EteRNA-RL: Designing RNA secondary
structures with reinforcement learning
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The Problem

Specify an RNA sequence
that will fold into a desired
secondary structure.
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Applications include:
- genetic tool design
- drug discovery

Why use reinforcement

learning?

- There is evidence that
humans can perform
well at sequentially
optimizing a structure.

- Can we train an agent
that learns ‘intuition’
about good sequences?




Environment

Screenshot of EteRNA computer game:

Ensemble Defect - the reward function:

‘Average number of nucleotides that are incorrectly paired

at equilibrium relative to the specified secondary structure.’
- Calculated using Nucleic Acid Package (NUPACK)




Algorithm

State Function approximator Q-function

—> Q(s, 0) —>

reward = ensemble defect

Q(s, 0) : fully connected, Relu activation, 1-5 layers
Loss function:

L=r+vymaxy, Q(s',a",w™) — Q(s,a,w)
Aw = a(L)V,Q(s,w)

Transition model:
f(s,a):sets|i| =x € [1,4]




Result #1 - Simple state space, simple reward function

Setup:
- sequence length n=3

reward = 1 if coloring matches predefined target coloring for a given

adjacency matrix, else reward = 0

multiple target colorings for each adjacency matrix

Convergence Versus random policy
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Conclusion: RL successfully learned a policy for
reaching target in fewest possible number of steps.




Result #2 - Larger state space, realistic reward

Setup:
- sequence length n=20
reward = ensemble defect of a coloring given an adjacency matrix
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Conclusion: Converged to choosing actions
that do not ‘'mess up’ the initialization.




Result #3 - Direct evolutionary optimization

Setup:

Ensemble defect
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sequence length n=20
reward = ensemble defect of a coloring

Optimization with differential evolution

Mean defect after
smart initialization:
0.05 +/- 0.03

Mean defect after
100 iterations:
0.004 +/- 0.002

Initialized Optimized

Conclusion: Direct optimization for a given target
sequence works well within 100 iterations.




Result #4 - Training network to take a single good action

Setup:
- sequence length n=20

reward = ensemble defect of a coloring

initial coloring is ‘invalid’; has minimum possible reward

goal is to select one action that will lead to valid coloring (note: most

possible actions will not accomplish this)
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Conclusion: With proper reward function, RL can
Indeed converge to a policy that selects good actions.




Conclusions

- Reward function selection is extremely important:
The reward we defined made the punishment
for entering bad states much larger than the
potential gain in eventually reaching good states.

- Decreasing the sparsity of the reward is also
important for obtaining a good policy.

- Direct optimization of the ensemble defect with an
evolutionary algorithm is easy and significantly
outperforms our trained agent.

Potential improvements:
- adjust the reward function enable ‘exploratory excursions’
- pre-train the network on simpler test cases




Postscript - is this actually a good application of RL?

Yes, it can be formulated as a game - but in retrospect,
that does not mean it is a good target of RL.

- Characteristics of this problem: Deterministic state-
transition function, reward is available at each step, every
state is reachable from every other state.

- We were trying to ‘learn an optimizer’ - an agent that
gained intuition for performing an optimization.

- Direct optimization can work quite well
- Curricular learning/pre-training is likely important

- Is this even a game humans should be playing?
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