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Abstract
Efficient exploration is recognized as a key dif-
ficulty in reinforcement learning. We consider
an episodic undiscounted MDP where the goal
is to minimize the sum of regrets over differ-
ent episodes. Classical methods are either based
on optimism in the face of uncertainty or on
probability matching. In this project we explore
an approach that aims at quantifying the cost
of exploration while remaining computationally
tractable.

1. Introduction
In this project, we consider the classical reinforcement
learning (RL) problem of an agent interacting with an en-
vironment modeled as a Markov decision process (MDP),
which is unknown to the agent. As the agent interacts with
the world, it learns about the unknown dynamics of the
MDP. The goal of the agent is to maximize the expected
sum of rewards over time. This naturally leads to a compro-
mise between exploration and exploitation. In order to gain
information about poorly understood states an agent must
explore these states sacrificing immediate rewards. This
tension is widely recognized as a fundamental challenge
inherent in reinforcement learning (Sutton & Barto, 1998).
Classical temporal-difference algorithms requires that ev-
ery action be taken at every state infinitely often (Jaakkola,
1994), (Singh, 2000), (Watkins, 1992). To ensure this, a
number of heuristic strategies has been developed in prac-
tice (Sutton & Barto, 1998).

Several approaches have been developed to address the ex-
ploration challenge in a sample-efficient manner. In order
to avoid over reliance on point estimates of the system dy-
namics obtained by few samples, these approaches adopt
the paradigm of optimism in the face of uncertainty. This
gives a “bonus” to the reward attainable which is as high as
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statistically plausible. After that, an agent chooses a pol-
icy that is optimistic under this environment in order to
promote exploration. As uncertainty is reduced, the “op-
timistic bonus” is reduced and the optimistic view of the
world should converge to the underlying MDP. Some of
these algorithms have very strong theoretical guarantees
(T. Jaksch & Auer., 2010; Kearns & Singh, 2002; Brafman
& Tennenholtz, 2003; Bartlett & Tewari, 2009).

Another efficient paradigm for efficient exploration is that
of probability matching. Such agents model the un-
known MDP with a prior distribution which is updated
as the agents experience rewards and transition probabil-
ities. Such idea dates back to the work of Thompson
(Thompson, 1933) but recent empirical studies showed
its strong numerical performance (Scott, 2010; Chapelle
& Li, 2011). This prompted subsequent theoretical stud-
ies (Agrawal & Goyal, 2013a;b; E. Kauffmann & Munos,
2012; Daniel Russo, 2013) which provided strong theoret-
ical guarantees for the bandit problem as well as for the
reinforcement learning setting (Ian Osband, 2013; 2016)
where such approach is commonly referred to as Posterior
Sampling for Reinforcement Learning (PSRL).

More recently, a new paradigm for efficient exploration
called Information-Directed Sampling (IDS) was proposed
in (Daniel Russo, 2013) for the classical multiarmed ban-
dit problem and for linear bandits. The idea is to quantify
the cost of exploration via the information gained about the
optimal action. Intuitively, the agent is willing to incur a
larger instantaneous regret for an action that gives more in-
formation about which is the optimal arm to pull. The key
quantity of such analysis is the so called information ra-
tio, which is the ratio between the instantaneous square ex-
pected regret and the information gained about the optimal
action. The hope is that by minimizing the information ra-
tio at each episode the total cost of exploration (to identify
the optimal arm) is reduced. The authors in (Daniel Russo,
2013) work with the notion of Bayesian regret which al-
lows them to relate the per-episode expected instantaneous
regret computed by the agent to the actual one. Such anal-
ysis assumes that the true “world” is sampled from the
agent’s prior distribution. Unfortunately, despite its elegant
and strong theoretical bounds, IDS is difficult to implement
mainly because of its computational intractability.
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In this project, we try to to accomplish the following:

• develop a tractable algorithm that captures the main
idea of IDS

• extend the core idea of IDS to RL

2. Preliminaries
In this section we recall the idea behind IDS as presented in
(Daniel Russo, 2013). We mention that the same analysis
can be used to provide an information-theoretic bound for
Thompson sampling (Russo, 2016).

2.1. Bayesian Regret

Consider a one state MDP with |A| actions, i.e., a Bandit
problem, and define as expected instantaneous reward by
pulling arm a:

EM (Ra|Ft)

where the random variable M is the unknown single-state
MDP and the expectation E(·|Ft) is conditioned on the fil-
tration Ft, which is the “history” of action-reward pairs ex-
perienced by the agent up to episode t − 1. Now suppose
the agent knew which one is the optimal arm a∗ (but not
the actual MDP). Conditioned on this information and on
the filtration, denote the expected reward by pulling the op-
timal arm a∗:

EM (Ra∗ |Ft, a∗) .

Uncertainty about the optimal action a∗ at the current
timestep t induces uncertainty about the maximum ex-
pected reward attainable by the agent, which can be esti-
mated as:

Ea∗ (EM (Ra∗ |a∗) |Ft) .

The authors in (Russo, 2016) define as Bayesian instan-
taneous regret ∆t(a) the difference between the expected
reward attainable if the optimal action a∗ is known and the
expected one attained by the agent that pulls arm a:

∆t(a)
def
= Ea∗ (EM (Ra∗ −Ra) |Ft, a∗) . (1)

Crucially, this quantity depends on the history observed
(that is, the filtration Ft) and it is in principle computable
by the agent. By taking the expectation with respect to the
filtration and summing over the arms pulled by the agent
π = (a1, ..., aT ) up to time T one obtains:

BayesRegret(π)
def
=

=

T∑
t=1

EFt ∆t(at)

=

T∑
t=1

Ea∗ (EM (Ra∗ −Ra) |a∗)

(2)

Equation 2 allows to relate the regret computable by the
agent with the actual one, in expectation. This notion of
regret assumes that the “true” MDP is sampled from the
prior.

2.2. Information Gain

In principle, the IDS agent can compute the probability that
an action is optimal at the beginning of each episode. A key
quantity is the posterior distribution of the optimal action.
Intuitively, as the agent interacts with the environment it
updates its beliefs about the optimal action. In the long run,
the agent’s posterior probability about the optimal action
should concentrate around the “true” optimal arm.

The information gain It(a) from an action a is the expected
reduction in the entropy of the optimal action. Intuitively,
an action that can identify the optimal action will have
higher It(a).

2.3. Information Ratio

A key quantity used in the analysis and implementation of
IDS is called information ratio (by pulling arm a) defined
as:

Ψ(a) =
∆t(a)

It(a)

In (Daniel Russo, 2013) the authors show that, for any al-
gorithm,

BayesRegret =

T∑
t=1

EFt ∆t ≤
√

Ψ̄H(α)T (3)

by a simple application of Cauchy-Schwartz inequality. In
the above expression, T is the number of episodes,H(α) is
the initial entropy of the optimal action and Ψ̄ is the average
information ratio. This is valid for any learning algorithm;
in particular if an algorithm can bound the average infor-
mation ratio Ψ̄ by a constant, then learning occurs upper
bounded by O(

√
T ). It seems therefore natural to mini-

mize Ψ̄. Since minimizing the average information ratio
over all episodes may be intractable, IDS myopically min-
imizes Ψ at the beginning of each episode.

3. EXACT-IDRL
We now discuss a direct extension of IDS to reinforcement
learning. For reference we label it as EXACT-IDRL. We
now define the notation, the equivalent notion of regret (for
an episode), information gain, and information ratio in the
reinforcement learning setting. Another notion to measure
the quality of a learning agent in episodic fixed-horizon
problems is provided in (Christoph Dann, 2016), but we
do not consider this measure here.
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3.1. Notation

We assume that the environment can be modeled as
an episodic Markov Decision Process (MDP) M =
(S,A,RM ,PM , H), where S is the state space, A the ac-
tion space, RM the rewards as a function of state-action
pairs, PM the transition probabilities and H is the episode
length. We denote with VMµ the value of the policy µ on
MDP M , that is, the value function of the initial state ob-
tained by following policy µ on MDP M . Denote with
Ft = {{(si,j , ai,j , ri,j , si+1,j)}i=1,...,H}j=1,...,t−1 the fil-
tration, i.e., the “history” experienced by the agent up to
episode t − 1. The filtration Ft consists of the sets of all
rollouts in terms of states si,j actions ai,j rewards ri,j and
next states si+1,j experienced by the agent in episode j at
timestep i. Let ϕ∗(·) be the operator that acts on an MDP
M and returns an optimal policy (with ties randomly bro-
ken).

3.2. Instantaneous Regret

At the beginning of episode t the agent chooses a policy µ
to follow. The historyFt observed by the agent changes the
prior distribution of the unknown MDP from the prior dis-
tribution f(·) to the posterior f(·|Ft). Accordingly, if the
agent knew the optimal policy µ∗ then the posterior distri-
bution of the unknown MDP would change to f(·|Ft, µ∗).
It is natural to extend the definition of instantaneous regret
to the RL setting using the value function VMµ of a given
policy µ in MDP M :

Definition 1. Define as instantaneous expected regret
∆t(µ) at timestep (t) by following policy (µ):

∆t(µ)
def
= Eµ∗

(
EM

(
VMµ∗ − VMµ

)
|Ft, µ∗

)
(4)

This notion of regret in equation 4 measures the expected
loss by following policy µ instead of the optimal policy
µ∗ on each MDP and is a natural extension of that given
in (Daniel Russo, 2013) to RL. Notice that this quantity is
computable by the agent, at least in principle, as it only
depends on the MDP prior and on the filtration Ft through
f(·|Ft).

3.3. Information Gain

Let αt be the posterior distribution (conditioned on the fil-
tration) of the optimal policy at the beginning of episode t.
In other words, let αt ∈ R|A|H|S| be the probability distri-
bution whose i-th component contains the probability that
the i-th policy is optimal.

Definition 2. Define the information gain It(µ) from pol-
icy (µ) over an episode:

It(µ)
def
= Erollout (H(αt)−H(αt+1)|Ft, µ) (5)

In other words, It(µ) is the expected reduction in the en-
tropy of αt if policy µ is followed in the next episode. The
expectation is taken with respect to the rollout experienced
by the agent which depends on the posterior distribution of
the unknown MDP ∼ f(·|Ft) and is thus computable by
the agent.

3.4. Information Ratio

At the beginning of every episode the EXACT-IDRL agent
acts according to a policy that seeks to minimize the infor-
mation ratio described below. Denote with π the probabil-
ity vector such that the i-th component is the probability
that the the agent chooses the i-th policy. With some abuse
of notation, define vector ∆t such that the regret of the i-th
policy is in the i-th component and likewise the vector of
the information gain It. In reinforcement learning we seek
to minimize the following quantity, called information ra-
tio:

Definition 3. Let ∆t and It be the expected instantaneous
regret vector and information gain vector, respectively. De-
fine Ψ(π) as information ratio obtained by following a pol-
icy sampled according to the distribution identified by π:

Ψ(π) =

(
πT∆t

)2
πT It

(6)

Notice that the argument π of the information ratio is a ran-
domization over policies. For example, PSRL is a random-
ized algorithm which chooses a vector π such that the i-th
component of π is the the probability the that the i-th pol-
icy is optimal. Then PSRL sample the policy index from
π and follows that policy in the next episode. The idea be-
hind IDS and EXACT-IDRL is to choose a π vector that
minimizes the information ratio in order to reduce the cost
of exploration. In other words, to select the next policy
EXACT-IDRL solves the following optimization program:

π∗ = argmin
π

(
πT∆t

)2
πT It

subject to ‖π‖1 = 1

π ≥ 0

(7)

where the minimization is over all π ∈ R|A|H|S| . Notice
that π∗ is not a policy, but the probability vector that a
policy is optimal. As in (Daniel Russo, 2013), the mini-
mization problem 6 is convex and has a solution with at
most two non-zero components. The policy selected by
the EXACT-IDRL agent can be finally chosen by sampling
from π∗. The same policy is then followed throughout the
next episode. The conceptual algorithm is reported in algo-
rithm 1.
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Algorithm 1 EXACT-IDRL
Input: Prior distribution f
for episode t = 1 to T do

Compute πIDRL by solving 7
Sample µIDRL according to the distribution πIDRL
for timestep i = 1 to H do

Apply action a = µIDRL(si, i)
Observe reward ri and nextstate si+1

end for
end for

3.5. Bayesian Regret Bound

We immediately have the following observation:

Proposition 1. Let the transition probabilities P(·|s, a) be
fixed and known to the agent, and assume the agent starts
from the same state at the beginning of each episode. As-
sume the episodic undiscounted unknown MDPM∗ is sam-
pled from the agent’s prior. Then EXACT-IDRL (algorithm
1) achieves a Bayesian expected regret upper bounded by

|S|
√

1

2
H|A| ln(|A|)T

for any choice of the prior distribution of the rewards.

The proof is reported in the appendix. At a very high level,
it proceeds as follows. Since the transition probabilities are
fixed, it is possible to compute how often a state s is vis-
ited, in expectation, by following a fixed policy µ during
an episode. While in state s at timestep i, policy µ gives a
fixed action a. This allows to compute the expected num-
ber of times that a (random) reward R(s, a) is experienced.
It is then possible to recast this problem as a linear ban-
dit problem and reuse previous analysis in (Daniel Russo,
2013) which upper bounds the information ratio by that of
Thompson sampling to provide a bound on the Bayesian
regret.

4. APPROXIMATE-IDRL
The minimization problem 7 is computationally intractable
to solve in practice for the following reasons:

1. The space of the optimal policies has dimension
|A|H|S|, which is too large.

2. The computation of the expected regret ∆t is also in-
tractable because it requires averaging over infinitely-
many MDPs.

3. The computation of the information gain involves
computing the reduction in the entropy about the op-
timal policy, which is intractable.

In order to devise a practical algorithm we make the fol-
lowing approximations:

1. We reduce the number of policies considered at the
beginning of each episode

2. We approximate the expected instantaneous regret

3. We approximate the information gain

For brevity, we call APPROXIMATE-IDRL the resulting al-
gorithm. We now discuss all of the above points.

4.1. Restriction on the Space of the Optimization
Variables

In an episodic reinforcement learning setting there are
|A|H|S| policies, too many to be examined. Our idea is
to limit the policies under consideration to a handful in or-
der to retain computational tractability. Instead of sampling
these policies uniformly at random we sample them accord-
ing to the probability that they are optimal. To achieve this,
we sample k MDPs from the posterior f(·|Ft), form the set

M̃ = {Mj |Mj ∼ f(·|Ft), j = 1, . . . , k}

and solve for the optimal policy for each of these MDPs:

Φ∗ = {ϕ∗(Mk)|Mk ∈ M̃} (8)

This gives a set Φ∗ of policies to examine that are already
very good because they are optimal under statistically plau-
sible MDPs.

4.2. Empirical Instantaneous Regret

Recall the definition of expected instantaneous regret in
equation 4. We proceed by doing a change of variables
that may simplify the computation:

Lemma 1. The following holds:

∆t(µ)
def
= Eµ∗

(
EM

(
VMµ∗ − VMµ

)
|Ft, µ∗

)
= EM

(
max
µ∗

VMµ∗ − VMµ |Ft
) (9)

The short proof is reported in the appendix. We use this
fact to approximate the expected regret by computing the
empirical mean of the value function VMµ of policy µ for
the MDPs in M̃:

∆̃t(µ) =
1

k

∑
M∈M̃

(
max
µ

VMµ∗ − VMµ
)

(10)
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4.3. Empirical Information Gain

Now we focus on approximating the information gain of
equation 5. As in (Daniel Russo, 2013), we can use
Pinsker’s inequality (with the assumption that the expected
cumulated sum of rewards is between 0 and 1 during an
episode) to obtain:

It(µ) ≥ 2Eµ∗
((

EM
(
VMµ |µ∗

)
− EM VMµ

)2 |Ft)
= 2 Varµ∗

(
EM

(
VMµ |µ∗

)
|Ft
)

def
= 2g(µ)

(11)

where Eµ∗ is the expectation computed with respect to the
unknown optimal policy µ∗, EM is the expectation with
respect to the random MDP M ∼ f(·|Ft) and EM (·|µ∗)
is the expectation with respect to the random MDP M ∼
f(·|Ft, µ∗) conditioned on the fact that µ∗ is optimal. De-
note via gt the vector whose i-th component contains the i-
th policy. Following equation 11, for any π ≥ 0, ‖π‖1 = 1
we have that:

Ψ(π) =
πT∆t

πT It
≤ πT∆t

πT gt

and thus by replacing the information gain by the variance
we have an upper bound on Ψ. The idea is to minimize the
upper bound which is easier to compute. A bound on the
right hand side automatically translates into a bound on the
information ratio (left hand side).

The fact that the variance should be computed with respect
to the optimal policy implies that we should group together
the sampled MDPs which share the same optimal policy.
Denote with M̃µ∗ = {M |µ∗ = ϕ(M)} the set of sampled
MDPs that have µ∗ as optimal policy, and with | · | the size
of a set. The empirical estimate corresponding to g(µ) can
be written as:

g̃(µ)
def
=

1

|Φ∗|
∑
µ∗∈Φ∗

 1

|M̃ |

∑
M∈M̃

VMµ −
1

|M̃µ∗ |

∑
M∈M̃µ∗

VMµ


2

(12)

Remark on the computation of the variance Notice
that by Eve’s law (or law of total variance) we have that
:

VarM (VMµ |Ft) = EM
((
VMµ − EM VMµ

)2 |Ft)
= Eµ∗

(
VarM

(
VMµ |µ∗

)
|Ft
)
+Varµ∗

(
EM

(
VMµ |µ∗

)
|Ft
)

= Eµ∗
(
VarM

(
VMµ |µ∗

)
|Ft
)

+ g(µ).

This shows that the approximation

g(µ) ≤ VarM (VMµ |Ft)
def
= v(µ)

leads to:

πT∆t

πT gt
≥ πT∆t

πT vt
.

In this case, minimizing the right hand side does not give
an upper bound on the information ratio. In other words,
the variance of the value function should be computed by
taking as random variable the unknown optimal policy µ∗

instead of the unknown MDP M∗, leading to the empirical
estimate in equation 12.

4.4. Empirical Information Ratio

Finally, we choose to minimize the information ratio using
policies that are optimal over the MDPs considered in M̃,
using the empirical regret and the empirical variance:

π̃∗ = argmin
π̃

(
π̃T ∆̃t

)2
π̃T g̃t

subject to ‖π̃‖1 = 1

π̃ ≥ 0.

(13)

Solving 13 yields a probability distributions over policies
in Φ∗. Sampling from π̃∗ finally gives the policy to follow
in the next episode.

The optimization program 13 entails a convex nonlinear
objective function subject to linear constraints. Efficient
methods exist for solving such problems. Furthermore, it
can be shown, similarly to (Daniel Russo, 2013), that the
solution π̃ has at most two non-zero components and thus
ad hoc methods can be designed to solve 13.

Intuitively, as the number of sampled MDPs increases, both
∆̃t and g̃t should approximate ∆t and gt increasingly well,
respectively.

This however does not imply that by solving the minimiza-
tion problem 13 we get the same solution as the original
problem 7. This happens because problem 13 can only pro-
duce a policy that is optimal under some MDP. This is in
contrast to the original problem 7 where a non-optimal pol-
icy can be chosen for the purpose of reducing the uncer-
tainty about the optimal policy.

The practical version of IDRL (algorithm 2) proceeds as
follows: at the beginning of each episode it samples ñ
MDPs and computes the optimal policies under each of
the sampled MDPs. Then it approximately computes the
expected regret ∆̃t and variance g̃t. Finally, it solves the
minimization problem 13 and samples from that solution to
obtain a policy to follow in the episode. Similar to PSRL,
the policy does not change within the episode.
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Figure 1. Bandit setting for |A| ∈ {10, 20} respectively (left to right).
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Figure 2. Random MDP setting for |S| ∈ {2, 4, 6} states respectively (left to right).

Algorithm 2 APPROXIMATE-IDRL
Input: Prior distribution f , number of samples ñ
for episode t = 1 to T do

Sample M̃ = {Mk ∼ f(·|Ft), k = 1, ..., ñ}
Compute optimal policies Φ∗ = {ϕ∗(Mk)|Mk ∈ M̃}
Compute {∆̃(µk)|µk ∈ Φ∗} using equation 10
Compute {g̃(µk)|µk ∈ Φ∗} using equation 12
Compute πIDRL by solving 13
Sample µIDRL according to the distribution πIDRL
for timestep i = 1 to H do

Apply action a = µIDRL(si, i)
Observe reward ri and nextstate si+1

end for
end for

5. Numerical Experiments
We conduct two numerical experiments to test the
APPROXIMATE-IDRL algorithm scheme. For simplicity
we test it on a multiarmed bandit problem and on randomly
generated MDPs. For each experiment we run 100 sim-
ulations. In figures 1,2 we report the mean and the 95%
confidence intervals for the mean.

5.1. Multiarmed Bandits

We consider the classical multiarmed bandit problem with
|A| = {10, 20} arms. Pulling each arm i returns a re-
ward whose distribution follows ∼ Bernoulli(pi). We as-
sume pi ∼ Beta(1, 1), that is a uniform prior distribution
for the rewards. For each simulation we sample the ban-
dits from the prior. The same prior is used in Thompson
sampling and APPROXIMATE-IDRL. In figure 1, we plot
the expected cumulative regret over T = 1000 episodes.
The results of the numerical experiment are shown in Fig-
ure 1. For all cases, we can see from the figures that the
APPROXIMATE-IDRL algorithm leads to much lower cu-
mulative regret than PSRL. Also we notice that the cumu-
lative regret decreases in general as ñ increases.

5.2. Random MDP

In the second case, we create a random MDP with |S| =
{2, 4, 6} states, and each state with |A| = 2 actions.
The length of each episode is taken to be 100 time steps
for this example. Taking each action can lead to any of
the states with transition probabilities determined from a
Dirichlet prior, while the rewards are sampled from a Nor-
mal Gamma distribution. However, once determined at the
beginning of each episode, the rewards are deterministic
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for each action from a state for the entire duration of the
episode. The results of the numerical experiment are shown
in Figure 2. We see from the figures that APPROXIMATE-
IDRL achieves lower cumulative regret than PSRL in all
cases.

6. Conclusion
In this project we have proposed a tractable extension of
information directed sampling to reinforcement learning.

By extending the notion of Bayesian regret, information
gain and information ratio to reinforcement learning, we
derive a theoretical algorithm called EXACT-IDRL. For
this theoretical algorithm we provide a Bayesian regret
bound if the transition probabilities are known to the agent
and the rewards are sampled from the agent’s prior.

Unfortunately, EXACT-IDRL is computationally in-
tractable and this motivates APPROXIMATE-IDRL which
replaces the expected regret and information gain by sam-
ple estimates. The policies considered in the minimization
of the information ratio are also carefully selected accord-
ing to the probability that they are optimal.

One can also view APPROXIMATE-IDRL as an approach
that starts with policies that PSRL would choose. Then it
introduces some bias by relying on an approximately com-
puted information ratio.

Our numerical results indicates that despite the heavy ap-
proximations, APPROXIMATE-IDRL performs as well as,
and often better than PSRL on simple experiments.

However, several open issues remains. In particular,
APPROXIMATE-IDRL needs to evaluate several policies
(via policy iteration) on the sampled MDPs in order to com-
pute the variance. This has quadratic cost with the number
of samples.

Moreover, it is unclear whether any statement can be
made about how the information ratio empirically com-
puted compares with the true one which may be used to
obtain Bayesian regret bounds.

It is our hope that we can continue working on this project
to address the shortcomings of out approach, improve its
numerical performance and better understand it theoreti-
cally.
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Appendix
Proposition 1. Let the transition probabilities P(·|s, a) be
fixed and known to the agent, and assume the agent starts
from the same state at the beginning of each episode. As-
sume the episodic undiscounted unknown MDPM∗ is sam-
pled from the agent’s prior. Then EXACT-IDRL (algorithm
1) achieves a Bayesian expected regret upper bounded by

|S|
√

1

2
H|A| ln(|A|)T

for any choice of the prior distribution of the rewards.

Proof. Without loss of generality, assume that the states are
numbered 1, . . . , |S| and that the agent starts in state 1 at
the beginning of each episodes. Recall that a policy µ iden-
tifies a Markov Chain and thus a transition probability ma-
trix P . Denote with (sAi , aAi) the (random) position and
action taken by the agent, and with 1{(sAi , aAi = (s, a))}
the indicator that the agent takes action a in state s at time
i. The value function can be written as the expected sum of
rewards at different timesteps:

VMµ = EM
H∑
i

R(sAi , aAi)

where the rewards are function of the random position ex-
perienced by the agent sAi at time i. Now recast each re-
ward at time i as a sum over all possible states.

R(sAi , aAi) =

|S|∑
s

|A|∑
a

1{(sAi , aAi) = (s, a)}R(s, a).

In the above expression, 1{(sAi , aAi) = (s, a)} is the in-
dicator that is 1 if the agent takes action a in position s at
timestep i. This allows us to rewrite the value function as:

VMµ = EM

 H∑
i

|S|∑
s

|A|∑
a

1{(sAi , aAi) = (s, a)}R(s, a)

 .

We recall that the agent is following a fixed policy which
provides a deterministic action µ(s, i) at state s, time step
i. This allows to rewrite the indicator as:

1{(sAi , aAi) = (s, a)} = 1{(sAi = s)}1{µ(s, i) = a}.

We use this fact to rewrite the value function:

VMµ = EM

 H∑
i

|S|∑
s

|A|∑
a

1{(sAi = s)}1{µ(s, i) = a} = (s, a)}R(s, a)

 .

Bringing the expectation inside yields:

VMµ =

 H∑
i

|S|∑
s

|A|∑
a

EM 1{(sAi = s)}1{µ(s, i) = a} = (s, a)}R(s, a)

 .
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Notice that 1{µ(s, i) = a) is not a random variable but a
deterministic quantity. Further notice that the reward dis-
tribution R(s, a) for a given state action pair (s, a) is inde-
pendent of the agent or its trajectory along the MDP. Thus,

VMµ =

H∑
i

|S|∑
s

|A|∑
a

EM (1{(sAi = s)})

1{µ(s, i) = a} = (s, a)}EM (R(s, a)) ,

and finally by interchanging the summations:

VMµ =

|S|∑
s

|A|∑
a

H∑
i

EM (1{(sAi = s)})

1{µ(s, i) = a} = (s, a)}EM (R(s, a)) .

Notice that a policy µ induces a Markov Chain and the
probability of visiting a state s can be computed as

EM 1{(sAi = s)} = P je1

where e1 is the canonical vector e1 = [1, 0, . . . , 0] indicat-
ing that the agent starts from state 1 with probability 1.

Define as v ∈ R|S||A| the vector that contains in the po-
sition (s, a) the expected number of times the agent takes
action a in state s during the episode. We have that

v(s, a) =

H∑
i

EM 1{(sAi = s)} =

H∑
i

P je1.

Notice that this is a deterministic quantity computable by
the agent. We can now write the expected reward accumu-
lated during the episode as:

VMµ =

|S|∑
s

|A|∑
a

v(s, a)EM R(s, a)

which is an inner product between a fixed vector and a ran-
dom quantity (the rewards) distributed according to a given
probability distribution. This setting is analogous to the
linear bandit problem, and proposition 4 of (Daniel Russo,

2013) can be used to give a bound O
√

1
2H(α)dT where

H(α) is the entropy of the optimal action, d is the dimen-
sion of the vector space of the vector of the linear bandit
problem. In this case, the agent knows the “action” vec-
tor v(s, a) that corresponds to the number of visit to the
state action pair for any given policy. Vector v lives in
R|S||A|, a space of dimension d = |S||A|, and there are
at most |A||S|H such vectors, that is, one per policy. It
follows that the entropy of the optimal policy is at most
log |A||S|H = |S|H log |A| yielding the bound.

Lemma 2. The following holds:

∆t(µ)
def
= Eµ∗

(
EM

(
VMµ∗ − VMµ |Ft, µ∗

))
= EM

(
max
µ∗

VMµ∗ − VMµ |Ft
) (14)

Proof.

∆t(µ)
def
= Eµ∗

(
EM

(
VMµ∗ − VMµ |Ft, µ∗

))
= Eµ∗

(
EM

(
VMµ∗ |Ft, µ∗

))
− Eµ∗

(
EM

(
VMµ |Ft, µ∗

))
= Eµ∗

(
EM

(
VMµ∗ |Ft, µ∗

))
− EM

(
VMµ |Ft

)
= Eµ∗

(
EM max

µ∗

(
VMµ∗ |Ft, µ∗

))
− EM

(
VMµ |Ft

)
= Eµ∗

(
EM max

µ̂

(
VMµ̂ |Ft, µ∗

))
− EM

(
VMµ |Ft

)
= EM

(
max
µ̂

VMµ̂ − VMµ |Ft
)

= EM
(

max
µ∗

VMµ∗ − VMµ |Ft
)

(15)


