
EteRNA-RL: Designing RNA secondary 
structures with reinforcement learning 

Isaac Kauvar, Ethan Richman, Will Allen 



The Problem

Specify an RNA sequence
that will fold into a desired
secondary structure.  

Applications include: 
 - genetic tool design 
 - drug discovery

Why use reinforcement 
learning? 
 - There is evidence that 
   humans can perform     
   well at sequentially  
   optimizing a structure.  
- Can we train an agent 

that learns ‘intuition’ 
about good sequences?  



Environment

Ensemble Defect - the reward function: 
‘Average number of nucleotides that are incorrectly paired 
at equilibrium relative to the specified secondary structure.’ 
- Calculated using Nucleic Acid Package (NUPACK)

Screenshot of EteRNA computer game:



Algorithm
State Function approximator Q-function

s’ = f(s, action)

reward = ensemble defect

Q(s, θ)

Loss function:

Transition model:

: fully connected, ReLu activation, 1-5 layers



Result #1 - Simple state space, simple reward function

Versus random policyConvergence

# 
st

ep
s 

un
til

 d
on

e

Conclusion: RL successfully learned a policy for 
reaching target in fewest possible number of steps.

Setup:  
- sequence length n=3 
- reward = 1 if coloring matches predefined target coloring for a given 

adjacency matrix, else reward = 0 
- multiple target colorings for each adjacency matrix



Result #2 - Larger state space, realistic reward

Conclusion: Converged to choosing actions 
that do not ‘mess up’ the initialization.

Re
w

ar
d 

(fi
na

l -
 in

iti
al

)

Setup:  
- sequence length n=20 
- reward = ensemble defect of a coloring given an adjacency matrix



Result #3 - Direct evolutionary optimization

Mean defect after  
100 iterations: 
  0.004 +/- 0.002

Conclusion: Direct optimization for a given target 
sequence works well within 100 iterations.

Setup:  
- sequence length n=20 
- reward = ensemble defect of a coloring

Mean defect after 
smart initialization: 
  0.05 +/- 0.03



Result #4 - Training network to take a single good action

Setup:  
- sequence length n=20 
- reward = ensemble defect of a coloring 
- initial coloring is ‘invalid’; has minimum possible reward 
- goal is to select one action that will lead to valid coloring (note: most 

possible actions will not accomplish this)

Fi
na

l r
ew

ar
d

Conclusion: With proper reward function, RL can 
indeed converge to a policy that selects good actions.



Conclusions

- Reward function selection is extremely important: 
     The reward we defined made the punishment  
     for entering bad states much larger than the 
     potential gain in eventually reaching good states.

Potential improvements:  
- adjust the reward function enable ‘exploratory excursions’ 
- pre-train the network on simpler test cases

- Decreasing the sparsity of the reward is also 
important for obtaining a good policy. 

- Direct optimization of the ensemble defect with an 
evolutionary algorithm is easy and significantly 
outperforms our trained agent.



Postscript - is this actually a good application of RL?

- Characteristics of this problem: Deterministic state-
transition function, reward is available at each step, every 
state is reachable from every other state.

- Is this even a game humans should be playing?

- Direct optimization can work quite well

- We were trying to ‘learn an optimizer’ - an agent that 
gained intuition for performing an optimization. 

- Curricular learning/pre-training is likely important

Yes, it can be formulated as a game - but in retrospect, 
that does not mean it is a good target of RL. 

References:
Lee, J, et al. "RNA design rules from a massive open laboratory." PNAS 111.6 (2014): 2122-2127.
Zadeh, JN et al. "NUPACK: analysis and design of nucleic acid systems." Journal of computational chemistry 32.1 (2011): 170-173.
Mnih, V, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529-533.


