Reward Backpropagation Prioritized Experience Replay

Yangxin Zhong! Borui Wang'! Yuanfang Wang'

Abstract

Sample efficiency is an important topic in rein-
forcement learning. With limited data and ex-
perience, how can we converge to a good policy
more quickly? In this paper, we propose a new
experience replay method called Reward Back-
propagation, which gives higher minibatch sam-
pling priority to those (s, a,r, s’) with r # 0 and
then propagate the priority backward to its previ-
ous transition once it has been sampled and so
on. Experiments show that DQN model com-
bined with our method converges 1.5x faster than
vanilla DQN and also has higher performance.

1. Introduction

Reinforcement learning is a suitable framework for sequen-
tial decision making problem, where an agent explores the
environment by making actions, observes a stream of ex-
perience with rewards and learn to make good decisions
from the observation. One of the most popular reinforce-
ment learning algorithms is Q learning. It requires a large
amount of experience to estimate the value of taking a spe-
cific action under certain state, which is called Q value. By
comparing Q values of different actions in the same state,
the agent learns the optimal policy.

However, many real world problems have very large state
spaces along with sparse and delayed rewards. In this case
we don’t usually have enough effective experience to get
accurate Q value estimates, which makes even simple tasks
might need days for training. Moreover, exploration and
getting experience are pretty expensive in some real world
problems such as robot and vehicle control. As a result,
how to use and reuse the limited samples of experience to
learn better policy in a short time becomes an important
topic, which is called sample efficiency.

In this paper, we propose a new method called Reward

IStanford University, Palo Alto, California, USA. Cor-
respondence to: Yangxin Zhong <yangxin@stanford.edu>,
Borui Wang <wbr@stanford.edu>, Yuanfang Wang
<yolanda.wang @stanford.edu>.

Source code link: https://github.com/yolandawww/
DQON-cs234.git

Backpropagation Prioritized Experience Replay that aims
to improve the sample efficiency of modern bootstrapping
reinforcement learning algorithms such as Deep-Q Net-
works (DQN) (Mnih et al., 2015). The main idea of this
approach is that in order to converge to accurate estimate
of the Q values more quickly with limited experience, we
should try to use those (s,a,r,s’) transitions with non-
zero reward to update the Q estimate model first, followed
by using their predecessor transitions and so on by giving
higher sampling priority from replay meormy. The moti-
vation behind this idea is that non-zero reward transitions
usually have more significant meanings than zero reward
ones. They indicate short-term success or failure of action
sequence in the near past. If we propagate the stimulus of
non-zero reward backward to the actions before it, we can
provide more accurate target Q values for those actions and
thus update more efficiently.

For evaluation, we implement a DQN with Reward Back-
propagation Experience Replay to learn to play the Atari
game of Pong, Breakout and Ice Hockey. We then com-
pare our method with the vanilla DQN baseline in terms
of convergence speed and final performance. Experiments
show that our method of adding Reward Backpropagation
Experience Replay improve the baseline in converging 1.5x
faster than vanilla DQN and also performing better at the
end of 20-epoch training.

2. Related Work

In Q learning, we need to estimate Q values of every state-
action pair, which could become a problem if we have large
state and action spaces. A typical way to deal with this is to
use function approximation, which extracts features from
state-action pair and use them to approximate Q value by a
model such as linear function.

Recently, the approach called deep-Q network (DQN),
which uses the powerful deep convolutional neural network
as function approximation model, has achieved promising
results (Mnih et al., 2015). The model was trained and
tested within the Atari 2600 computer games environment.
It takes preprocessed gray scale images from game as states
and inputs for convolutional neural network and approxi-
mates the Q values for actions using the neural network.
(Van Hasselt et al., 2016) improved the DQN method by

https://github.com/yolandawww/DQN-cs234.git
https://github.com/yolandawww/DQN-cs234.git

Reward Backpropagation Prioritized Experience Replay

changing the learning target of neural network with the idea
of Double Q-learning. This reduces the problem of over-
estimation suffered by vanilla DQN. Both the Q-learning
method with deep neural network can solve the problem
of large state and action spaces, but still suffer from low
training efficiency resulting from sparse and delayed re-
wards. To help address this, based on the DQN model,
the DQ(AM)N model (Mousavi et al., 2017) further added
the Q(\) method (Watkins, 1989), which uses weighted av-
erage of Q values of all n-step backups to improve learn-
ing efficiency. However, in the training process, in order
to implement multiple-step backups, the algorithm needs
to sample a sequence of continuous transitions from the
replay memory instead of independent transitions in each
update step. This may cause the sample correlated issue
mentioned in original DQN paper. Prioritized experience
replay (PER) is another state-of-art in sample efficiency
topic (Schaul et al., 2016). Since this work is highly re-
lated to ours, it will be discussed in details in section 3.2.

3. Approach
3.1. Background of Q Learning

In a standard Q learning algorithm, we maintain a Q value
estimate for every (s, a) pair (we can either use a table to
store Q or use any function to approximate it). Once we get
an experience (s, a, s, r), which means we took action a in
state s and get reward r from environment and then transit
to successor state s, we can create a new sample estimation
for Q:

Qsamp(s,a) =r+V(s) =r+ 7 max Q(s',ad"), (1)

where is the discount factor. Then, we update estimate of
Q(s,a) in a running average way:

Q(s,a) :== (1 —a)Q(s,a) + aQsamp(s, a),

where « is called learning rate, because we can rewrite
above formula into:

Q(Sv CL) = Q(57 a) + O‘[Qsamp(sa CL) - Q(57 a)])

Here we can see Qsamp (s, a) as target and [Qsamp (s, a) —
Q(s,a)] as the error between sample and our former esti-
mate. The state-of-art DQN model (Mnih et al., 2015) is
a Q learning algorithm using a deep neural network as the
approximate function of (s, a). To improve sample effi-
ciency, DQN uses a replay memory to store the old transi-
tions and reuse them by uniformly sampling a minibatch of
transitions for update at each learning step.

3.2. Prioritized Experience Replay

To further improve the sample efficiency of DQN, Priori-
tized experience replay (PER) assigns each transition a pri-
ority weight. While DQN uses a uniform sampling method

for experience replay, PER samples each transition with a
probability proportional to its priority weight, which is a
function of the error between target Q and estimate Q value
in last update. In this way, PER can replay important transi-
tions more frequently, and therefore learn more efficiently.

However, using error as priority weight may not be a good
solution in a sparse reward environment. Suppose in av-
erage, we have only one non-zero reward transition every
one hundred zero reward transitions. Although the error of
each of these zero reward transitions may be small, their
sum can be very large, which makes our model always use
zero reward transitions to update, which is bad for learning
since zero rewards tell us nothing about whether the agent
is acting good or bad.

Our method also uses a priority weight for each transition
in the replay memory and sample them with a probability
proportional to their weights. Different from PER which
focuses directly in the training stage for improvement by
using the error as sampling priority, we instead look more
into the key issue of sparse reward environment, the large
proportion of zero rewards. To raise the impact of those
non-zero reward in learning process, we give the transitions
with non-zero rewards higher priority weights in the very
beginning, and once they are sampled, this higher priority
will be propagated backward step by step to the previous
zero reward transitions.

3.3. Motivation of Our Model

From equation (2), We find that the update rule of Q-value
estimate depends heavily on target, whose definition is
shown in equation (1). Basically we have two parts in def-
inition of Qsamp(s,a): 1) ymax, Q(s',a’), we use this
part to propagate the Q value estimate from successor state
s’ to current state s, and this can be seen as self-correction
to make Q value estimate of current state consistent with
successor state; 2) r, we use this part to propagate the
impact of the reward “stimulus” from environment the Q
value estimate in model.

Now suppose in the replay memory we have two adja-
cent transitions (S¢—1,ar—1, 71, S¢) and (8¢, ag, r4, St41),
if the first transition is used for update before the second
transition, then the reward stimulus r; won’t propagate to
s¢—1 in the first update. On the contrary, if we use sec-
ond transition first, then impact of r; can propagate to s;
in the first update and then to s;_; in the second update,
which is more efficient. Also, in the backward order, we
can make Q value estimates of all the three states consistent
by self-correction mentioned above, which can’t be done in
the forward order.

Moreover, in a sparse reward environment, usually a reward
can only be achieved after a sequence of actions and it is

Reward Backpropagation Prioritized Experience Replay

Algorithm 1 DQN with Reward Backpropagation Prioritized Experience Replay

Parameters: non-zero reward priority 3 >> 1, priority decay rate A, learning rate «, minibatch size n.

Initialize DQN parameter 6 with random values
Initialize replay memory M with capacity NV
for each episode do
Initialize state s
for each step in the episode do
choose an action a according to e-greedy policy
take action a, observe reward r and next state s’
if s/ = terminal or r # 0 then
p B
else
p+1
end if
store transition (s, a, r, s’) with priority p in M
s+ ¢

b < sample a minibatch of transitions in M with probabilities proportional to their priority p

e+ 0
for each transition (s;, a;, r;, s;) with p; in b do
if s; = terminal then
Q' +0
else
Q' < max, Q(s},a;07)
end if
et et [ri +Q = Q(si, a3 0)] 2H)
(s4,a5,75,5%),pj < Predecessor((s;, ai,ri, s})]
if s, # terminal and r; = 0 and p; > 1 then
update p; < p; in M
else if p; > 1 then

(Sks @k, Tk, S},), Pi < the first transition after (s;, a;, 7, s;) with s), = terminal or rj, # 0

update py < max(Ap;, 1) in M
end if
update p; <— 1in M
end for
0 0+a- =
end for
end for

an indicator of success or failure of the action sequence.
Thus, updating backward from the states with rewards can
encode the short term effect of those actions into their Q
value estimates smoothly.

Inspired by the two insights above, we propose that we
should set high priority to use non-zero reward transitions
for update first and then their previous transitions and so
on. Since in this way, the stimulus of a reward can be prop-
agated backward efficiently to a sequence of actions just
before it. We call this strategy Reward Backpropagation.

3.4. Reward Backpropagation PER

In the case of DQN with experience replay, our method is
shown in Algorithm 1. Compared with vanilla DQN algo-

rithm, we have two extra parameters: $ and A, which are
priority weight for non-zero reward and priority decay rate
when we start a new round of propagation. In our method,
each transition observed from environment will be stored
in replay memory along with a priority weight p. If the ob-
served transition is terminal or has a non-zero reward, then
p = [> 1; otherwise, p = 1. When we sample a mini-
batch of transitions in every update step, each transition in
replay memory will be chosen with a probability propor-
tional to its priority weight.

In our algorithm, once a transition with priority p > 1 is
sampled, we propagate that high priority backward identi-
cally to its previous transition. Suppose a non-zero reward
transition or a terminal transition, denoted by ¢, has prior-

Reward Backpropagation Prioritized Experience Replay

p=1

p=1 p=10 p=1 p=10
update a, a, a, a, a
step 1

terminal

update
step 2

update
step 3

terminal

terminal

terminal

Figure 1. Illustration of priority backpropagation in our algorithm. 5 = 10, A = 0.3. Suppose we have a replay memory with capacity
N = 10. Each row denotes an update step. No new transition is added after step 1. The first row shows the initialization of priority p
according to terminal and reward. The second and third rows show the priority change after propagation in their previous steps. Orange
denotes the transitions that are sampled for update in each step. Minibatch size n = 4. Green denotes the priorities that were propagated
to in the previous step. Red denotes the priorities that were set to normal weight, which is 1, after propagation in the previous step.

ity 8 > 1 at the very beginning. Then once ¢, is sampled,
its priority will be set to normal priority, which is 1, and
transition t;_; will get the high priority 3. After that, once
ti—1 is sampled, B will be propagated from ¢5_1 to ty_o,
and so on. This process will keep going until 5 is propa-
gated to another non-zero reward transition or the head of
episode. Then 3 will be propagated back to t; and start a
new round of propagation. But every time we start a new
round, the high priority will be decayed by factor A, until
it goes down to normal priority 1. That is to say, in the
second round, the high priority will become A3, and in the
third round will become A\?3, and so on. In this loopy way,
we propagate the high priority from non-zero reward tran-
sition backward to zero transitions again and again.

3.5. Demo of Reward Backpropagation

Figure 1 shows how the priorities change during the back-
propagation algorithm. Note that only priority greater than
1 will be propagated and it will only be propagated when
the corresponding transition is sampled. After propaga-
tion, the priority of this sampled transition will be set to 1.
More details of parameter setting are introduced in caption
of Figure 1.

3.6. Parameter Discussion

In our method, the high priority # and the priority prop-
agation mechanism roughly ensure the backward order of
transition using in update steps, which starts from non-zero

reward to zero reward transitions. This allow the model
to have the benefits we discussed in section 3.3. In prac-
tice, choosing [to be the ratio of non-zero reward transi-
tion frequency to zero reward transition frequency yields a
good performance, since this setting makes the sampling
probability of non-zero reward transitions approximately
equal to probability of zero reward transitions at the very
beginning. The decay rate A controls how much we want to
use the old transitions for backward updating or how many
rounds of backpropagation we want. We found that a A that
makes it able to have 2 or 3 rounds of backpropagation usu-
ally yields a better performance. In our experiment, we set
B € [10,100] and A € [0.1,0.3].

4. Experiment Results
4.1. Experiment Setting

For evaluation, we test our algorithm in the Atari 2600
games. For the limitation of time and computation re-
sources, Pong, Breakout and Ice Hockey are chosen in our
experiments since they are less complex compared with
other environments and training can converge much faster.

We use vanilla DQN model as our baseline. The param-
eter setting of DQN is the same as original paper (Mnih
et al., 2015): minibatch size n = 32, replay memory size
N = 1000000, discount factor v = 0.99, learning rate o =
0.00025, exploration rate € = 1.0— 0.1, update frequency
= 4, target network update frequency = 10000, steps per

Reward Backpropagation Prioritized Experience Replay

epoch = 250000, every action repeats 4 frames, and uses
a momentum SGD optimizer. The original paper trained
DQN model with 200 epochs (50 million steps). With lim-
ited computation resources, in our experiments we train all
the model with 20 epochs (5 million steps), which means
our agents explore and learn far less than the original paper.
This causes lower final performance of our agents than the
original’s.

We also implement a DQN with Prioritized Experience
Replay (PER) (Schaul et al., 2016) for comparison. We
choose to use their rank-based PER model, which was
claimed to be more robust than proportional PER. Fur-
thermore, to increase the training speed, we implement
the efficient version in the paper with a heap to approx-
imate the perfect sorted array. The parameter setting of
DQN part is the same as vanilla DQN. For the parame-
ters of PER part, we try two different settings reported
in their paper that achieve the best performance for rank-
based model: {a@ = 0.5 = 0,6 = 0,1 = 71,,y5/4}
and {a = 0.7,8 = 0.5 — 1,7 = 1,,,/4}, and then
choose the ones perform better in our experiments as the
final PER results: Pong and Ice Hockey used the former set
and Breakout used the latter set.

For the implementation of our method, we use the same
DQN parameters as the previous two baseline models,
and settings of two extra parameters 3 and A are: Pong,
{# = 100, A = 0.1}; Breakout, {3 = 10, A = 0.3}; Ice
Hockey, {8 = 10, A = 0.3}. As mentioned above, We ran
the training process for 20 epochs, and each epoch of our
model took around 45 minutes using one NVIDIA Tesla
M60 GPU.

4.2. Faster Convergence Speed

The curves of average evaluation scores per episode
throughout the training process are shown in Figure 2. As
shown in the figure, our method converges around 1.5x
faster than vanilla DQN model in all of the three environ-
ments. For example, in Pong, our model achieved an aver-
age score greater than 12 after 7 epochs, while vanilla DQN
model didn’t accomplish this until epoch 11. We can find a
rapid and stable boost in each of these environment at the
beginning of training process. This suggests that the back-
ward order of sampling use from non-zero reward transi-
tions to their previous zero reward transitions can help the
agent to learn a relatively good policy in a shorter time,
that is to say, a warm start. After our method reached a rel-
atively high performance, its performance kept increasing
steadily on the whole in Pong and Breakout environment,
while in Ice Hockey all the three methods show a sign of
plateau.

Pong

15 A

10

Average score per episode

—8— Vanilla DQN
—e— PER
Our Method

0 2 4 6 8 10 12 14 16 18 20
Epochs

Breakout
16
14 4
L
o
o
2124
o
d)
8 10
L
o
3 81
Q)
g
5 67
>
<
44
—8— Vanilla DQN
24 —e— PER
Our Method

0 2 4 6 8 10 12 14 16 18 20
Epochs

Ice Hockey

—2.5

-5.0 1

WA

=175 & 1
—8— Vanilla DQN

=20.01 —e— PER
Our Method

Average score per episode
| | |
— - =
w N o
o v o

—22.5

0 2 4 6 8 10 12 14 16 18 20
Epochs

Figure 2. Learning curves of Vanilla DQN vs. Prioritized Experi-
ence Replay (PER) vs. Our method on Pong, Breakout, and Ice
Hockey. Parameter settings in our method: Pong, § = 100, A =
0.1; Breakout, 8 = 10, A = 0.3; Ice Hockey, # = 10, A = 0.3.

Also, in the Ice Hockey environment, we find some abnor-
mal observation that the performance of our model didn’t
increase a lot at the very beginning but increased rapidly
after 3 epochs, while the other two methods first increased

Reward Backpropagation Prioritized Experience Replay

Pong
per
' O ourmethod
: O vanillaDaN T
AIE i)
g G
A
vz
1 ,///
Breakout
per
O ourmethod
O vanilla DON
B e S} P ?
= S ————————y]
///
y i
’//
IceHockey
per
our method
O vanila DaN
(a) Average Q value

Pong

Breakout

? 8 O ourmethod
Y 4 O vanilaban

IceHockey

PER
O ourmethod
O vanilla DN

(b) Maximum Q value

Figure 3. Average and maximum Q values of vanilla DQN vs. Prioritized Experience Replay (PER) vs. our model during training in

Pong, Breakout and Ice Hockey.

rapidly and then fell back a little and increased slowly.
Moreover, the performance of our model also fell back a
little after 10 epochs and sometimes got worse than vanilla
DQN (epoch 13 and 14). We argue that these abnormal
performance are due to the Ice Hockey environment it-
self. Since in this game the agent needs to control two
ice hockey players against the other two to win by team-
work, it is more complex than Pong and Breakout. Usually
some newly learnt “good” short-term policies may harm
the long-term rewards and cause fall back in performance.
Therefore, this environment requires more explorations and
training, and is harder for the models to get a stable and
good policy within a short time like 20 epochs. Actually,
DQN and PER didn’t do a very good job even after 200
epochs for Ice Hockey (Mnih et al., 2015; Schaul et al.,
2016), they got average scores around O (our best is around
-3 within 10 epochs).

4.3. Better Performance

Besides faster convergence time, Figure 2 also shows better
performance at the end of 20 epochs of our method than the
vanilla DQN and PER DQN. Although 20 epochs training
is actually short compared with 200 epochs in the origi-
nal papers, which means the performance in this figure is

not the real final performance. The figure shows that at
least our models can get higher performance in a short time
by using the reward backpropagation prioritized experience
replay strategy we proposed.

4.4. Poor Performance of PER

An unexpected observation shown in Figure 2 is that DQN
with PER performed very bad in all the three environ-
ments. It not only shows a slower convergence learn-
ing/speed curve but also gets much lower performance after
20 epochs compared with vanilla DQN and our model. We
have checked, debugged and tested our implementation of
PER for several times to make sure it is correct. And we
also tried several different parameter settings reported to
be good in the original PER paper, but it still yields to a
poor performance.

The only different between our experiments and original
ones is that we trained for a shorter time (20 epochs vs. 200
epochs in the original paper). In the original paper, they
only reported the performance at the end of 200 epochs,
but the average scores for DQN with PER after 20 epochs
were unclear. They did provide the learning curves for
these three environments, but those were experiments for

Reward Backpropagation Prioritized Experience Replay

Double DQN with PER, not vanilla DQN with PER. Also,
for Breakout and Ice Hockey, the Double DQN model with
PER actually performs poorer than the vanilla DQN model
within 20 epochs in their learning curves (Schaul et al.,
2016). All of these indicate that PER may be beneficial
to the agent performance after a long time of training, but
it might suffer from lower efficiency of sample used at the
early stage of training and thus might learn slowly at the
very beginning.

One of the explanation we found in our experiments is that
PER often overshoots the real Q value estimates at the early
stage of training. In Figure 3, we can find that the aver-
age/maximum Q values of the PER model often increase
rapidly at the very beginning and then fall back to lower
values afterwards. This is evident especially in Ice Hockey
environment, where the Q value estimates of PER model
exploded within 5 epochs. This may caused by the sam-
pling strategy PER used. Since PER always tends to choose
those transitions with large error in last update step as the
new minibatch, it will boost the model to converge to the
target Q values. However, at the very beginning of train-
ing, all of the target Q values are randomly initialized and
totally incorrect. As a result, PER might make the model
converge to a bad policy very quickly at the start. Fortu-
nately, this can be fixed after a longer time of training as
shown in Figure 3.

Different from PER, the average/maximum Q values of our
Reward Backpropagation PER increased steadily in all the
three environments unless it reached a plateau due to not
enough explorations. Because our method doesn’t choose
the transitions with large error to replay, it won’t lead to
an overshot or fast convergence to bad policy at the be-
ginning of training (even when vanilla DQN also shows a
sign of overshooting in Breakout). Instead, our model fo-
cuses more on those more important transitions with non-
zero rewards, and backpropagates their impact to the ear-
lier actions, which turns out to be helpful for getting more
accurate Q estimates steadily in a shorter time (see Figure
3). Note that in the IceHockey environment, the average
performance are always negative within 20 epochs, which
means that the more accurate Q values should be closer to
0 and even negative.

We can also find that extremely large Q value estimates oc-
curred in our method in Ice Hockey after 3 million steps,
but this outlier didn’t impact our model much. In PER,
this might become a problem since it is likely choose the
corresponding transition to update frequently due to its ex-
tremely large error.

4.5. Slightly Longer Running time

Although our method converges 1.5x faster than vanilla
DQN in terms of training steps, the running time of ev-

Table 1. Training time of 20 epochs for each method. (hours)

ENVIRONMENT DQN PER OURS
PONG 14.42 18.51 15.56
BREAKOUT 10.84 17.96 12.93
ICE HOCKEY 12.53 19.48 13.66

ery step becomes longer (see Table 1). This is not because
our model requires a longer time for optimization. Instead,
the extra running time comes from the sampling priority
operation. More concretely, in each step, we need to up-
date, backpropagate the priorities in replay memory, and
also need to normalize them for sampling by dividing them
by their sum. In our final implementation, we used the run-
ning sum to save the time for sum calculation and used
a pre-normalization method to infrequently normalize the
whole priority array. After these optimizations, the running
time of our method was only 10%-20% longer than vanilla
DQN, which is shown in Table 1.

Howeyver, in Table 1, we can find that the PER method cost
even longer time than our method. In proportional PER,
it also needs to sum over all the priorities and normalize
them for sampling. Moreover, since PER uses the expo-
nential function to project the raw error to final priorities
and to calculate the importance sampling weights, it would
cost much more extra time than our method. In their rank-
based PER model, the extra time for sum over, exponential
and normalizing operations are saved largely since they use
a fixed rank-based priority array in each step (Schaul et al.,
2016). However, they need to maintain a sorted array for
all the errors of transitions in last update steps, where the
sorting operation is highly time consuming. In their final
efficient version (also our PER implementation), they use
a heap array to approximate the perfect sorted array, which
is reported to have a minor harm to the final performance
but become much more efficient. Nevertheless, it still has
a time complexity of O(nlog V) for the heap updating in
each step, where n is the minibatch size and N is the re-
play memory size, while our model only requires a time
complexity of O(n) for priority backpropagation in aver-
age. As aresult, we can see in Table 1 that our method is
much more efficient than PER in terms of running time.

5. Conclusion

To conclude, we proposed Reward Backpropagation Priori-
tized Experience Replay, which is a new method to improve
the sampling efficiency for DQN model. Our method looks
more into the issue of sparse reward in real world environ-
ment, which gives higher minibatch sampling priority to
those more important transitions with non-zero reward and
then propagate the high priority backward to their previous

Reward Backpropagation Prioritized Experience Replay

zero reward transitions. Experiments show that the DQN
model combined with our method converges 1.5x faster
than the vanilla DQN and also has higher performance.
Furthermore, our method shows better performance at the
early stage of training and also faster running speed than
the state-of-art PER model.

So far we have shown the benefits of our method to DQN
model in a short training time. However, the long-term ef-
fect of our method is still unclear. In the future, we plan to
run our model for longer training time to further evaluate
its impact to the convergence speed and final performance
of the DQN model. In addition, since our method does a
better job than PER at the early stage of training but PER is
proved to be beneficial after a long training time, we plan to
combine the advantages of these two methods and propose
a hybrid model in the future.

References

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., et al. Human-level con-
trol through deep reinforcement learning. Nature, 518
(7540):529-533, 2015.

Mousavi, S. S., Schukat, M., Howley, E., and Mannion, P.
Applying q (M)-learning in deep reinforcement learning
to play atari games. 2017.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-
tized experience replay. In Proceedings of the 4th Inter-
national Conference on Learning Representations (ICLR
2016), 2016.

Van Hasselt, Hado, Guez, Arthur, and Silver, David. Deep
reinforcement learning with double g-learning. In AAAI,
pp. 2094-2100, 2016.

Watkins, C. J. C. H. Learning from delayed rewards. PhD
thesis, University of Cambridge England, 1989.

