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RLHF: Learning a policy that optimizes the reward
Now we have a reward model       that represents* goodness according to humans

Now, learn a policy       achieving high reward while staying close to original model

Want high reward… …but keep KL to original model small!Sample from policy



Secrets of RLHF in Large Language Models Part I: PPO, Zheng et.al. 2023
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RLHF Objective
any reward function

Closed-form 
Optimal Policy

with

(get high reward, stay close 
to reference model)

(write optimal policy as 
function of reward function; 

from prior work)

Rearrange
(write any reward function as 

function of optimal policy)

Ratio is positive if policy likes response 
more than reference model, negative if 

policy likes response less than ref. model

Note intractable sum over possible 
responses; can’t immediately use this
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Direct Preference Optimization: Putting it together
A loss function on 
reward functions

A transformation 
between reward 
functions and policies

+

Reward of preferred response Reward of dispreferred response

Derived from the Bradley-Terry model of human preferences:
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How Efficiently does DPO Trade off Reward & KL?

1. Generate positive IMDB reviews from 
GPT2-XL

2. Use pre-trained sentiment classifier as 
Gold RM

3. Create preferences based on Gold RM
4. Optimize with PPO and DPO
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DPO vs PPO: Empirics

1. DPO is trained only on the Reddit TL;DR 
feedback data.

2. PPO uses a trained reward function and 
additional prompts for RL training.

3. We evaluate the trained policies on OOD 
CNN/DailyMail news summarization task.
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Conclusion

1. DPO optimizes the same classical RLHF objective

2. Is simple and computationally cheap

3. Like classical RLHF it is prone to hacking



Next Steps

1. How to optimize DPO robustly (prevent reward hacking)
2. Online fine-tuning (preference elicitation)
3. RLHF across modalities

a. Vision-Language Models
b. Diffusion Models

i. Text-to-image
ii. Text-to-video
iii. Speech and music

c. Protein and molecule generation
d. Robot Safety

4. Multi-turn interactions
5. Agents, tool use, etc..
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DPO and Control

Contrastive Preference Learning: Learning from Human Feedback without RL, Hejna et. al.

CPL
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Disentangling Length from Quality in Direct Preference Optimization, Park et. al.

Reward of preferred response Reward of dispreferred response



Where do things go wrong: OOD Robustness 

Disentangling Length from Quality in Direct Preference Optimization, Park et. al.


