
EteRNA-RL: Using reinforcement learning to design RNA secondary structures

Isaac Kauvar 1 Ethan Richman 1 William E Allen 1

Abstract
We use reinforcement learning to target the task
of designing ribonucleic acid (RNA) sequences
that fold into target multi-dimensional structures,
which has broad applications in biology. Al-
though we do not successfully solve the complete
task, we demonstrate that it is possible to train an
agent that gains some level of ‘intuition’ about
the problem.

1. Introduction
Because ribonucleic acid (RNA) is single stranded, it can
fold upon itself to generate functional structures similar to
proteins. Much work has been done to predict secondary
structures given an RNA sequence (Eddy, 2004); however,
the inverse problem of selecting a sequence that generates
a target structure is not efficiently solved. Applications
of RNA sequence design include RNA-guided silencing,
genome editing, and protein organization (Anderson-Lee
et al., 2016; Lee et al., 2014). In this paper, we investigate
using reinforcement learning to solve the problem of se-
lecting a ribonucleic acid (RNA) sequence that folds into a
target multi-dimensional structure, as illustrated in Fig. 1.

We were inspired by EteRNA, a computer game which pro-
vides a black-box secondary structure predictor and a user
interface for mutating bases in a sequence. EteRNA was
developed as a web game in order to crowdsource human
intuition, pattern recognition, and puzzle-solving skills.
Gameplay consists of performing a sequence of actions: at
each time step, the user can switch the nucleotide of a base
in the sequence. Reward is indicated by how likely the
current sequence is to fold correctly into the target struc-
ture. A screenshot of the game interface is provided in Fig.
2. Underlying EteRNA is an assumption (or at least, hy-
pothesis) that expert human game-players can develop in-
tuition that enables better and faster sequence design. The
EteRNA project additionally added a wet-lab in-the-loop
aspect which checked the physical accuracy of gameplayer

*Equal contribution 1Stanford University, Stanford, CA. Cor-
respondence to: Kauvar I <ikauvar@stanford.edu>.

Stanford CS 234 Final Project, 2017.
Copyright 2017 by the author(s).

derived models. For now, we ignore the wet-lab aspect and
focus on the question of whether we can use reinforcement
learning to train a computer agent to play an EteRNA-esque
game. We aim to develop an algorithm capable of meeting
and surpassing human level puzzle solving. If we can train
a reinforcement learning agent to acquire human level ’in-
tuition’, then it may ultimately be useful in discovering or
predicting new properties of RNA folding that can be tested
in wet-lab experiments.

Figure 1. Example RNA secondary structure. The goal is to as-
sign a color to each base so that the specified target structure is
the structure most likely to results from RNA folding.

Rather than using EteRNA’s secondary structure predictor,
we use a predictor provided by the Nucleic Acid Package
(NUPACK) (Zadeh et al., 2011). The API provided by NU-
PACK offers a function to compute the ensemble defect of
a given sequence and target structure. The ensemble defect
is the average number of incorrectly paired nucleotides at
equilibrium over the ensemble of possible secondary struc-
tures. Minimizing ensemble defect means that the RNA
sequence is more likely to spend time folded into the tar-
get structure. The ensemble defect calculation in NUPACK
uses thermodynamics-based computation. Although there
are limitations inherent to the ensemble defect computa-
tion, improvements in the forward model based on wet-lab
experimentation can in theory be incorporated into what-



EteRNA-RL

ever algorithm we design, simply by modifying the reward
function.

Because there are four possible nucleotides for each base,
the combinatorial number of options for a sequence of
length n is 4n. For n = 30, this is 1e18 combinations.
For n = 100, this is 1e60 combinations. Because of the
exponential nature of the problem, it quickly becomes im-
possible to either enumerate across all possible combina-
tions, or to tabulate the score associated with each combi-
nation. Finding the target sequence is made easier by tak-
ing a proper sequence of steps - it is sometimes better to be
in one state than another state when selecting the next step.
Because this game offers a continuously computable score,
there are a number of optimization approaches that could
apply. However, because the action space is discrete, and
humans appear to be effective at solving the game by mak-
ing a sequence of action decisions, reinforcement learning
is potentially a good algorithm to apply. Further, gradient
based methods do not necessarily make sense in this set-
ting, and an algorithm, such as a reinforcement learning
agent, that can incorporate some intuition about how RNA
folds may perform better than a generic global optimization
algorithm.

One essential question of our investigation is whether re-
inforcement learning can train an agent to acquire human-
like intuition. Can it learn heuristics that human EteRNA
game-players have learned? One such example is ’boost-
ing’ loops, which is the use of certain nucleotide combina-
tions at the first unpaired positions of a loop.

We reiterate that it is not clear to us whether a reinforce-
ment learning based approach will actually work better
than a generic evolutionary based approach.

It is also worth noting that we are essentially generating a
framework to solve the general problem of coloring a graph
according to a black-box function that defines the quality of
the coloring.

Figure 2. Screenshot of EteRNA computer game in which humans
can learn and then utilize intuition about how to produce good
colorings.

2. Methods
2.1. Problem setup

We will solve the problem for a fixed-sized graph of n ele-
ments, where each node is labeled with a color. The graph
represents an RNA sequence, where the color of each node
represents the nucleotide of that base, and the links in the
graph represent which nodes are bonded to one another, as
seen in Fig. 3. Even with a fixed size graph as input, we
can use the same learned parameters on graphs of fewer el-
ements by simply labeling the extra nodes with a color in-
dicating that they are to be ignored (i.e. setting their value
to 0).

State: (adjacency matrix, color vector), with A ∈
{0, 1}n(n−1)/2 and C ∈ {0, 1, 2, 3, 4}n. The ordering
of the color vector matters, and indicates the sequence of
bases. The adjacency matrix only indicates paired bases,
and is vectorized so that the first elements correspond to
the pairing of the first base with other bases.

Action: (i, x), indicates change node i to new color x. We
enumerate the possible (i, x) pairs by assigning each one a
unique integer identifier. We define the deterministic state-
action transition function to be

f(s, a) : set s[i] = x ∈ {1, 2, 3, 4} (1)

Objective: Minimize ensemble defect.

Reward: Gain 1 point for decreasing ensemble defect by
1. (We will store the ensemble defect of the previous state
and then compute the difference). The sum reward at the
end is thus just equivalent to the total improvement in the
ensemble defect through the episode.

State Function approximator Q-function

s’ = f(s, action)

reward = ensemble defect

Q(s, θ)

Figure 3. Problem setup.

Our problem is one with a known and deterministic, though
non-differentiable, transition model. The transition model,
specifically, is that if the specified action is to change the



EteRNA-RL

color of a specific node, the game will always change that
color with a probability of 1. The reward function, how-
ever, is unknown and non-differentiable, but can be simu-
lated with a forward model.

2.2. Algorithm

In this current work, we focus on implementing a value
function approximating Deep-Q Network (DQN). Future
work would likely benefit significantly from also exploring
the efficacy of policy gradient approaches. In the results
section we also compare our RL agent to a generic global
optimization algorithm that directly optimizes the ensem-
ble defect.

We use the DQN algorithm with memory replay presented
in (Mnih et al., 2015). We use temporal difference (TD)
learning based gradient updates to approximate the state-
action value function Q. We used stochastic gradient de-
scent with Adam update steps.

Algorithm 1 DQN
Initialize Q-function parameters w
for iter = 1, 2, ... do

Initialize replay buffer
for episode = 1, 2, ... do

Roll-out episode according to current Q
For each step, append (s, a, s’, r) to replay buffer

end for
for episode = 1, 2, ... do

Sample (s, a, s’, r) from replay buffer
L = r + γmaxa′ Q(s′, a′, w−)−Q(s, a, w)
∆w = α(L)∇wQ(s, w)
Update w according to ∆w

end for
end for

3. Implementation
We implemented our Q-function approximator as deep net-
work in tensorflow. We used fully connected as opposed to
convolutional networks because there is no obvious space
invariance in the state of our environment. We tried a num-
ber of different network architectures, although in our ex-
perimentation it did not ever become obvious which hyper-
parameters were clearly better. For the simplest test cases,
a linear network or a two-layer network with a ReLu acti-
vation actually performed quite well. For the more difficult
cases, we instead trained primarily a 4 layer network with
80, 100, 100, and 100 units per layer and ReLu activations.
We initially used a learning rate that decreased on a linear
schedule from 0.0025 to 0.001. We found that convergence
seemed to significantly slow down once the learning rate
was at it its minimum value, so we ran some additional ex-

periments with various learning rate schedules, but in the
end this was not the fundamental problem with our ini-
tial experiments (our definition of the reward function was
likely the primary issue). We also used epsilon, the param-
eter for epsilon-greedy exploration, that decreased from 1
to 0.01 across half of the number of training steps. Train-
ing time was slow - primarily, we believe because of the
way that we were calling the defect ensemble computation
subroutine from the NuPACK package. Unfortunately, the
python bindings to NUPACK called the package through
the command line, which incurs a decent amount of over-
head for each call. It was not obvious to us how to stream-
line the interface, although we believe this would make a
big difference.

4. Results
4.1. Simplest test case: 2 colors, 3 nodes, 1 target

structure, simple reward function

We began by training a linear Q-function approximation us-
ing Q-learning with a single fixed target sequence of length
n = 3. Here, we use a simple environment for initial test-
ing, with a prescribed reward function. This simplest test
environment accepts sequences of length 3, and is initial-
ized with a target coloring. In this case, positive reward
(i.e. +1) is gained only when the state matches the tar-
get sequence, and a small negative reward (i.e. -0.01) is
incurred for every action taken before reaching the target.
This is not as general as the case where reward is mea-
sured based on ensemble defect, and training the weights
of a policy or value function network only apply to the spe-
cific target sequence. However, the agent should be able to
reach the target sequence from any starting sequence, and
ideally should reach it in the fewest number of steps pos-
sible. From the starting sequence coloring [1, 1, 1], only
two actions were required to reach the target coloring [0, 1,
0]. Within a few thousand iterations, the Q-function con-
verged and the algorithm consistently achieved the target in
the minimum of two actions, as seen in Fig. 4.

4.2. Simplest interesting test case: 4 colors, 3 nodes, 5
target structures, simple reward function

We next tested a more difficult scenario - a sequence of
length 3, but now with 4 possible colors for each node, and
also 5 potential target structures. The linear network did not
work on this more complicated task, and so we increased
the complexity of the function approximator to a 2-layer
fully connected network with 20 units in each layer and
ReLu activations.

We note that in order to achieve convergence for this test
case, it was necessary for there to be multiple color se-
quences that worked for each adjacency matrix. In this



EteRNA-RL

Figure 4. Test environment with linear DQN and fixed target
(each epoch is 1000 iterations).

case, for each of the 5 target structures, we defined 10 target
color sequences. This was interesting because it demon-
strated the importance of the the sparsity level of the reward
function. With 4 possible colors and even just 3 nodes, we
found that it was difficult during training for the algorithm
to find the rewarded states frequently enough. As seen in
Fig. 5, however, with enough target sequences, we were
able to achieve convergence. Further, as shown in Fig. 6,
our agent successfully learned to reach the target coloring
in the fewest possible number of actions. A random policy,
on the other hand, took significantly more actions to reach
the target.

Figure 5. Convergence for training a 2-layer network on 5 target
structures with 4 color options and sequences of length 3.

Figure 6. Performance comparison of the trained policy vs. a ran-
dom policy. The trained policy is able to nearly always success-
fully reach the target sequence for a given structure in the fewest
number of steps possible, whereas the random policy does not.

4.3. Full game: 4 colors, 20 nodes, 12 target structures,
defect-ensemble based reward

Given the successful performance of our algorithm on the
test cases, we moved on to testing it on the full game. We
defined 12 target structures that spanned a spectrum of pos-
sible folded structures. Specifically, we focused on hair-
pin RNA structures with different length bonded and un-
bonded regions. When resetting the environment, we did
not initialize the RNA sequence in a fully random man-
ner, but rather made sure that all paired bases followed
Watson-Crick pairing rules. From the outset, the initial-
ized sequence thus performed fairly well, and the goal of
the trained agent is to see how much further it could im-
prove the performance. We used a fixed maximum se-
quence length, but designed the state so that it could ac-
count for sequences of a length less than the maximum
length. In particular, for any nodes beyond the length of
the target sequence, the color was set to zero (whereas for
the active nodes the color was in 1, 2, 3, 4. Further, we de-
fined the state-action transition function such that for nodes
whose color was 0, no action could change the color of that
node. Further, no action could change the color of a non-
zero node to zero. The hope was that the algorithm would
learn that for an input state with nodes colored zero, it was
futile to take any actions on those nodes.

The biggest decision we had to make was how to define the
reward function as a function of the normalized ensemble
defect. We note that some colorings for a given structure
are ’invalid’, and we ascribed these a reward value of -1.0.
The best possible reward value is 0.0, for a coloring that is
likely to fold into the target structure with a probability of



EteRNA-RL

one. We decided that we should return as the reward the
defect ensemble at every update step. To us, it seemed as
if it would be best to provide the algorithm with the most
information possible about each of its actions. With this
environmental setup, we used a 4 layer fully-connected net-
work, with 40, 100, and 80 units in the hidden layers, and
an output layer corresponding to the 80 possible actions.

Training this algorithm was quite slow because of the
calls to the defect ensemble subroutine as described above.
However, we kept at the training because it appeared
to showing exponentially increasing convergence towards
a higher average. The convergence eventually sharply
plateaued, as seen in Fig. 7. This occurred around the same
time that the learning rate and epsilon reached their mini-
mum value. Before trying again with different hyperparam-
eter schedules, however, we noticed that the policy returned
by this algorithm was not quite doing what we wanted it to.
In particular, the policy seemed to be choosing actions that
either did not change the sequence or that only changed
it once or twice throughout all of the steps of an episode.
This is evident in Fig. 8, where we see that for the learned
policy, the majority of episodes had scores that were ex-
tremely similar to the initial score (whereas for the random
policy, most of the final scores were much worse than the
initial score). We realized that this effect is likely do to the
specific of how we were defining the reward. In particu-
lar, to reach a potentially better state than the initial state,
the agent would likely have to take actions that would pass
through some bad states, for example invalid states which
would yield a defect ensemble of -1.0. Because the agent
computes the expected discounted sum of future rewards,
the cost of ending up in a bad state for even a few steps far
outweighed the potential increase in reward from, say -0.2
to -0.15. That is, staying at the state with reward -0.2 for
the full episode of ten steps would be better than making
one major mistake even if the agent ends up at a slightly
better state.

There are a couple of potential solutions to this problem:
1) Defining the reward slightly differently: we could return
the defect ensemble only every few steps, returning a re-
ward of 0 during the intervening steps. Or, we could only
return the reward at the end of the episode. The latter would
probably be the best option, however based on our initial
experiments on the simple test environments, this would
likely be too sparse of a reward for training. 2) In the cur-
rent experiment, we capped each episode to a maximum of
ten steps. We did this both to increase the speed of training,
as well as to see if we could successfully train the agent to
achieve good scores in only a few steps. If, however, we in-
creased this maximum score, the agent may be able to reap
more gain from moving to slightly more rewarding states,
if that reward was enjoyed over more steps.

Due to the long training of this initial setup, we did not,
however, have time to try many additional experiments. We
thus decided to focus on two specific questions. On the one
hand, how well could a non-reinforcement learning based
algorithm perform at this task? And on the other hand,
rather than trying again to train an agent on the full task,
could we train an agent that simply learned the distinction
valid vs. invalid structures? We decided to take this ap-
proach because it also seemed like first pre-training a net-
work to ’understand’ what makes a good sequence could
help when it is trying to take a sequence of steps to achieve
the best sequence.

Figure 7. Convergence of training a 4 layer fully-connected net-
work on 12 target structures using the ensemble defect at each step
as the reward. The state was initialized to a fairly good, though
not optimal, coloring.

4.4. Training an agent that can produce valid
sequences: 4 colors, 20 nodes, defect-ensemble
based reward

With the insight from the previous experiment that we
likely defined our reward function incorrectly, we decided
to take a step back and investigate a simpler scenario. In
particular, we wanted to see whether we could train an
agent that was capable of learning any of the structure of
the game. We thus focused on whether we could train an
agent to convert an invalid coloring into a valid coloring for
a specified target structure. Instead of initializing the color-
ing to a reasonably good state, we selected an initialization
coloring that was invalid (and thus had a reward of -1.0) and
that was specifically chosen to be one mutation away from
being a valid coloring (that is, changing the color of just
minimum one node would yield a valid coloring). We also
let the agent play for only one step per episode. The goal
was thus that the agent should learn ’what makes a valid
structure’, and learn how to convert an invalid structure into
a valid one. We trained the same 4 layer fully-connected



EteRNA-RL

Figure 8. Final reward minus initial reward across 100 games with
either the learned policy or a random policy. These results demon-
strate that there was a subtle error in the way that we defined the
reward function, which led the agent to learn that it was better off
selecting actions that did not change the current coloring as op-
posed to risking the punishment associated with moving through
a bad state. The random policy, on the other hand, moves into a
bad state with high frequency.

network architecture as in the previous experiment.

The result, as seen in Fig. 10 (with convergence plotted in
9), is that our network was indeed able to successfully learn
some of the structure of the environment. In comparison to
a random policy, which would select a proper action some
small probability of the time, the learned policy selected an
action which led to a valid structure on a large proportion
of the test trials.

We note that training a network on this task may serve as
good pre-training before moving onto the more challeng-
ing situation of taking many steps to improve an already
reasonable coloring.

4.5. Direct ensemble defect optimization with
evolutionary algorithm: 4 colors, 20 nodes,
defect-ensemble based reward

The final comparison that we wanted to make was with the
performance of a generic optimization algorithm that did
not learn about any of the structure of the environment.
Whereas we were trying to train a task-specific agent using
reinforcement learning that was able to harness ‘intuition’
about the environment in order to efficiently improve the
score, algorithms blind to the specific task structure have
the potential to work well.

For this, we turned to a non-gradient based global optimizer
using the differential evolution algorithm and implemented

Figure 9. Convergence (average evaluation score) during training
of a 4-layer Q-network which is allowed to take one action per
trial with the goal of turning an invalid structure into a valid struc-
ture.

as part of scipy. We directly optimized the defect ensemble.
We ran the optimization for ten different target structures,
initializing to a valid coloring, and running 100 iterations.
As seen in Fig. 11, where each line represents the change in
ensemble defect from the initial state to the final optimized
state. Whereas the initial defect had a mean value of 0.05
(standard deviation 0.03), the final defect had a mean value
of 0.004 (standard deviation 0.02). Thus, in just 100 iter-
ations, this generic global optimization algorithm was able
to, for a wide variety of different target structures, perform
extremely well.

It is likely, however, that for larger sequence lengths, this
would run into more issues as the dimensionality of the
problem becomes larger. In particular, a significantly larger
number of iteration would likely be required, and each iter-
ation step would also take longer.

5. Discussion
Here, we began development of a reinforcement learning
based algorithm for optimizing the design of an RNA se-
quence that folds into a target secondary structure. We were
inspired to apply reinforcement learning to this problem
because of the internet-based game EteRNA, in which hu-
mans can gain intuition through trial and error about tropes
and strategies that yield high performing sequences for a
given target structure. We hypothesized that a reinforce-
ment learning agent would be able to similarly acquire ‘in-
tuition’ about what defines a good sequence for a given
structure.

It is worth noting that the true impact of human intuition



EteRNA-RL

Figure 10. The distribution of final scores for 100 test trials using
either the learned Q-network based policy or a random policy, in
the case when the state is initialized to an invalid coloring, and the
agent is allowed to take only one action to convert the state into
a valid coloring. Whereas a random policy only takes the correct
action a small percentage of trials, the learned Q-policy demon-
strates that it has learned about the structure of the environment
such that it is capable of taking a correct action on a large propor-
tion of trials.

in the EteRNA games is relevant when there is a mis-
match between the simulated forward model of how RNA
sequences fold, and the wet-lab experiments that demon-
strate how a given RNA sequence actually folds. The hope
with EteRNA was that human players would be able to syn-
thesize information both from game-play and from wet-lab
experiments that together would produce better models of
RNA folding. We hoped to develop an agent that could per-
form the first part: gaining intuition about game-play. With
that in hand, you would hopefully then be able to train the
agent based on data from wet-lab experiments.

We demonstrate that our algorithm is successful in a num-
ber of simpler cases. In these simpler test cases, we found
that learning was unlikely to converge if rewards were too
sparse. In the process of trying to train an agent on more
complicated cases, we also discovered the overwhelming
importance of the precise definition of the reward func-
tion. By defining a reward function in a manner that made
the punishment for exploration through bad states too large
relative to the potential gain in ultimately reaching good
states, our agent learned that it was better to just stay where
it was rather than explore. Potential improvements in fu-
ture work could include: adjusting the reward function to
enable ‘exploratory excursions’ without impact the reward,
and adding an optimistic exploration bonus. Additionally,
pre-training on simpler cases so as to teach the agent the
general principles of the environment will likely be benefi-
cial. Further, using a policy gradient approach instead of a

Figure 11. Improvement in defect ensemble from direct optimiza-
tion with an evolutionary algorithm, for 100 steps and for 10 target
structures. Each line represents the improvement in ensemble de-
fect from the initialized coloring to the optimized coloring for a
different target structure.

Q-learning approach will likely yield improvements, since
the action space of our environment is relatively large.

For the relatively short sequences that we investigated here,
we found that direct optimization of the ensemble defect
using an evolutionary global optimization algorithm was
was actually quite effective. We hypothesize that for larger
sequences, however, this generic approach will become less
effective, and there will be more room for improvement of-
fered by a learned optimization algorithm which possesses
some knowledge of the structure of the environment.

Finally, it is worth discussing, in retrospect, whether the
game we chose to solve is in fact a good application of
reinforcement learning. There a number of characteristics
that make this application play less to the strengths of re-
inforcement learning: the state-action transition function is
deterministic, only the final sequence coloring is important
as opposed to the action sequence used to reach that color-
ing (even if it may be possible to more efficiently reach that
target coloring by taking a specific sequence of actions), the
environment offers a black-box computation of the qual-
ity of each state, and every state is reachable from every
other state. For these reasons, it is not impossible to ap-
ply conventional global optimization algorithms. However,
where reinforcement learning may offer an advantage is
in developing a non-gradient based optimization approach
which incorporates intuition about which sequences of ac-
tions will yield the largest future expected discounted sum
of rewards.

In sum, we demonstrate that it is possible for a DQN to



EteRNA-RL

learn some level of intuition about RNA folding, at least
insofar as how to turn an invalid coloring into a valid col-
oring. This intuition may be prove valuable for the difficult
optimizations of long RNA sequences.

References
Anderson-Lee, Jeff, Fisker, Eli, Kosaraju, Vineet, Wu,

Michelle, Kong, Justin, Lee, Jeehyung, Lee, Minjae,
Zada, Mathew, Treuille, Adrien, and Das, Rhiju. Prin-
ciples for predicting rna secondary structure design dif-
ficulty. Journal of molecular biology, 428(5):748–757,
2016.

Eddy, Sean R. How do rna folding algorithms work? Na-
ture biotechnology, 22(11):1457–1458, 2004.

Lee, Jeehyung, Kladwang, Wipapat, Lee, Minjae, Cantu,
Daniel, Azizyan, Martin, Kim, Hanjoo, Limpaecher,
Alex, Gaikwad, Snehal, Yoon, Sungroh, Treuille,
Adrien, et al. Rna design rules from a massive open
laboratory. Proceedings of the National Academy of Sci-
ences, 111(6):2122–2127, 2014.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,
Rusu, Andrei A, Veness, Joel, Bellemare, Marc G,
Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K,
Ostrovski, Georg, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–
533, 2015.

Zadeh, Joseph N, Wolfe, Brian R, and Pierce, Niles A. Nu-
cleic acid sequence design via efficient ensemble defect
optimization. Journal of computational chemistry, 32
(3):439–452, 2011.


