lighting aurora, hyper-realistic, ci ic dc y
post-production

SDXL

DPO-SDXL

Diffusion Model Alignment Using Direct Preference Optimization, Wallace et. al.
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DPO for Diffusion

PartiPrompts (General Preference)

DPO-SDXL

20

DPO-SDXL

Diffusion Model Alignment Using Direct Preference Optimization, Wallace et. al.
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DPO for Diffusion

Win %

Diffusion Model Alignment Using Direct Preference Optimization, Wallace et. al.
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DPO and Control

Standard Two-Phase RLHF | Contrastive Preference Learning
; .-» P
- - RL
¢ : Algorithm

& . o~ .-> Za_logna(a{lsc‘) ----é..
tqs ' e

mg(als) Regret-based Preferences Contrastive Learning

Phase 2 eZ,+ A(stat)
Pylot>=07]=

Phase 1
Reward Learning
(o]

RL L’CPL = —lE[logPlogne[a+ > 0—]]

E A* (St ﬂ.t) eza— A*(sg.ap)

Contrastive Preference Learning: Learning from Human Feedback without RL, Hejna et. al.
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DPO and Control

‘ -
d d d

d

Bin Picking Button Press Door Open  Drawer Open  Plate Slide Sweep Into
L2 LSFT__ 669:21  216+16  633:19 626224 41635 519+a
s é P-IQL 70.6 £ 4.1 16.2 +54 69.0 £6.2 71.1 £23 496 +34 60.6 3.6
= v CPL 80.0 + 25 24.5 +2.1 80.0 +6.8 83.6 + 1.6 61.1 £3.0 70.4 +3.0
o 2 I SFT 74.7 £48 20.8 £24 62.9 +23 64.5 £7.6 44.5 £32 52525
é‘) a2 P-IQL 83.7 £ 04 22.1 £08 68.0 £4.6 76.0 £4.6 512 +24 67.7 44
-~
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Contrastive Preference Learning: Learning from Human Feedback without RL, Hejna et. al.
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DPO and Control
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DPO and Control
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Contrastive Preference Learning: Learning from Human Feedback without RL, Hejna et. al.
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Where do things go wrong?

0.5

Scatter Plot of Average Length vs. Win Rate
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Where do things go wrong?
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Disentangling Length from Quality in Direct Preference Optimization, Park et. al.
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Where do things go wrong: Regularization

Length-winrate frontier for HH
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Where do things go wrong?
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Reward of preferred response Reward of dispreferred response

Disentangling Length from Quality in Direct Preference Optimization, Park et. al.
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Where do things go wrong: OOD Robustness

HH OOD reward extrapolation for =0.1, a=0.0
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TLDR OOD reward extrapolation for =0.1, a=0.0
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