
Lecture 5: Policy Gradient I

Emma Brunskill

CS234 Reinforcement Learning

Spring 2024

With many slides from or derived from David Silver and John
Schulman and Pieter Abbeel

Additional reading: Sutton and Barto 2018 Chp. 13

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 1 / 75

L5N1 Refresh Your Knowledge. Comparing Policy
Performance

Consider doing experience replay over a finite, but extremely large, set
of (s,a,r,s’) tuples). Q-learning is initialized to 0 everywhere and all
rewards are positive. Select all that are true

1 Assume all tuples were gathered from a fixed, deterministic policy ⇡.
Then in the tabular setting, if each tuple is sampled at random and
used to do a Q-learning update, and this is repeated an infinite number
of times, then there exists a learning rate schedule so that the resulting
estimate will converge to the true Q⇡.

2 In situation (1) (the first option above) the resulting Q estimate will be
identical to if one computed an estimated dynamics model and reward
model using maximum likelihood evaluation from the tuples, and
performed policy evaluation using the estimated dynamics and reward
models.

3 If one uses DQN to populate the experience replay set of tuples, then
doing experience replay with DQN is always guaranteed to converge to
the optimal Q function.

4 Not sure

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 2 / 75

L5N1 Refresh Your Knowledge. Comparing Policy
Performance

Consider doing experience replay over a finite, but extremely large, set
of (s,a,r,s’) tuples). Q-learning is initialized to 0 everywhere and all
rewards are positive. Select all that are true

1 Assume all tuples were gathered from a fixed, deterministic policy ⇡.
Then in the tabular setting, if each tuple is sampled at random and
used to do a Q-learning update, and this is repeated an infinite number
of times, then there exists a learning rate schedule so that the resulting
estimate will converge to the true Q⇡.

2 In situation (1) (the first option above) the resulting Q estimate will be
identical to if one computed an estimated dynamics model and reward
model using maximum likelihood evaluation from the tuples, and
performed policy evaluation using the estimated dynamics and reward
models.

3 If one uses DQN to populate the experience replay set of tuples, then
doing experience replay with DQN is always guaranteed to converge to
the optimal Q function.

4 Not sure

Answer: 1 is true and 2 is true. 3 is false.Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 3 / 75

Class Structure

Last time: Learning to Control in Tabular MDPs to Deep RL /
Generalization to scale RL

This time: Policy Search

Next time: Policy Search Cont.

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 4 / 75

RL Algorithms Involve

Optimization

Delayed consequences

Exploration

Generalization

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 5 / 75

Do We Need ”RL” at All? Can we Just do Online
Optimization?

Policy gradient methods have been very influential

In NLP (Sequence Level Training with Recurrent Neural Networks
built on REINFORCE)

End-to-End Training of Deep Visuomotor Policies
https://arxiv.org/abs/1504.00702

In homework 2 you will be implementing Proximal Policy
Optimization (PPO) which was used in training ChatGPT

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 6 / 75

https://arxiv.org/abs/1504.00702

Policy-Based Reinforcement Learning

In the last lecture we approximated the value or action-value function
using parameters w ,

Vw (s) ⇡ V ⇡(s)

Qw (s, a) ⇡ Q⇡(s, a)

A policy was generated directly from the value function
e.g. using ✏-greedy

In this lecture we will directly parametrize the policy, and will typically
use ✓ to show parameterization:

⇡✓(s, a) = P[a|s; ✓]

Goal is to find a policy ⇡ with the highest value function V ⇡

We will focus again on model-free reinforcement learning

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 7 / 75

Value-Based and Policy-Based RL

Value Based
learned Value Function
Implicit policy (e.g.
✏-greedy)

Policy Based
No Value Function
Learned Policy

Actor-Critic
Learned Value Function
Learned Policy

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 8 / 75

Types of Policies to Search Over

So far have focused on deterministic policies or ✏-greedy policies

Now we are thinking about direct policy search in RL, will focus
heavily on stochastic policies

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 9 / 75

Example: Rock-Paper-Scissors

Two-player game of rock-paper-scissors
Scissors beats paper
Rock beats scissors
Paper beats rock

Let state be history of prior actions (rock, paper and scissors) and if
won or lost

Is deterministic policy optimal? Why or why not?

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 10 / 75

Example: Rock-Paper-Scissors, Vote

Two-player game of rock-paper-scissors
Scissors beats paper
Rock beats scissors
Paper beats rock

Let state be history of prior actions (rock, paper and scissors) and if
won or lost
Deterministic policy is easily exploited by an adversary. System is not
Markov. A uniform random policy is optimal (Nash equilibrium).

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 11 / 75

Example: Aliased Gridword (1)

The agent cannot di↵erentiate the grey states

Consider features of the following form (for all N, E, S, W)

�(s, a) = (wall to N, a = move E)

Compare value-based RL, using an approximate value function

Q✓(s, a) = f (�(s, a); ✓)

To policy-based RL, using a parametrized policy

⇡✓(s, a) = g(�(s, a); ✓)

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 12 / 75

Example: Aliased Gridworld (2)

Under aliasing, an optimal deterministic policy will either
move W in both grey states (shown by red arrows)
move E in both grey states

Either way, it can get stuck and never reach the money

Value-based RL learns a near-deterministic policy
e.g. greedy or ✏-greedy

So it will traverse the corridor for a long time

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 13 / 75

Example: Aliased Gridworld (3)

An optimal stochastic policy will randomly move E or W in grey states

⇡✓(wall to N and S, move E) = 0.5

⇡✓(wall to N and S, move W) = 0.5

It will reach the goal state in a few steps with high probability

Policy-based RL can learn the optimal stochastic policy

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 14 / 75

Policy Objective Functions

Goal: given a policy ⇡✓(s, a) with parameters ✓, find best ✓

But how do we measure the quality for a policy ⇡✓?

In episodic environments can use policy value at start state V (s0, ✓)

For simplicity, today will mostly discuss the episodic case, but can
easily extend to the continuing / infinite horizon case

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 15 / 75

Policy optimization

Policy based reinforcement learning is an optimization problem

Find policy parameters ✓ that maximize V (s0, ✓)

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 16 / 75

Policy optimization

Policy based reinforcement learning is an optimization problem

Find policy parameters ✓ that maximize V (s0, ✓)

Can use gradient free optimization
Hill climbing
Simplex / amoeba / Nelder Mead
Genetic algorithms
Cross-Entropy method (CEM)
Covariance Matrix Adaptation (CMA)

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 17 / 75

Human-in-the-Loop Exoskeleton Optimization (Zhang et
al. Science 2017)

Figure: Zhang et al. Science 2017

Optimization was done using CMA-ES, variation of covariance matrix
evaluation

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 18 / 75

Gradient Free Policy Optimization

Can often work embarrassingly well: ”discovered that evolution
strategies (ES), an optimization technique that’s been known for
decades, rivals the performance of standard reinforcement learning
(RL) techniques on modern RL benchmarks (e.g. Atari/MuJoCo)”
(https://blog.openai.com/evolution-strategies/)

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 19 / 75

Gradient Free Policy Optimization

Often a great simple baseline to try

Benefits
Can work with any policy parameterizations, including
non-di↵erentiable
Frequently very easy to parallelize

Limitations
Often less sample e�cient because it ignores temporal structure

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 20 / 75

Policy optimization

Policy based reinforcement learning is an optimization problem

Find policy parameters ✓ that maximize V (s0, ✓)

Can use gradient free optimization:

Greater e�ciency often possible using gradient
Gradient descent
Conjugate gradient
Quasi-newton

We focus on gradient descent, many extensions possible

And on methods that exploit sequential structure

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 21 / 75

Policy Gradient

Define V (✓) = V (s0, ✓) to make explicit the dependence of the value
on the policy parameters [but don’t confuse with value function
approximation, where parameterized value function]

Assume episodic MDPs (easy to extend to related objectives, like
average reward)

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 22 / 75

Policy Gradient

Define V ⇡✓ = V (s0, ✓) to make explicit the dependence of the value
on the policy parameters

Assume episodic MDPs

Policy gradient algorithms search for a local maximum in V (s0, ✓) by
ascending the gradient of the policy, w.r.t parameters ✓

�✓ = ↵r✓V (s0, ✓)

Where r✓V (s0, ✓) is the policy gradient

r✓V (s0, ✓) =

0

BB@

@V (s0,✓)
@✓1
...

@V (s0,✓)
@✓n

1

CCA

and ↵ is a step-size parameter

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 23 / 75

Example: Training AIBO to Walk by Finite Di↵erence
Policy Gradient1

Goal: learn a fast AIBO walk (useful for Robocup)

Adapt these parameters by finite di↵erence policy gradient

Evaluate performance of policy by field traversal time

1Kohl and Stone. Policy gradient reinforcement learning for fast quadrupedal
locomotion. ICRA 2004. http://www.cs.utexas.edu/ ai-lab/pubs/icra04.pdf

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 24 / 75

Summary of Benefits of Policy-Based RL

Advantages:

Better convergence properties

E↵ective in high-dimensional or continuous action spaces

Can learn stochastic policies

Disadvantages:

Typically converge to a local rather than global optimum

Evaluating a policy is typically ine�cient and high variance

Shortly will see some ideas to help with this last limitation

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 25 / 75

Table of Contents

3 Score functions and Policy Gradient
Di↵erentiable Policies
Temporal Structure
Baseline
Alternatives to MC Returns

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 26 / 75

Computing the gradient analytically

We now compute the policy gradient analytically

Assume policy ⇡✓ is di↵erentiable whenever it is non-zero

Assume we can calculate gradient r✓⇡✓(s, a) analytically

What kinds of policy classes can we do this for?

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 27 / 75

Di↵erentiable Policy Classes

Many choices of di↵erentiable policy classes including:
Softmax
Gaussian
Neural networks

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 28 / 75

Value of a Parameterized Policy

Now assume policy ⇡✓ is di↵erentiable whenever it is non-zero and we
know the gradient r✓⇡✓(s, a)

Recall policy value is V (s0, ✓) = E⇡✓

hPT
t=0 R(st , at);⇡✓, s0

i
where

the expectation is taken over the states & actions visited by ⇡✓
We can re-express this in multiple ways

V (s0, ✓) =
P

a ⇡✓(a|s0)Q(s0, a, ✓)

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 29 / 75

Value of a Parameterized Policy

Now assume policy ⇡✓ is di↵erentiable whenever it is non-zero and we
know the gradient r✓⇡✓(s, a)

Recall policy value is V (s0, ✓) = E⇡✓

hPT
t=0 R(st , at);⇡✓, s0

i
where

the expectation is taken over the states & actions visited by ⇡✓
We can re-express this in multiple ways

V (s0, ✓) =
P

a ⇡✓(a|s0)Q(s0, a, ✓)
V (s0, ✓) =

P
⌧ P(⌧ ; ✓)R(⌧)

where ⌧ = (s0, a0, r0, ..., sT�1, aT�1, rT�1, sT) is a state-action
trajectory,
P(⌧ ; ✓) is used to denote the probability over trajectories when
executing policy ⇡(✓) starting in state s0, and
R(⌧) =

PT
t=0 R(st , at) the sum of rewards for a trajectory ⌧

To start will focus on this latter definition. See Chp 13.1-13.3 of SB
for a nice discussion starting with the other definition

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 30 / 75

Likelihood Ratio Policies

Denote a state-action trajectory as
⌧ = (s0, a0, r0, ..., sT�1, aT�1, rT�1, sT)

Use R(⌧) =
PT

t=0 R(st , at) to be the sum of rewards for a trajectory ⌧

Policy value is

V (✓) = E⇡✓

"
TX

t=0

R(st , at);⇡✓

#
=
X

⌧

P(⌧ ; ✓)R(⌧)

where P(⌧ ; ✓) is used to denote the probability over trajectories when
executing policy ⇡(✓)

In this new notation, our goal is to find the policy parameters ✓:

argmax
✓

V (✓) = argmax
✓

X

⌧

P(⌧ ; ✓)R(⌧)

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 31 / 75

Likelihood Ratio Policy Gradient

Goal is to find the policy parameters ✓:

argmax
✓

V (✓) = argmax
✓

X

⌧

P(⌧ ; ✓)R(⌧)

Take the gradient with respect to ✓:

r✓V (✓) = r✓

X

⌧

P(⌧ ; ✓)R(⌧)

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 32 / 75

Likelihood Ratio Policy Gradient

Goal is to find the policy parameters ✓:

argmax
✓

V (✓) = argmax
✓

X

⌧

P(⌧ ; ✓)R(⌧)

Take the gradient with respect to ✓:

r✓V (✓) = r✓

X

⌧

P(⌧ ; ✓)R(⌧)

=
X

⌧

r✓P(⌧ ; ✓)R(⌧)

=
X

⌧

P(⌧ ; ✓)

P(⌧ ; ✓)
r✓P(⌧ ; ✓)R(⌧)

=
X

⌧

P(⌧ ; ✓)R(⌧)
r✓P(⌧ ; ✓)

P(⌧ ; ✓)| {z }
likelihood ratio

=
X

⌧

P(⌧ ; ✓)R(⌧)r✓ logP(⌧ ; ✓)

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 33 / 75

Likelihood Ratio Policy Gradient

Goal is to find the policy parameters ✓:

argmax
✓

V (✓) = argmax
✓

X

⌧

P(⌧ ; ✓)R(⌧)

Take the gradient with respect to ✓:

r✓V (✓) =
X

⌧

P(⌧ ; ✓)R(⌧)r✓ logP(⌧ ; ✓)

Approximate with empirical estimate for m sample trajectories under
policy ⇡✓:

r✓V (✓) ⇡ ĝ = (1/m)
mX

i=1

R(⌧ (i))r✓ logP(⌧
(i); ✓)

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 34 / 75

Decomposing the Trajectories Into States and Actions

Approximate with empirical estimate for m sample paths under policy
⇡✓:

r✓V (✓) ⇡ ĝ = (1/m)
mX

i=1

R(⌧ (i))r✓ logP(⌧
(i))

r✓ logP(⌧ (i); ✓) =

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 35 / 75

Decomposing the Trajectories Into States and Actions

Approximate with empirical estimate for m sample paths under policy
⇡✓:

r✓V (✓) ⇡ ĝ = (1/m)
mX

i=1

R(⌧ (i))r✓ logP(⌧
(i))

r✓ logP(⌧
(i); ✓) = r✓ log

2

64 µ(s0)| {z }
Initial state distrib.

T�1Y

t=0

⇡✓(at |st)| {z }
policy

P(st+1|st , at)| {z }
dynamics model

3

75

= r✓

"
logµ(s0) +

T�1X

t=0

log ⇡✓(at |st) + logP(st+1|st , at)
#

=
T�1X

t=0

r✓ log ⇡✓(at |st)| {z }
no dynamics model required!

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 36 / 75

Decomposing the Trajectories Into States and Actions

Approximate with empirical estimate for m sample paths under policy
⇡✓:

r✓V (✓) ⇡ ĝ = (1/m)
mX

i=1

R(⌧ (i))r✓ logP(⌧
(i))

r✓ logP(⌧
(i); ✓) = r✓ log

2

64 µ(s0)| {z }
Initial state distrib.

T�1Y

t=0

⇡✓(at |st)| {z }
policy

P(st+1|st , at)| {z }
dynamics model

3

75

= r✓

"
logµ(s0) +

T�1X

t=0

log ⇡✓(at |st) + logP(st+1|st , at)
#

=
T�1X

t=0

r✓ log ⇡✓(at |st)| {z }
score function

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 37 / 75

Score Function

A score function is the derivative of the log of a parameterized
probability / likelihood

Example: let ⇡(s; ✓) be the probability of state s under parameter ✓

Then the score function would be

r✓ log ⇡(s; ✓) (1)

For many policy classes, it is not hard to compute the score function

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 38 / 75

Softmax Policy

Weight actions using linear combination of features �(s, a)T ✓

Probability of action is proportional to exponentiated weight

⇡✓(s, a) = e�(s,a)
T ✓/(

X

a

e�(s,a)
T ✓)

The score function is r✓ log ⇡✓(s, a) =

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 39 / 75

Softmax Policy

Weight actions using linear combination of features �(s, a)T ✓

Probability of action is proportional to exponentiated weight

⇡✓(s, a) = e�(s,a)
T ✓/(

X

a

e�(s,a)
T ✓)

The score function is

r✓ log ⇡✓(s, a) = �(s, a)� E⇡✓ [�(s, ·)]

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 40 / 75

Gaussian Policy

In continuous action spaces, a Gaussian policy is natural

Mean is a linear combination of state features µ(s) = �(s)T ✓

Variance may be fixed �2, or can also parametrised

Policy is Gaussian a ⇠ N (µ(s),�2)

The score function is

r✓ log ⇡✓(s, a) =
(a� µ(s))�(s)

�2

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 41 / 75

Likelihood Ratio / Score Function Policy Gradient

Putting this together

Goal is to find the policy parameters ✓:

argmax
✓

V (✓) = argmax
✓

X

⌧

P(⌧ ; ✓)R(⌧)

Approximate with empirical estimate for m sample paths under policy
⇡✓ using score function:

r✓V (✓) ⇡ ĝ = (1/m)
mX

i=1

R(⌧ (i))r✓ logP(⌧
(i); ✓)

= (1/m)
mX

i=1

R(⌧ (i))
T�1X

t=0

r✓ log ⇡✓(a
(i)
t |s(i)t)

Do not need to know dynamics model

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 42 / 75

L5N2 Check Your Understanding L5: Score functions

r✓V (✓) = (1/m)
mX

i=1

R(⌧ (i))
T�1X

t=0

r✓ log ⇡✓(a
(i)
t |s(i)t)

The likelihood ratio / score function policy gradient (select one):

(a) requires reward functions that are di↵erentiable

(b) can only be used with Markov decision processes

(c) Is useful mostly for infinite horizon tasks

(a) and (b)

a,b and c

None of the above

Not sure

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 43 / 75

L5N2 Check Your Understanding L5: Score functions
Solution

r✓V (✓) = (1/m)
mX

i=1

R(⌧ (i))
T�1X

t=0

r✓ log ⇡✓(a
(i)
t |s(i)t)

The likelihood ratio / score function policy gradient (select one):

(a) requires reward functions that are di↵erentiable

(b) can only be used with Markov decision processes

(c) Is useful mostly for infinite horizon tasks

(a) and (b)

a,b and c

None of the above

Not sure

None of the above

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 44 / 75

Score Function Gradient Estimator: Intuition

Consider generic form of R(⌧ (i))r✓ logP(⌧ (i); ✓):
ĝi = f (xi)r✓ log p(xi |✓)
f (x) measures how good the sample x is.

Moving in the direction ĝi pushes up the logprob of the sample, in
proportion to how good it is

Valid even if f (x) is discontinuous, and unknown, or sample space
(containing x) is a discrete set

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 45 / 75

Score Function Gradient Estimator: Intuition

ĝi = f (xi)r✓ log p(xi |✓)

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 46 / 75

Score Function Gradient Estimator: Intuition

ĝi = f (xi)r✓ log p(xi |✓)

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 47 / 75

Policy Gradient Theorem

The policy gradient theorem generalizes the likelihood ratio approach

Theorem

For any di↵erentiable policy ⇡✓(s, a),
for any of the policy objective function J = J1, (episodic reward), JavR
(average reward per time step), or 1

1�� JavV (average value),
the policy gradient is

r✓J(✓) = E⇡✓ [r✓ log ⇡✓(s, a)Q
⇡✓(s, a)]

Chapter 13.2 in SB has a nice derivation of the policy gradient
theorem for episodic tasks and discrete states

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 48 / 75

Table of Contents

Di↵erentiable Policies

4 Policy Gradient Algorithms and Reducing Variance
Temporal Structure
Baseline
Alternatives to MC Returns

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 49 / 75

Likelihood Ratio / Score Function Policy Gradient

r✓V (✓) ⇡ (1/m)
mX

i=1

R(⌧ (i))
T�1X

t=0

r✓ log ⇡✓(a
(i)
t |s(i)t)

Unbiased but very noisy

Fixes that can make it practical
Temporal structure
Baseline

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 50 / 75

Policy Gradient: Use Temporal Structure

Previously:

r✓E⌧ [R] = E⌧

"
T�1X

t=0

rt

!
T�1X

t=0

r✓ log ⇡✓(at |st)
!#

We can repeat the same argument to derive the gradient estimator for
a single reward term rt0 .

r✓E[rt0] = E
"
rt0

t0X

t=0

r✓ log ⇡✓(at |st)
#

To see this, recall V (s0, ✓) = E⇡✓

hPT
t=0 R(st , at);⇡✓, s0

i
where the

expectation is taken over the states & actions visited by ⇡✓

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 51 / 75

Policy Gradient: Use Temporal Structure

Previously:

r✓E⌧ [R] = E⌧

"
T�1X

t=0

rt

!
T�1X

t=0

r✓ log ⇡✓(at |st)
!#

We can repeat the same argument to derive the gradient estimator for
a single reward term rt0 .

r✓E[rt0] = E
"
rt0

t0X

t=0

r✓ log ⇡✓(at |st)
#

Summing this formula over t, we obtain

V (✓) = r✓E[R] = E
"
T�1X

t0=0

rt0
t0X

t=0

r✓ log ⇡✓(at |st)
#

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 52 / 75

Policy Gradient: Use Temporal Structure

Previously:

r✓E⌧ [R] = E⌧

"
T�1X

t=0

rt

!
T�1X

t=0

r✓ log ⇡✓(at |st)
!#

We can repeat the same argument to derive the gradient estimator for
a single reward term rt0 .

r✓E[rt0] = E
"
rt0

t0X

t=0

r✓ log ⇡✓(at |st)
#

Summing this formula over t, we obtain

V (✓) = r✓E[R] = E
"
T�1X

t0=0

rt0
t0X

t=0

r✓ log ⇡✓(at |st)
#

= E
"
T�1X

t=0

r✓ log ⇡✓(at , st)
T�1X

t0=t

rt0

#

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 53 / 75

Policy Gradient: Use Temporal Structure

Recall for a particular trajectory ⌧ (i),
PT�1

t0=t r
(i)
t0 is the return G (i)

t

r✓E[R] ⇡ (1/m)
mX

i=1

T�1X

t=0

r✓ log ⇡✓(at , st)G
(i)
t

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 54 / 75

Monte-Carlo Policy Gradient (REINFORCE)

Leverages likelihood ratio / score function and temporal structure

�✓t = ↵r✓ log ⇡✓(st , at)Gt

REINFORCE:

Initialize policy parameters ✓ arbitrarily
for each episode {s1, a1, r2, · · · , sT�1, aT�1, rT} ⇠ ⇡✓ do

for t = 1 to T � 1 do

✓ ✓ + ↵r✓ log ⇡✓(st , at)Gt

endfor

endfor

return ✓

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 55 / 75

Likelihood Ratio / Score Function Policy Gradient

r✓V (✓) ⇡ (1/m)
mX

i=1

R(⌧ (i))
T�1X

t=0

r✓ log ⇡✓(a
(i)
t |s(i)t)

Unbiased but very noisy

Fixes that can make it practical
Temporal structure
Baseline

Alternatives to using Monte Carlo returns R(⌧ (i)) as targets

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 56 / 75

Desired Properties of a Policy Gradient RL Algorithm

Goal: Converge as quickly as possible to a local optima
Incurring reward / cost as execute policy, so want to minimize number
of iterations / time steps until reach a good policy

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 57 / 75

Table of Contents

Di↵erentiable Policies
Temporal Structure

5 Policy Gradient Algorithms and Reducing Variance
Baseline
Alternatives to MC Returns

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 58 / 75

Policy Gradient: Introduce Baseline

Reduce variance by introducing a baseline b(s)

r✓E⌧ [R] = E⌧

"
T�1X

t=0

r✓ log ⇡(at |st ; ✓)

T�1X

t0=t

rt0 � b(st)

!#

For any choice of b, gradient estimator is unbiased.

Near optimal choice is the expected return,

b(st) ⇡ E[rt + rt+1 + · · ·+ rT�1]

Interpretation: increase logprob of action at proportionally to how
much returns

PT�1
t0=t rt0 are better than expected

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 59 / 75

Baseline b(s) Does Not Introduce Bias–Derivation

E⌧ [r✓ log ⇡(at |st ; ✓)b(st)]
= Es0:t ,a0:(t�1)

⇥
Es(t+1):T ,at:(T�1)

[r✓ log ⇡(at |st ; ✓)b(st)]
⇤

Emma Brunskill (CS234 Reinforcement Learning) Lecture 5: Policy Gradient I Spring 2024 60 / 75

	Introduction to Policy Search Methods for RL
	Gradient-free Policy Optimization
	Score functions and Policy Gradient
	Differentiable Policies

	Policy Gradient Algorithms and Reducing Variance
	Temporal Structure

	Policy Gradient Algorithms and Reducing Variance
	Baseline

	Policy Gradient Algorithms and Reducing Variance
	Alternatives to MC Returns

