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Abstract

The Causal Multi-Arm Bandit framework (Latti-
more & Reid, 2016) allows for modeling sequential
decision problems in causal environments. In pre-
vious works, online learning in the Causal MAB
framework has not been analyzed. We propose
an algorithm, Online Causal Thompson Sampling
(OC-TS), for online decision making in such en-
vironments and perform simulations to understand
the performance of OC-TS compared to offline al-
gorithms.

1. Introduction

The Multi-Armed Bandit (MAB) model is a framework for
analyzing the exploration/exploitation trade-off inherent in
sequential decision problems. The motivating example for
studying MABs comes from clinical trials where we have N
treatments and would like to learn the efficacy of each in ail-
ing a particular disease. Given that patients arrive sequen-
tially, we would like to use our past experiences of treat-
ments to decide which treatment should be administered.
The difficulty of the problem arises in deciding whether
to try new or poorly understood treatments (exploring) or
sticking with the current best treatment (exploiting). In-
herently, we would like to learn about all of the treatments
with as little exploration as possible in order to minimize
the cumulative regret over our entire sequence of decisions.
Today, the MAB problem has numerous applications in Ad-
vertising, Healthcare, Education, Finance, and a variety of
other domains.

In our problem setting, we are concerned with learning ban-
dit policies in causal environments. Our motivation for
learning in causal environments stems from a wide range of
decision making settings in Healthcare, Education, and Ad-
vertising where actions have inherent causal dependencies.
This type of problem is best explained by an example. Con-
sider a Healthcare example where a physician would like
to understand how to best influence the health of a patient
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by minimizing their likelihood of contracting gum disease.
The physician can recommend that the patient either floss
daily, avoid sugary foods, or use mouthwash. It is reason-
able to believe that these actions have causal dependencies
of two forms. First, if the physician makes too many sug-
gestions concurrently the patient may be overwhelmed and
not follow the suggestions. Secondly, it is possible that
if the patient is recommended one of the possible actions,
conditioned on the patient’s new habits, she may inadver-
tently follow one of the other recommendations without be-
ing prompted by the physician to do so. Despite the ubiquity
of this type of decision making setting, there has been lim-
ited work on the modeling and analysis of online causal
decision systems.

In this type of decision-making environment, there is a clear
incentive to learn the causal dependencies between actions
and use this information to make high value interventions.
The difficulty of this problem is that we now must: (1) learn
the structure of our causal graphical model and (2) perform
the online estimation of action values that is standard in
bandit problems. This interplay is well studied in the algo-
rithm we propose which makes the assumption that these
two effects can be independently factorized and learned ef-
fectively. For notation, we denote Pay to be the parents of
the reward variable Y in our causal graph and performing
an intervention a is equivalent to do(X = a). Specifically,
our algorithm modifies Thompson Sampling to sample from
(1) the conditional posterior of Pay |do(X = a) as well as
the conditional posterior of the Y'|Pay-. To the best of our
knowledge, this is the first algorithm for online learning in
causal bandit environments. Due to the general difficulty
of this estimation task, we will primarily analyze ’sparse’
causal graphs or causal graphs, with |V| nodes, in which the
number of edges | E| is much smaller than ('}). Further-
more, we will study causal graphical models with Bernoulli
distributions to provide faster convergence of our sample
means and posterior approximations.

2. Background

We will provide an overview of the Multi-Armed Bandit
problem, causal graphical models, and the Thompson Sam-
pling algorithm. This will provide a formal definition of
our environment as well as introduce the notion of posterior
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sampling based methods for bandit learning.

2.1. Multi-Armed Bandits

Consider the Bernoulli Multi-Armed Bandit problem in
which we have NV arms and ateach time stept = 1,2,...,T
over a finite horizon 7', one of the IV arms is played. After
an arm i is played, a reward Y; € {0, 1}, which is inde-
pendent of previous plays and i.i.d. from the selected arm’s
distribution, will be observed. An MAB algorithm must
efficiently use observations from the previous ¢t — 1 plays
to estimate reward distributions for each of the /V arms and
choose which arm to play at time ¢t. One measure of an
MAB algorithm’s performance is it’s ability to maximize
expected reward over a horizon T: B[, p A(t)] where
A(t) is the arm played at time ¢ and j14(y) is the selected
arm’s expected reward. Another commonly used measure
for providing bounds on algorithmic performance is the con-
cept of expected cumulative regret over a finite horizon 7'
E[R(T)] = B[ [, (1" — paw)] = X AElki(T))],
where p* = max; u;, A; := p* — p; and k;(t) denotes
the number of times arm % has been played up to time t.
In deriving regret bounds for our MAB algorithms, we will
prove an upper bound on the expected cumulative regret
over a finite horizon 7.

2.2. Causal Multi-Armed Bandits

In our causal model, following the terminology of (Koller
& Friedman, 2009) we have a directed acyclic graph G,
a set of variables X = {X;,Xo,...,Xn}, and a joint
distribution P over X that factorizes over G. Each variable
is Bernoulli and the existence of an edge from variable
X; to X; conditions the probability distribution of X
i.e. ]P’(X] = IJ|X1 = 1’7) 7& IP(X] = xj). We denote
the parents of a variable X, or the subset of X such that
there exists an edge from X; to X;, to be Pax,. An
intervention (of size m) is represented as do(X = )
which sets the values of © = {z1,%2,...,2m} to the
corresponding variables in X. When an intervention is
performed, all edges between X; and Pax, are mutilated
and the graph G can be represented by an altered prob-
ability distribution P (X ¢|do(X = x)) where X¢ = X —X.

Our agent in the online causal bandit problem is given a set
of allowed actions .4 and limited knowledge of the graph G.
One of the variables, Y € X, in our graph G is the reward
variable and can be represented by a Bernoulli Random Vari-
able. The expected reward for an action a € A can be rep-
resented as p1, = E[Y|do(X = a)] and the expected reward
for the optimal action .+ = maxge4 E[Y |do(X = a)].
After choosing an action a, the agent observes realized
values of observable variables in X, X;, and a reward
Y;. Using these realizations, the agent updates his best
estimates of expected rewards for each a € A and repeats

this procedure for 7" episodes. We define cumulative regret
after T' episodes as being R(T) = pg+T — Zthl Ha;
where af represents the estimate of the optimal action at
time ¢.

This environment formulation is modeled off of the
setting in (Lattimore & Reid, 2016). Distinctively, we
focus on an online learning representation and measure
performance in cumulative regret rather than simple regret.
Note that the problem formulation is different than contex-
tual bandits in that we observe our set of variables X; only
after selecting an action and, therefore, cannot construct a
best action through observations of X;.

2.3. Thompson Sampling

The Thompson Sampling (TS) algorithm initializes with
a Bayesian prior of the reward distribution of each arm.
After each observation Y;, TS will update the posterior
distribution of the arm that was selected in timestep ¢. If
we initialize our prior to be uniform over the unit interval,
our best estimate ji; of the expected reward for each arm
¢ can be derived simply by taking the point § € (0,1)
that maximizes our posterior distribution (and likelihood
function): fi; = argmaxge (g 1) Li(0 | 21,22,...,25)
filx1,2a,...,2, | 0). Furthermore, a plausible expected
reward for arm 7, Hf, can be sampled from our estimated
posterior P! (0 | x1,xa,...,Tp).

Generally in the case of Bernoulli bandits, TS will
start with a uniform prior over support [0, 1] which can
be represented by a (1,1) beta distribution. Given that
we will have to update our posterior distribution at the
end of each trial, a beta distribution which has the form
fl@,0,8) = gy a® (1 —2)P " a, B € Zy, is
a friendly reward distribution choice due to it’s simplistic
posterior updates. Concretely, we can represent each
arm’s posterior distribution on P!(0 | x1,xa,...,Ty)
as Beta(S;(t — 1) + 1, F;(t — 1) + 1) where S;(t — 1)
represents the number of successes from Bernoulli trials
for plays from arm 7 and conversely F;(¢ — 1) represents
the number of failures from Bernoulli trials for plays from
arm ¢. In order to perform an update on the posterior
distribution at timestep ¢ for the selected arm ¢ at time
t, we simply increment S;(t) = Si(t — 1) + lyy,—1y
and Fj(t) = Fi(t — 1) + lyy,—}. Note that a dirichlet
distribution allows for extension when there are more
than two classes and will be used for modeling causal
dependencies in our proposed algorithm.

3. Related Work

We will review two general frameworks for bandit learning
in causal environments. First, we consider scenarios with
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unobserved confounders in observational distributions and
examine algorithms for learning optimal policies during ex-
perimentation (Bareinboim & Pearl, 2015). Also, we will
review experiments aimed at learning the effect of interven-
tions in causal graphs and, by exploiting the learned causal
structure, making interventions that maximize reward vari-
ables (Lattimore & Reid, 2016).

3.1. Bandits with Unobserved Confounders

In (Bareinboim & Pearl, 2015), it is demonstrated that in the
presence of confounding variables, it is useful to understand
an agent’s natural action if no intervention had taken place.
To demonstrate this effect, in the presented experiments we
are able to recover sufficient information to make an opti-
mal decision only by looking at the agent’s natural decision.

The proposed algorithm, Causal Thompson Sampling,
aims to maximize argmax,c 4 E[Yx= = 1|X = z],
where x corresponds to the action the agent would have
taken without intervention. Intuitively, this translates to
choosing the action that maximizes the expected reward
conditioned on the agent’s intuited action. In contrast,
Thompson Sampling without causal conditioning aims to
maximize argmax,¢ 4 E[Y |do(X = a)], which translates
to choosing the action that maximizes the expected reward
unconditioned on context or natural predilection. Opera-
tionally, the Causal Thompson Sampling Algorithm uses
the observational distribution P, to seed intuitive actions,
ie. E[Yx=q|X = z] Va = =, and explores non-intuitive
decisions during experimentation. Since this algorithm
makes use of contextual variables for learning causal
dependencies, it is unable to learn causal dependencies that
cannot be explained by observed variables. As a result, the
algorithm is not suited for our general causal bandit setting.

3.2. Learning Good Interventions via Causal Inference

In (Lattimore & Reid, 2016), it is demonstrated that by
exploiting causal structure we can achieve regret bounds
for bandit problems that are © (/) where mn refers to the
number of unbalanced variables and can be significantly
less than |A|. Something to emphasize, however, is that
simple regret is optimized in the experimentation and,
therefore, there is no cost to exploration until the very last
timestep.

Two types of causal bandits are analyzed in this pa-
per: (1) parallel bandits and (2) bandits with general
causal graphs. For parallel bandits, we do not have any
dependencies between variables X; = {X;, Xo,..., Xn}
and can learn the effect of variables on a reward variable Y;
by observing X; and Y; for Z timesteps. In the second %
timesteps we can sample unbalanced variables or variables
which have shown little variation in the values they take in

the previous observations.

In the case of general causal graphs, we assume the
distribution over the parents of our reward variable Y
conditioned on taking action a € A, P{Pay|a}, is known.
Using this assumption, we can then construct a mixture dis-
tribution over all interventions, Q = . 4 7. P{Pay|a}
where 7 is a measure defined over all interventions a € A
(specified by the experimenter). We sample 7' actions
from 7 and use a truncated importance sampling esti-
mator R, (X) = C;Pi{{lfaai% to estimate the returns p,
for all @ € A. Note that Pay (X) is the realized set
of variables in X that are parents of Y and R,(X) is
truncated to a fixed B,, to provide concentration guar-
antees. We can estimate an action’s expected rewards

fa = % 30 ViRa(X) 1R, (x,)< B0}

4. Online Causal Thompson Sampling

We propose an algorithm for online learning in the Causal
Bandit setting. Online Causal Thompson Sampling (OC-
TS), uses the observation that i, = E[Y|do(X = a)] can
be decomposed by partitioning over our set of variables
Pay. Since each element of Pay = {X1,Xs,..., XN}
is a Bernoulli Random Variable, Z = {Z1,Za,..., Zo~n}
partitions our sample space into 2V disjoint events. As
a result, we have that p, = E[Y|do(X = a)] =

N
S P(Y =1|Pay = Zy) P (Pay = Zy|do(X = a)).

Algorithm 1 Online Causal Thompson Sampling
Input: Beta,,, = (1,1),Dirichlet,, =1,5% ,Fg =0
for timestept = 1,2,...,7T do
for actiona =1,2,...,2N do
P (Pay = Zi|ldo(X = a)) ~ dirichlet,, [k
P (Y = 1|Pay = Z) ~ beta,, [0]

N
fa, = iy P(Y = 1|Pay = Zy)
P (Pay = Zg|do(X = a))

end for
ay = argmax,, fa,
{X°} ~ P (X°|do(X = af))
Zi = {X = a7} U{X°}
Y; ~ Bern(P (Y = 1|Pay = Zy))
Dirichlet,,. k] +=1
if Y; = 1 then
Sy, =551 +1

else
t—1
Fy, =F,  +1
end if
BetafLZk = (StZk + l,Fék +1)
end for

Using this observation, we can modify Thompson Sampling
to concurrently learn the reward distribution for each com-
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bination of variables, P(Y = 1|Pay = Z), and the de-
pendencies in our causal graph, P (Pay = Zy|do(X = a)).
We consider two variants of the algorithm with varying
degrees of knowledge of the causal graph G. In the
first setting, we know only {Pay }, the subset of X" such
that there exists an edge from each element of {Pay }
to Y. In the second setting, we assume knowledge of
P (Pay = Zi|do(X = a)), the probability distributions of
{Pay } conditioned on performing the intervention do(X =

a).

For the setting where P (Pay = Zi|do(X =a)) is
known we can use the true conditional distributions for
P (Pay = Zi|do(X = a)) when calculating g, rather
than sampling from our Dirichlet distributions as shown
above. This modification greatly reduces the parameter set
the algorithm is learning and empirically results in a sig-
nificant decrease in cumulative regret. However, in many
applications knowing P (Pay = Zi|do(X = a)) may be
unrealistic.

5. Experiments (Replication from (Lattimore
& Reid, 2016))

Included are some experiments comparing both the simple
and cumulative regret of our online causal bandits algorithm
and the two offline algorithms proposed in (Lattimore &
Reid, 2016) (denoted as Algorithm 1 and Algorithm 2 as
in the original paper). Note that for the experiments in this
section, we use a modified version of OC-TS that for the
first |A| timesteps plays each action exactly once. As a
result, in the experiments where the time horizon T < |.A]
we see that OC-TS has a high simple regret at time 7 as it
is still collecting information about the environment. After
the first |4| plays, OC-TS plays actions in an online manner
and performs optimally for the conducted experiments.

5.1. Simple Regret Experiments

(a) Simple regret vs m(q) for (b) Simple regret vs horizon, T,
fixed horizon T = 400, number with N = 50, m = 2, and € =
of variables N = 50, and fixed /N~
e=20.3 8T

Figure 1. Simple Regret Comparison

These experiment settings are the same as those in (Latti-
more & Reid, 2016). In all of the experiments, Y depends
only on a single variable X; (unknown to the algorithms).
Y; ~ Bernoulli(3 +¢€) if X; = 1and Y; ~ Bern(3 + €)
if X; = 0 where e = g1e/(1 — q1). We have an expected
reward of 3 + € for do(X; = 1), 3 — ¢ for do(X, = 0)
and 1 for all other actions. We set g; = 0 for i < m and
otherwise. We notice that our online algorithm outperforms
both of the offline variants whenever T' > |A|.

5.2. Cumulative Regret Experiments

Algorithim Comparison - Experiment 1 Algorithm Comparison - Experiment 2.

(a) Cumulative regret for fixed (b) Cumulative regret for fixed
horizon 7" = 800, number of horizon 7" = 2000, number of
variables N = 50, m(q) = 25, variables N = 50, m(q) = 2,
and fixed e = 0.3 N

and fixed € = y/ g7

Figure 2. Cumulative Regret Comparison

Now, we measure the cumulative regret for same experi-
ments with a fixed horizon 7" for each scenario (large € and
small €). For each algorithm, we follow standard behavior
for the first % timesteps and fix the best estimated action
for the second % timesteps. We notice that our online al-
gorithm’s regret converges for both experiments unlike the
offline variants.

6. Experiments: Chain and Confounded
Causal Graphs

Included are some experiments for non-parallel causal
graphs. Note that for the experiments in this section, we use
a modified version of OC-TS that for the first |.4| timesteps
plays each action exactly once. As a result, in the experi-
ments where the time horizon T < |A| we see that OC-TS
has a high simple regret at time 7 as it is still collecting in-
formation about the environment. After the first |.4] plays,
OC-TS plays actions in an online manner and performs well
for the conducted experiments.

6.1. Chain Causal Graph

In the chain causal graph setting, Y depends only on a single
variable X3. Y; ~ Bernoullz’(% +e)if Xs=1landV; ~
Bern(3) if X1 = 0. We have an expected reward of 3 + €
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X1 P(Xp=1|X1) P(X3=1]X)
0 P, P,

1 1-P, 1P, @

P(Y =1]X3)
X3=0 0.5
X3=1 0.8

(a) Graph Conditional Probabil- (b) Graph Depic-
ities tion

Figure 3. Chain Causal Graph Problem Formulation

fordo(X3 =1),(1— )(% €)+ P,(3) for do(X; = 1),
and P, (3 +€) + (1 — P,)(3) for all other actions. We set
qz—0f0r2<m i¢{2,3};q;=P,forie{2,3};and 3
otherwise.

Algorithm Comparison - Chain Graph

Algorithm Comparison - Chain Graph

(a) Simple regret vs horizon T'; (b) Simple regret vs horizon 7T’
N =50,m(q) = 30, P, = 0.1, N = 50,m(q) = 30, P, = 0.3,
and fixed e = 0.3 and fixed e = 0.3

Figure 4. Simple Regret Comparison

We measure the simple regret for the chain causal graph
experiments as we vary the horizon 7' for each P, €
{0.1,0.3}. We notice that our online algorithm performs
optimally for all horizons T' > | Al.

— 0C.TS  — Agonm1 — Agotm2- € — 0c.TS  — Agodhm1  — Aiortom

(a) Cumulative regret for fixed (b) Cumulative regret for fixed
horizon T" = 800, N = 50, horizon T" = 800, N = 50,
m(q) = 30, P, = 0.1, and fixed m(q) = 30, P, = 0.3, and fixed
e=20.3 e=0.3

Figure 5. Cumulative Regret Comparison

Now, we measure the cumulative regret for the same exper-
iments with a fixed horizon T for each P, € {0.1,0.3}. For
each algorithm, we follow standard behavior for the first %
timesteps and fix the best estimated action for the second %
timesteps. We notice that our online algorithm’s cumulative
regret converges much faster than the two offline algorithms.

6.2. Confounded Causal Graph

X1 P(Xy=1Xy)
0 7,
1 1-P,
PY = 1%, %) X% =0 X;=1
X,=0 0.3 0.5
Xo=1 0.5 0.7

(a) Graph Conditional Probabil- (b) Graph Depic-
ities tion

Figure 6. Confounded Causal Graph Problem Formulation

In the confounded causal graph setting, Y depends only on
two variables X; and X,. Conditional reward probabili-

ties, P(Y = 1|X;, X5) are given in Figure 6(a) along with
P(Xy =1]X3).
Our best possible action for both scenarios, P, = 0.1

and P, = 0.3, is the intervention do(X; = 1). When
P, = 0.3, the difference in conditional rewards for the ac-
tions do(X; = 1) and do(Xy = 1) is very small. We set

=0fori < m,i ¢ {2,3}; ¢ = P, fori € {2,3};
and % otherwise. Note that we compare two versions
of OC-TS: (1) where each action is played once for the
first |.4] timesteps and (2) where is each action is drawn
from n*, the same sampling distribution as Algorithm 2
from (Lattimore & Reid, 2016): n* = argmin, m(n) =

. P(Pay (X)|a
argming, c 4 MaXge A E[ZbeA(nb ]P}’/(Sja)xl()x)‘b)]'

Algorithm Comparisan - Confounding Graph

(a) Simple regret vs horizon 7'; (b) Simple regret vs horizon T’

N =50,m(q) = 30, P, = 0.1, number of variables N = 50,

and fixed e = 0.3 m(q) = 30, P, = 0.3, and fixed
e=0.3

Figure 7. Simple Regret Comparison

We measure the simple regret for the confounded causal
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graph as we vary the horizon T for each P, € {0.1,0.3}.
We notice that our online algorithm performs well for all
horizons T’ > | Al.

(a) Cumulative regret for fixed (b) Cumulative regret for fixed
horizon T' = 4000, N = 50, horizon T' = 4000, N = 50,
m(q) = 30, P, = 0.1, and fixed m(q) = 30, P, = 0.3, and fixed
e=20.3 e=0.3

Figure 8. Cumulative Regret Comparison

Now, we measure the cumulative regret for the same exper-
iments with a fixed horizon T for each scenario (large € and
small €). For each algorithm, we follow standard behavior
for the first g timesteps and fix the best estimated action for

the second % timesteps.

7. Limitations of OC-TS

One limitation of our proposed algorithm is the need to
seed initial exploration either through exhaustive search or
minimizing the maximal importance sampling ratio as seen
in Section 6. In particular, for the confounded Causal Graph
as seen in Section 6.2 we have provided empirical results
below where we do not *warm-start’ our algorithm. We
observe that for our experimental parameters, P, = 0.3
results in a gap y) — mMaXge A, a0 fta = 0.04 compared to
My —MaXge A aa* Mo = 0.08 for P, = 0.1. For P, = 0.1
butnot P,, = 0.3, we are able to play the optimal action with
high probability without seeding our initial exploration.

Algorithm Compart

(a) Simple regret vs horizon T'; (b) Simple regret vs horizon T’
N = 50,m(q) =30, P, = 0.1, N = 50,m(q) = 30, P, = 0.3,
and fixed e = 0.3 and fixed e = 0.3

Figure 9. Simple Regret (No Exhaustive Initial Exploration)

In the figures above, we can see that without performing an

Algorithm Comparison - Confounded Graph

(a) Cumulative regret for fixed (b) Cumulative regret for fixed
horizon T' = 800, N = 50, horizon T" = 800, N = 50,
m(q) = 30, P, = 0.1, and fixed m(q) = 30, P, = 0.3, and fixed
e=20.3 e=0.3

Figure 10. Cumulative Regret (No Exhaustive Initial Exploration)

exhaustive initial exploration, the performance of our algo-
rithm is severely detrimented. This is still an area in which
we are currently researching and is an area of future work.
In particular, we are interested in understanding how impor-
tant initial exploration is as the actions space and number
of causal dependencies scale.

8. Experiments: Sparse Causal Graphs

Included are some experiments comparing online bandits
algorithms in the setting of sparse causal graphs. For dense
causal graphs we contrast the performance of of Online
Causal Thompson Sampling with knowledge of { Pay } and
Online Thompson Sampling without causal signaling.

X1 P(X:=1|X1) P(X3=1[X1)
0 0.1 0.1
1 09 0.9
P(Y:”XLX:&) X3=0 Xz=1
Xo=0 0.5 0.1
Xo=1 0.1 0.6

(a) Graph Conditional Probabil- (b) Graph Depic-
ities tion

Figure 11. Dense Causal Graph Problem Formulation

Our causal graph G has variables X =
{X1, X5, X35,X4, X5} and |A| = 10 since each vari-
able is a Bernoulli Random Variable and we are al-
lowed to make an intervention of size 1. Note that
P(Y = 1‘X2,X3,X4,X5) = P(Y = 1‘X2,X3) and that
P(Xy = 1|X1), P(X2 = 1|X) are the same as in Figure
3
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Sparse Causal Graph - Prob. of Optimal Action (500 Trials)

Sparse Causal Graph - Cumulative Regret (500 Trias)

(a) Cumulative Regret Compar- (b) Optimal Action Prob. Com-
ison parison

Figure 12. Sparse Causal Graph (].4| = 10)

Now we consider a sparser causal graph G which has vari-
ables X = {X1,Xo,...,X7} and |A| = 14. Note that
P(Y = 1|X2,X3, . ,X7) = P(Y = 1|X2,X3) and that

P(Xy = 1|X1), P(X2 = 1|X) are the same as in Figure
3.

Sparse Causal Graph - Cumulative Regret (500 Trias) Sparse Causal Graph - Prob. of Optimal Action (50 Trials)

(a) Cumulative Regret Compar- (b) Optimal Action Prob. Com-
ison parison

Figure 13. Sparse Causal Graph (| A| = 14)

9. Conclusion

Through our experiments, we have observed the benefits of
online learning in the Causal Bandit setting. By using an al-
gorithm that adapts its arm sampling policy after observing
rewards, we can perform directed exploration to evaluate
potentially high value interventions and achieve smaller cu-
mulative regret. In comparison to (Lattimore & Reid, 2016)
which uses an offline importance sampling based estimator,
we have shown empirically that an online model based es-
timator more efficiently learns the causal environment in a
wide range of experiments. Moreover, we have designed
an algorithm for concurrently learning the effects of causal
dependencies and estimating conditional reward distribu-
tions. The drawbacks of our algorithms include sensitivity
to initial exploration as well as computational complexity.
Our algorithm’s runtime is close to an order of magnitude
larger for the experiments we conducted. One potential
piece of future work would be to evaluate batch methods
which can tradeoff between the regret performance of our

online method and the computational tractability of offline
methods.

10. Future Work

We would like to better understand the fundamental limi-
tations of our algorithm and potential alternatives that may
tradeoff performance with robustness and/or computational
complexity. One limitation we presented is sensitivity to
the initial exploration phase of our algorithm. When the
gap between the optimal action and the next best action,
iy — MaXqe A aa* Mas 15 sSmall we notice that our algo-
rithm’s performance is sensitive to initial exploration strate-
gies. We believe this is a byproduct of the cardinality of the
action space being large as well as the sparsity of the causal
graph and are currently performing research to validate this
claim. Another potential piece of future work is understand-
ing the performance of batch methods for causal bandits
and whether such methods provide any added robustness
in estimation of causal dependencies or conditional reward
distributions.
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