Lecture 4: Model Free Control and Function

Approximation

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2024

@ Structure and content drawn in part from David Silver's Lecture 5
and Lecture 6. For additional reading please see SB Sections 5.2-5.4,
6.4, 6.5, 6.7

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Check Your Understanding L4AN1: Model-free Generalized

Policy Improvement

Consider policy iteration
Repeat:
e Policy evaluation: compute Q™
e Policy improvement 7;11(s) = arg max, Q™ (s, a)

Question: is this ;41 deterministic or stochastic? Assume for each

state s there is a unique max, Q™ (s, a).

Answer: Stochastic, Not Sure

Now consider evaluating the policy of this new 7 1. Recall in
model-free policy evaluation, we estimated V7, using 7w to generate

new trajectories TiedeD
Question: Can we compute Q™+ (s, aTVIS, a by using this ;11 to

generate new trajectories?
Answer: True, @ ot Sure

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024

2/85



Check Your Understanding L4AN1: Model-free Generalized

Policy Improvement

Consider policy iteration
Repeat:

e Policy evaluation: compute Q™
o Policy improvement 7;11(s) = arg max, Q™ (s, a)

Question: is this 711 deterministic or stochastic? Assume for each
state s there is a unique max, Q™ (s, a).
Answer: Deterministic

@ Now consider evaluating the policy of this new ;1. Recall in
model-free policy evaluation, we estimated V7, using 7 to generate
new trajectories

@ Question: Can we compute Q™+1(s, a) Vs, a by using this ;11 to
generate new trajectories?

Answer: No.

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Class Structure

@ Last time: Policy evaluation with no knowledge of how the world
works (MDP model not given)
e Control (making decisions) without a model of how the world works

@ Generalization — Value function approximation

&— /(‘vnmj N/,D/V/U ‘_9062/&/

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Today's Lecture

@ Generalized Policy Improvement

@ Monte-Carlo Control with Tabular Representations
@ Greedy in the Limit of Infinite Exploration

@ Temporal Difference Methods for Control

© Model Free Value Function Approximation
@ Policy Evaluation
@ Monte Carlo Policy Evaluation
@ Temporal Difference TD(0) Policy Evaluation

© Control using Value Function Approximation
@ Control using General Value Function Approximators
@ Deep Q-Learning

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Table of Contents

@ Generalized Policy Improvement

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function



Model-free Policy lteration

Initialize policy 7

Repeat:

e Policy evaluation: compute Q™
e Policy improvement: update 7 given Q™

May need to modify policy evaluation:
o If 7 is deterministic, can't compute Q(s, a) for any a # 7(s)
@ How to interleave policy evaluation and improvement?

e Policy improvement is now using an estimated Q é(CP"’V" <
4
g< frweling
3 frew
of e -

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024 7/85



The Problem of Exploration

World

Observation
Reward Action

Agent

@ Goal: Learn to select actions to maximize total expected future reward
@ Problem: Can't learn about actions without trying them (need to
explore>

@ Problem: But if we try new actions, spending less time taking actions
that our past experience suggests will yield high reward (need to
exploit knowledge of domain to achieve high rewards)

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



e-greedy Policies

Simple idea to balance exploration and achieving rewards

Let |A| be the number of actions

Then an e-greedy policy w.r.t. a state-action value Q(s, a) is
n(als) =
o argmax, Q(s,a), w. prob 1 — e+ 5

o a' # argmax Q(s, a) w. prob Al

In words: select argmax action with probability 1 — ¢, else select

action uniformly at random /, & j ""“Lj
é /e M.d& w[j

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024 9/85



Policy Improvement with e-greedy policies

@ Recall we proved that policy iteration using given dynamics and
reward models, was guaranteed to monotonically improve

@ That proof assumed policy improvement output a deterministic policy

@ Same property holds for e-greedy policies

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Monotonic e-greedy Policy Improvement

Theorem

For any e-greedy policy 7;, the e-greedy policy w.r.t. Q™, w1 is a
monotonic improvement V7i+l > \/7i

Q7i(s, mit1(s))

= > mipa(als)QTi(s, a)

acA

= (e/|A]) |:ZQ sa:|+(lfe)maa><Q'”i(s,a)

acA

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024 11/85



Today: Model-free Control

Generalized policy improvement

Importance of exploration

Monte Carlo control

Model-free control with temporal difference (SARSA, Q-learning)

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Table of Contents

@ Monte-Carlo Control with Tabular Representations

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Recall Monte Carlo Policy Evaluation, Now for Q

1. Initialize Q(s,a) =0,N(s,a) =0V(s,a), k=1, Inpute=1, 7
2: loop

3:  Sample k-th episode (Sk1,ak 1, rk,1; k2, - - - » Sk, T) given

3. Compute Gyt = rie + Vrker1 + Vorieso + -y trer, Vt
4 fort=1,...,T do

5: if First visit to (s,a) in episode k then £

6 N(s,a) = N(s,a) +1 o f213*

7 Q(st, ar) = Q(st, ar) + N(i,a)(Gk’t — Q(st, ar))

8 end if

9: end for

100 k=k+1

11: end loop

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Monte Carlo Online Control / On Policy Improvement

1. Initialize Q(s,a) =0,N(s,a) =0V(s,a), Sete=1, k=1

2: x = e-greedy(Q) // Create initial e-greedy policy

3: loop eprsoce s

4:  Sample k-th episode (Sk 1, k.1, k1, Sk,2; - - - > Sk,T) given mk

4 Gpr = ree +Yree+1 + 72fk,t+2 + - 7Ti71rk,Ti

5 fort=1,...,T do

6: if First visit to (s, a) in episode k then

7: N(s,a) = N(s,a) +1

8: Q(st; ae) = Q(st, ar) + N(i,a)(Gk,t — Q(st, ar))

o: end if

10:  end for L S

11: k=k+1l e=1/k 'FM e2c a"j“""x Q&-,o\x

12: 7, = e-greedy(Q) // Policy improvement 7(s) = b/pt:'; [—&

13: end loop el rPndev—

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Optional Worked Example: MC for On Policy Control

@ Mars rover with new actions:

o r(—,a1)=[100000+10], r(—,2) =[000000 +5], y = 1.
Assume current greedy 7(s) = a1 Vs, e=.5. Q(s,a) =0 for all (s, a)
Sample trajectory from e-greedy policy
Trajectory = (s3, a1, 0, s, a2, 0, s3, a1, 0, s, az, 0, s1, a1, 1, terminal)
First visit MC estimate of Q of each (s, a) pair?
Q“™(—,a1)=1[1010000]

After this trajectory (Select all)
Q™ (—,a2)=[0000000]
The new greedy policy would be: 7 = [1 tie 1 tie tie tie tie]

The new greedy policy would be: 7 = [1 2 1 tie tie tie tie]
If e =1/3, prob of selecting a; in s in the new e-greedy policy is 1/9.
If e =1/3, prob of selecting a; in s in the new e-greedy policy is 2/3.

If e =1/3, prob of selecting a; in s in the new e-greedy policy is 5/6.
o Not sure

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Properties of MC control with e-greedy policies

@ Computational complexity?
@ Converge to optimal Q* function?

@ Empirical performance?

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



L4N2 Check Your Understanding: Monte Carlo Online

Control / On Policy Improvement

1: Initialize Q(s,a) =0, N(s,a) =0V(s,a),Sete=1, k=1
2: mx = e-greedy(Q) // Create initial e-greedy policy
3: loop
4 Sample k-th episode (sk,1, ak,1, Fk,1, Sk,2, - - - Sk, T) given Tk Z\
4 Gt = Nt + Vriest + Ve + -y e, = ¢
5 fort=1,...,T do ?‘3\\3
6 if First visit to (s, a) in episode k then
7 N(s,a) = N(s,a)+1
8: Q(st, ar) = Q(st, ar) + @(Gk,t — Q(st,ar))
9: end if
10: end for
11:  k=k+1,e=1/k
12: 7 = e-greedy(Q) // Policy improvement
13: end loop

o Is @ an estimate of @™? When might this procedure fail to compute
the optimal Q*?

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Table of Contents

@ Greedy in the Limit of Infinite Exploration

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter



Greedy in the Limit of Infinite Exploration (GLIE)

Definition of GLIE

@ All state-action pairs are visited an infinite number of times

,|—|>n;o N;i(s,a) — oo [7/5 o—

@ Behavior policy (policy used to act in the world) converges to greedy

policy
lim;_ o0 m(als) — argmax, Q(s, a) with probability 1

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Greedy in the Limit of Infinite Exploration (GLIE)

Definition of GLIE

@ All state-action pairs are visited an infinite number of times

lim Ni(s,a) — o0
1— 00

@ Behavior policy (policy used to act in the world) converges to greedy

policy
lim;_ o0 m(als) — argmax, Q(s, a) with probability 1

@ A simple GLIE strategy is e-greedy where € is reduced to 0 with the
following rate: ¢; = 1/i

and vis)t aff skfes

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



GLIE Monte-Carlo Control using Tabular Representations

GLIE Monte-Carlo control converges to the optimal state-action value
function Q(s,a) — Q*(s, a)

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Table of Contents

@ Temporal Difference Methods for Control

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Model-free Policy Iteration with TD Methods

o Initialize policy 7
@ Repeat:
e Policy evaluation: compute Q™ using temporal difference updating
with e-greedy policy
e Policy improvement: Same as Monte carlo policy improvement, set 7
to e-greedy (Q™)
o Method 1: SARSA sk ©2 scfuin rewsvd mxfseh m
@ On policy: SARSA computes an estimate @ of policy used to act

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



General Form of SARSA Algorithm

1: Set initial e-greedy policy 7 randomly, t = 0, initial state s; = s
2: Take a; ~ 7(s;) = -
3: Observe (r¢, St11)

4: loop

5. Take action ag1 ~ m(se41) // Sample action from policy

6:  Observe ( rt+1,st+2) {305t

7

Update inen Sty Aty Ity St4+1, At+1):

R pearde Qs ae )+ o (ry 7 Q5re. arer) —

T Qs af)
8:  Perform policy improvement:

f"'l\ ]/_S ﬁ/ﬁ)-’— .'Drjm.n)(o\ Q(SrOK} W/f"°5 j—€

p’)ud_av—\ (<Y («/ko—(c/\
oo t=t+1, &= UF . ‘
10: end loop [f Sgt2 13 ferwpma /

vent epsede s2vwple S

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



General Form of SARSA Algorithm

Set initial e-greedy policy w, t = 0, initial state s; = 59

Take a; ~ 7(st) // Sample action from policy

Observe (rt, st41)

loop
Take action a1 ~ 7(st+1)
Observe (re+1, St+2)
Q(st, at) < Q(st, ar) + alre + vQ(Set1, ar+1) — Q(st, at))
7(st) = arg max, Q(st, a) w.prob 1 — ¢, else random
t=t+1 €=/t

end loop

© 0N aRs b=

—
e

@ See worked example with Mars rover at end of slides

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Properties of SARSA with e-greedy policies

@ Computational complexity?
@ Converge to optimal Q* function? Recall:
o Q(st,ar) < Q(st; ar) +alre +7Q(Se+1, ae1) — Q(se; ar))
o 7(s;) = arg max, Q(s¢, a) w.prob 1 — ¢, else random
e @ is an estimate of the performance of a policy that may be changing
at each time step

@ Empirical performance?

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Convergence Properties of SARSA

SARSA for finite-state and finite-action MDPs converges to the optimal
action-value, Q(s,a) — Q*(s, a), under the following conditions:

@ The policy sequence m¢(al|s) satisfies the condition of GLIE

@ The step-sizes a; satisfy the Robbins-Munro sequence such that

[e%9)
E ar = o0
t=1
0
2
ay < o
t=1

@ For ex. ay = % satisfies the above condition.

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Properties of SARSA with e-greedy policies

Result builds on stochastic approximation [992 (999
Relies on step sizes decreasing at the right rate pé‘j"‘f’&

Relies on Bellman backup contraction property

Relies on bounded rewards and value function

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



On and Off-Policy Learning

@ On-policy learning
e Direct experience
e Learn to estimate and evaluate a policy from experience obtained from
following that policy

o Off-policy learning

o Learn to estimate and evaluate a policy using experience gathered from
following a different policy

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Q-Learning: Learning the Optimal State-Action Value

@ SARSA is an on-policy learning algorithm

@ SARSA estimates the value of the current behavior policy (policy
using to take actions in the world)

@ And then updates that (behavior) policy

@ Alternatively, can we directly estimate the value of 7* while acting
with another behavior policy mp?

o Yes! Q-learning, an off-policy RL algorithm

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Q-Learning: Learning the Optimal State-Action Value

@ SARSA is an on-policy learning algorithm
o Estimates the value of behavior policy (policy using to take actions in

the world)
e And then updates the behavior policy
@ Q-learning
e estimate the Q value of 7 while acting with another behavior policy 7
o Key idea: Maintain @ estimates and bootstrap for best future value
o Recall SARSA a2l achien

A

Q(st, ar) < Q(st, ar) + a(re + v Q(St+1, ar41)) — Q(se, ar))
Q-learning: zs' P(s' [s,a) V s B

Q(st; at) < Q(st, ar) + af(re + max Q(st+1,3)) — Q(st, ar))

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Q-Learning with e-greedy Exploration

1: Initialize Q(s,a),Vs € S,a € A t =0, initial state s; = sp

2: Set 7y, to be e-greedy w.r.t. @

3: loop

4:  Take a; ~ mp(st) // Sample action from policy

5. Observe (rt, St+1)

6:  Q(st,ar) < Q(st,ar) + a(r: +ymax, Q(se+1,a) — Q(st, at))
7. w(st) = arg max, Q(st, a) w.prob 1 — ¢, else random

g t=t+1 e=1/4

9: end loop

See optional worked example and optional understanding check at the end
of the slides

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Q-Learning with e-greedy Exploration

*-7[? !)ulé v

@ What conditions are sufficient to ensure that Q-learning with e-greedy
exploration converges to optimal Q*7
Visit all (s, a) pairs infinitely often, and the step-sizes « satisfy the
Robbins-Munro sequence. Note: the algorithm does not have to be
greedy in the limit of infinite exploration (GLIE) to satisfy this (could
keep € large).

@ What conditions are sufficient to ensure that Q-learning with e-greedy
exploration converges to optimal 7*7?
The algorithm is GLIE, along with the above requirement to ensure
the Q value estimates converge to the optimal Q.

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Table of Contents

© Model Free Value Function Approximation
@ Policy Evaluation
@ Monte Carlo Policy Evaluation
@ Temporal Difference TD(0) Policy Evaluation

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Motivation for Function Approximation

@ Avoid explicitly storing or learning the following for every single state

and action
e Dynamics or reward model
e Value
e State-action value
e Policy

@ Want more compact representation that generalizes across state or

states and actions
o Reduce memory needed to store (P,R)/V/Q/x

o Reduce computation needed to compute (P,R)/V/Q/x
e Reduce experience needed to find a good (P,R)/V/Q/x

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function

Winter 2024



State Action Value Function Approximation for Policy

Evaluation with an Oracle

e
6-
[ scfr

@ First assume we could query any state s and action a and an oracle
would return the true value for Q™ (s, a)

@ Similar to supervised learning: assume given ((s, a), Q" (s, a)) pairs

@ The objective is to find the best approximate representation of Q™

given a particular parameterized function @(s, a;
Py z [ e

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Stochastic Gradient Descent

@ Goal: Find the parameter vector w that minimizes the loss between a
true value function Q™ (s, a) and its approximation Q(s, a; w) as
represented with a particular function class parameterized by w.

@ Generally use mean squared error and define the loss as
(4D Jw) = B[(@7(s.2) ~ Q(s. 2 w))]

@ Can use gradient descent to find a local minimum
1

° Stochastlc gradient descent (SGD) uses a finite number of (often

one) samples to compute an a prOX|mate ﬁradleqt \7
302D -2 Ex L{QTGe)~ Q o, NVl

@ Expected SGD is the same as the full gradient update

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Stochastic Gradient Descent

@ Goal: Find the parameter vector w that minimizes the loss between a
true value function Q" (s, a) and its approximation Q(s, a; w) as
represented with a particular function class parameterized by w.

@ Generally use mean squared error and define the loss as

J(w) = E[(Q7(s,2) — Q(s, a; w))?]
@ Can use gradient descent to find a local minimum
1
Aw = —EaVWJ(w)

@ Stochastic gradient descent (SGD) uses a finite number of (often
one) samples to compute an approximate gradient:

Vuwld(w) = VwE[Q"(s,a)— CA?A(s, a; w))? )
—2E;[(Q™(s,a) — Q(s,a; w)|VwQ(s, a, w)

@ Expected SGD is the same as the full gradient update

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Table of Contents

@ Model Free Value Function Approximation
@ Policy Evaluation

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter



Model Free VFA Policy Evaluation

@ No oracle to tell true Q7 (s, a) for any state s and action a

@ Use model-free state-action value function approximation
~——

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Model Free VFA Prediction / Policy Evaluation

Recall model-free policy evaluation (Lecture 3)

o Following a fixed policy 7 (or had access to prior data)
o Goal is to estimate V™ and/or Q™

Maintained a lookup table to store estimates V™ and/or Q™

Updated these estimates after each episode (Monte Carlo methods)
or after each step (TD methods)

@ Now: in value function approximation, change the estimate
update step to include fitting the function approximator

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Table of Contents

@ Model Free Value Function Approximation

@ Monte Carlo Policy Evaluation

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter



Monte Carlo Value Function Approximation

@ Return G; is an unbiased but noisy sample of the true expected return
Qﬂ-(sta at)

@ Therefore can reduce MC VFA to doing supervised learning on a set
of (state,action,return) pairs:

<(51, 81), G1>, ((52, 82), G2>, ey <(ST, aT), GT>

o Substitute G; for the true Q™ (s;, a;) when fit function approximator

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



MC Value Function Approximation for Policy Evaluation

1. Initialize w, k=1

2: loop

3:  Sample k-th episode (Sk 1, ak1, k.15 k.25 - - - » Sk,L, ) given T

4 fort=1,...,L, do

5 if First visit to (s, a) in episode k then

o Glsa) =Sy

7 Vwl(w) = —2[Ge(s, a)— Q(s¢, ar; w)]|Vw Q(st, ar; w) (Compute
Gradient) R wetd il X e

8: Update weights Aw

9: end if

10:  end for

11: k=k+1

12: end loop

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Table of Contents

@ Model Free Value Function Approximation

@ Temporal Difference TD(0) Policy Evaluation

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter



Recall: Temporal Difference Learning w/ Lookup Table

Uses bootstrapping and sampling to approximate V™

Updates V™ (s) after each transition (s, a, r,s’):

V7(s) = V7(s)+alr+V7(s) = V7(s))

Target is r + yV7(s’), a biased estimate of the true value V7(s)

Represent value for each state with a separate table entry

Note: Unlike MC we will focus on V instead of Q for policy
evaluation here, because there are more ways to create TD targets
from @ values than V values

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Temporal Difference TD(0) Learning with Value Function

Approximation

Uses bootstrapping and sampling to approximate true V7

Updates estimate V™ (s) after each transition (s, a, r, s’):

VT(s) = V7(s)+alr+ V() = V7(s))

Target is r +yV7™(s), a biased estimate of the true value V7(s)

In value function approximation, target is r + 7\7”(5’; w), a biased
and approximated estimate of the true value V7(s)

@ 3 forms of approximation:

© Sampling
@ Bootstrapping
© Value function approximation

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Temporal Difference TD(0) Learning with Value Function

Approximation

o In value function approximation, target is r +~V7(s"; w), a biased
and approximated estimate of the true value V7(s)

@ Can reduce doing TD(0) learning with value function approximation
to supervised learning on a set of data pairs:

o (s1,n + YV (s;w)), (52,12 + 7V (s3;w)), ...
@ Find weights to minimize mean squared error

J(w) = Ex[(r + 1V (551, w) = V(55 w))?]

@ Use stochastic gradient descent, as in MC methods

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



TD(0) Value Function Approximation for Policy Evaluation

1: Initialize w, s
2: loop
3:  Given s sample a ~ w(s), r(s,a),s’ ~ p(s'|s, a)

4 Vydw) = =2[r+~V(s';w) — V(s; W)V V(s; w)
5. Update weights Aw

6: if s’ is not a terminal state then

7: Set s =5

8: else

9: Restart episode, sample initial state s

10  end if

11: end loop

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Table of Contents

© Control using Value Function Approximation
@ Control using General Value Function Approximators
@ Deep Q-Learning

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Table of Contents

@ Control using Value Function Approximation
@ Control using General Value Function Approximators

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Control using Value Function Approximation

@ Use value function approximation to represent state-action values
@’r(s, aw)x QT
o Interleave
e Approximate policy evaluation using value function approximation
o Perform e-greedy policy improvement
@ Can be unstable. Generally involves intersection of the following:

e Function approximation
e Bootstrapping
o Off-policy learning

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Action-Value Function Approximation with an Oracle

o Q7(s,aw)~ Q"
@ Minimize the mean-squared error between the true action-value
function Q7 (s, a) and the approximate action-value function:

J(w) = E-[(Q"(s,a) — Q7(s, a; w))’]

@ Use stochastic gradient descent to find a local minimum

Vwl(w) = —2B [(Q“(s,a)—oﬂ(s,a;w))vwéﬂ(s,a;w)]

@ Stochastic gradient descent (SGD) samples the gradient

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Incremental Model-Free Control Approaches

@ Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value for true Q(st, at)

Aw = o(Q(st, ar) — Q(st, ar; w))Vw Q(st, ar; w)
@ In Monte Carlo methods, use a return G; as a substitute target

Aw = oGt — Q(st, ar; w))Vuw Q(st, ar; w)

@ SARSA: Use TD target r +~Q(s’, a; w) which leverages the current
function approximation value

Aw = a(r +~7Q(s',a"; w) — Q(s, a; w)) Vi Q(s, a; w)
o Q-learning: Uses related TD target r +~ maxy Q(s', a’; w)

Aw = a(r + vy max Q(s',a;w) — Q(s, a;,w))V, Q(s, a; w)

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



"Deadly Triad” which Can Cause Instability

e Informally, updates involve doing an (approximate) Bellman backup
followed by best trying to fit underlying value function to a particular
feature representation

@ Bellman operators are contractions, but value function approximation
fitting can be an expansion

e To learn more, see Baird example in Sutton and Barto 2018
@ "Deadly Triad” can lead to oscillations or lack of convergence

e Bootstrapping
o Function Approximation CreofE @Erdeen

o Off policy learning (e.g. Q-learning) [??S‘

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Table of Contents

@ Control using Value Function Approximation

@ Deep Q-Learning

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter



Using these ideas to do Deep RL in Atari

state 4\ 1 /| . ) action

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function



Q-Learning with Neural Networks

@ Q-learning converges to optimal Q*(s, a) using tabular representation
@ In value function approximation Q-learning minimizes MSE loss by
stochastic gradient descent using a target @ estimate instead of true
Q
@ But Q-learning with VFA can diverge
@ Two of the issues causing problems:
o Correlations between samples
o Non-stationary targets
@ Deep Q-learning (DQN) addresses these challenges by using

e Experience replay
o Fixed Q-targets

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



DQNs: Experience Replay

@ To help remove correlations, store dataset (called a replay buffer) D

from prior experience

S1,4d1,12,52

52,4d2,13,53

53,43, /4,54

Sty at, 't4+1, St+1

— s,a,r,s

@ To perform experience replay, repeat the following:
o (s,a,r,s’) ~ D: sample an experience tuple from the dataset

N

o Compute the target value for the sampled s: r + v maxy Q(s',a"; w)
o Use stochastic gradient descent to update the network weights

Aw = afr + v max Q(s',a; w) — Q(s, 3, w))Vw Q(s, a; w)

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



DQNs: Experience Replay

@ To help remove correlations, store dataset D from prior experience

51,41, 12,52

/
52,4d2,13,53 — Ss,a, s
53,43, 4, 54

Sty Aty Mt+1, St+1

@ To perform experience replay, repeat the following:
o (s,a,r,s’") ~ D: sample an experience tuple from the dataset
o Compute the target value for the sampled s: r + v maxy @(s’7 a;w)
o Use stochastic gradient descent to update the network weights

) — @(s7 a; w))VW@(s, a,w)

w
b

Aw = afr + ymax Q(s', a;
a/

o Uses target as a scalar, but function weights will get updated
on the next round, changing the target value

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



s: Fixed Q-Targets

&1

@ To help improve stability, fix the target weights used in the target
calculation for multiple updates

@ Target network uses a different set of weights than the weights being
updated

o Let parameters w— be the set of weights used in the target, and w
be the weights that are being updated

@ Slight change to computation of target value:
o (s,a,r,s') ~ D: sample an experience tuple from the dataset

PN

o Compute the target value for the sampled s: r + vy maxy Q(s',a’; w™)
o Use stochastic gradient descent to update the network weights

Aw = afr + ymax Q(s’,a;w™) — Q(s, 3, w))Vw Q(s, a; w)

—

\_/_,
f?vrl,f"

T F

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



DQN Pseudocode

1: Input C, o, D = {}, Initialize w, w~ =w, t =0

2: Get initial state s

3: loop

4. Sample action a; given e-greedy policy for current é(st, a; w)
5: Observe reward r; and next state sy 1

6: Store transition (s¢, ar, rt, Se+1) in replay buffer D

7: Sample random minibatch of tuples (s;, a;, rj, sj+1) from D
8: for j in minibatch do

9: if episode terminated at step i + 1 then

10: Yi=r

11: else

12: yi =r +ymaxy Qsiy1,2a;w™)

13: end if

14: Do gradient descent step on (y; — Q(sj, aj; w))? for parameters w: Aw = a(y; — Q(sj, aj; w))Vw Q(s;, aj; w)
15: end for

160 t=t+1

17:  if mod(t,C) == 0 then

18: w4~ w

19:  endif

20: end loop

Note there are several hyperparameters and algorithm choices. One needs to choose the neural network architecture, the
learning rate, and how often to update the target network. Often a fixed size replay buffer is used for experience replay, which

introduces a parameter to control the size, and the need to decide how to populate it.

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter



Check Your Understanding L4N3: Fixed Targets

N
In DQN we compute the target value for the sampled (s, a, r,s) using
a separate set of target weights: r + vy maxy Q(s’,a’; w™)

Select all that are true
This doubles the computation time compared to a method that does
not have a separate set of weights

This doubles the memory requirements compared to a method that E
does not have a separate set of weights

@ Not sure

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Check Your Understanding L4N3: Fixed Targets.

Solutions

e In DQN we compute the target value for the sampled (s, a, r, s’) using
a separate set of target weights: r +ymaxy Q(s’,a’;w™)
@ Select all that are true

@ This doubles the computation time compared to a method that does
not have a separate set of weights

@ This doubles the memory requirements compared to a method that
does not have a separate set of weights

@ Not sure

Answer: It doubles the memory requirements.

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



DQNs Summary

DQN uses experience replay and fixed Q-targets

Store transition (s, at, re41, St+1) in replay memory D
Sample random mini-batch of transitions (s, a, r,s’) from D
Compute Q-learning targets w.r.t. old, fixed parameters w—

Optimizes MSE between Q-network and Q-learning targets

Uses stochastic gradient descent

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



DQNs in Atari

End-to-end learning of values Q(s, a) from pixels s
Input state s is stack of raw pixels from last 4 frames
Output is Q(s, a) for 18 joystick/button positions
Reward is change in score for that step

Used a deep neural network with CNN

Network architecture and hyperparameters fixed across all games

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Convolution Convolution Fully connected Fully connected

Vo
ER

ddgonan_ dddoshn  dddonao

ANV A\ =
BPoezi-o: o
B o /e i O)

of ] B\ = 7/1 !/ o

g Y/ 1 )/ 8

o] B e Y =

1 network, outputs Q value for each action

Figure: Human-level control through deep reinforcement learning, Mnih et al,
2015

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function



%000  %000L %009 %00S %00V  %00E  %00Z %00k %0
L _?: 1 1 1 Il 1 I

h et al

[ aBusnay sewnzajuop
943 sleAugd
%s || semesn

Mn

[ o]

splosaisy

¢

8

F:
ing,

prey Jony
1s1oH yueg
apadiue)
puewwo) seddoud
JOM 1O PIEZI
auoz ameg
xuaisy
(ED]
Heg.0

fexo0H 20)
umog pue dn
Aaiaq Buiusiy
oinpuz

10114 BuwiL
Kemsaiy
Jeise na-Buny
wewpjueiny
1opy weag
ssapenu| soeds
6uod

puog sawer

1oAdF-uBWIY MOIOG e I [
[ suay.
oosebuey

21008 10 [arer-Uewy 18 woL I

inforcement learn

Jauuny peoy
unessy

linuy

Sweo siuL aweN
Yoeuy uowsq
Jaydo

sequir Azein
snuepy
HUEI0q0Y
Jauung Jeig
Inoyeaig

6uxog

lequid 03pIA

level control through deep re

Figure: Human

2015

©
-
<
=
(%)
=
>
0
(D)
o
=
o
()

8
=
(5]
c
s
2
o
?
=
<]
O
o
9
i
©
o
<]
=
<
@
2
(5]
o1
4
©
4
4
=
o)
=
5
o
o
2
‘T
o
<
B
&
(]
O
=
=
2
[41]
@
=
=
w



Which Aspects of DQN were Important for Success?

. Deep
Game Linear Network
Breakout 3 3
Enduro 62 29

River Raid | 2345 1453
Seaquest 656 275

Space 301 302
Invaders

Note: just using a deep NN actually hurt performance sometimes!

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Which Aspects of DQN were Important for Success?

. Deep | DQN w/
Game Linear Network | fixed Q
Breakout 3 3 10
Enduro 62 29 141
River Raid | 2345 1453 2868
Seaquest 656 275 1003
Space 301 302 373
Invaders

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Which Aspects of DQN were Important for Success?

. Deep DQN w DQN w DQN w/repla
Game Linear Network | fixed Q/ replay / and fixe{i Q ’
Breakout 3 3 10 241 317
Enduro 62 29 141 831 1006
River Raid | 2345 1453 2868 4102 7447
Seaquest 656 275 1003 823 2894
Space 301 302 373 | 826 1089
Invaders

@ Replay is hugely important

@ Why? Beyond helping with correlation between samples, what does
replaying do?

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function

Winter 2024




@ Success in Atari has led to huge excitement in using deep neural
networks to do value function approximation in RL
@ Some immediate improvements (many others!)
o Double DQN (Deep Reinforcement Learning with Double Q-Learning,
Van Hasselt et al, AAAI 2016)
o Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR
2016)
o Dueling DQN (best paper ICML 2016) (Dueling Network Architectures
for Deep Reinforcement Learning, Wang et al, ICML 2016)

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



What You Should Understand

@ Be able to implement TD(0) and MC on policy evaluation
@ Be able to implement Q-learning and SARSA and MC control
algorithms

@ List the 3 issues that can cause instability and describe the problems
qualitatively: function approximation, bootstrapping and off-policy
learning

@ Know some of the key features in DQN that were critical (experience
replay, fixed targets)

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Class Structure

o Last time and start of this time: Model-free reinforcement learning
with function approximation

o Next time: Policy gradients

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Monotonic e-greedy Policy Improvement

For any e-greedy policy 7;, the e-greedy policy w.r.t. Q™, w41 is a
monotonic improvement V7i+l > V/7i

QTi(s, mix1(s)) = > mis1(als)QTi(s, a)

a€A
= (e/IA]) Z QTi(s,a)| +(1—¢) maxQ i(s,a)
lacA ]

= (e/1AD) Z QTi(s,a)| + (1 — e)maax Q™i(s, a)

lacA 1—e
o] _ mials) — 17
= (/14D ZQ i(s,0)| + (1~ Y maxQTi(s,8) 3 ————""
lacA ] acA €
milals) = 15
> S QTis,a)| +1—€) Y. ———5-QTi(s,a)
‘A‘ acA acA l=ec
= 3 mials)Q (s, a) = VTi(s)
acA
. —_— — = ~"

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024 76 /85



SARSA Initialization Conceptual Question

@ Mars rover with new actions:

o r(—,a)=[100000+10], r(—,a)=[000000 +5], y =1.
Initialize e = 1/k, k=1, and « = 0.5, Q(—, a1) = r(—, a1),
Q(*7 ‘92) = r(*v 32)
SARSA: (se, a1, 0, s7, 32,5, s7).
Does how Q is initialized matter (initially? asymptotically?)?
Asymptotically no, under mild condiditions, but at the beginning, yes

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Optional Worked Example: MC for On Policy Control

Solution

Mars rover with new actions:
o r(—a)=[100000+10], r(—,a) =[000000 +5], v = 1.
Assume current greedy 7(s) = a1 Vs, e=.5. Q(s,a) = 0 for all (s, a)

Sample trajectory from e-greedy policy
Trajectory = (s3, a1, 0, s, a2, 0, s3, a1, 0, s, a2, 0, s1, a1, 1, terminal)
First visit MC estimate of Q of each (s, a) pair?
Q< ™(—,a1)=1[1010000]
After this trajectory:
@ Q"(—,a2)=[0100000]
@ The new greedy policy would be: m = [1 2 1 tie tie tie tie]

e If e =1/3, prob of selecting a; in s1 in the new e-greedy policy is 5/6.

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Optional Worked Example SARSA for Mars Rover

1: Set initial e-greedy policy 7, t = 0, initial state s; = sp
2: Take a; ~ 7(s:) // Sample action from policy
3: Observe (¢, St+1)
4: loop
5: Take action ary1 ~ 7(se41)
6: Observe (rey1,5e+2)
7 Q(St, at) <~ Q(St, at) + Oé(rt + ’YQ(SHI, 3t+1) - Q(St, at))
8:  m(st) = argmaxa Q(st, a) w.prob 1 — ¢, else random
9: t=t+1
10: end loop

@ Initialize e =1/k, k=1, and « =0.5, Q(—,a;)=[10000 0 +10],
Q(—,a)=[100000+5],v=1
@ Assume starting state is sg and sample a;

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Worked Example: SARSA for Mars Rover

1: Set initial e-greedy policy 7, t = 0, initial state s; = sp
2: Take a; ~ 7(s:) // Sample action from policy
3: Observe (¢, St+1)
4: loop
5: Take action ary1 ~ 7(se41)
6: Observe (rey1,5e+2)
7 Q(St, at) <~ Q(St, at) + Oé(rt + ’YQ(SHI, 3t+1) - Q(St, at))
8:  m(st) = argmaxa Q(st, a) w.prob 1 — ¢, else random
9: t=t+1
10: end loop

@ Initialize e =1/k, k=1, and « =0.5, Q(—,a;)=[10000 0 +10],
Q(—,a)=[100000+5],v=1
@ Assume starting state is sg and sample a;

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Worked Example: SARSA for Mars Rover

1: Set initial e-greedy policy 7, t = 0, initial state s; = sp
2: Take a; ~ 7(s:) // Sample action from policy
3: Observe (¢, St+1)
4: loop
5: Take action ary1 ~ 7(se41)
6: Observe (rey1,5e+2)
7 Q(St, at) <~ Q(St, at) + Oé(rt + ’YQ(SHI, 3t+1) - Q(St, at))
8:  m(st) = argmaxa Q(st, a) w.prob 1 — ¢, else random
9: t=t+1
10: end loop

@ Initialize e =1/k, k=1, and « =0.5, Q(—,a;)=[10000 0 +10],
Q(—,a)=[100000+5],v=1

@ Tuple: (sg,a1,0,s7,a2,5,57).

o Q(S5, 81) =5%x0+.5% (0 +’YQ(S7,32)) =25

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Worked Example: e-greedy Q-Learning Mars

1: Initialize Q(s,a),Vs € S,a € A t =0, initial state sy = s

2: Set 7p to be e-greedy w.r.t. @

3: loop

4:  Take a; ~ 7p(s:) // Sample action from policy

5. Observe (rt, St+1)

6:  Q(st,ar) « Q(st,ar) + alr: + v maxa Q(se11,a) — Q(st, ar))
7:  w(s:) = argmaxa Q(st, a) w.prob 1 — ¢, else random

8: t=t+1

9: end loop

@ Initializee=1/k, k=1, and @« =0.5, Q(—,a;)=[1000 0 0 +10],
Q(—,a2)=[100000+5],y=1
@ Like in SARSA example, start in sg and take a;.

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Worked Example: e-greedy Q-Learning Mars

1: Initialize Q(s,a),Vs € S,a € At =0, initial state s; = s

2: Set 7 to be e-greedy w.r.t. Q

3: loop

4:  Take a; ~ mp(s:) // Sample action from policy

5: Observe (rt, se+1)

6:  Q(st,ar) < Q(st,ar) + are + v maxs Q(se+1,a) — Q(st, ar))
7:  w(s:) = argmax, Q(st, a) w.prob 1 — ¢, else random

8: t=t+1

9: end loop

@ Initialize e =1/k, k=1, and « =0.5, Q(—,a;)=[10000 0 +10],
Q(—,a)=[100000+5],v=1

@ Tuple: (sg,a1,0,s7).

Q(ss,a1) =04 .5% (0 4+ ymaxy Q(s7,a’) — 0) = .5*¥10 =5

@ Recall that in the SARSA update we saw Q(ss,a1) = 2.5 because we used
the actual action taken at s; instead of the max

@ Does how Q is initialized matter (initially? asymptotically?)?
Asymptotically no, under mild condiditions, but at the beginning, yes

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Optional Check Your Understanding L4: SARSA and

Q-Learning

o SARSA: Q(st, at) < Q(st, ar) + are + vYQ(St+1, ar+1) — Q(st, at))
@ Q-Learning:
Q(st, ar) + Q(st, ar) + alr: +ymaxy Q(st+1,3) — Q(st, at))
Select all that are true
@ Both SARSA and Q-learning may update their policy after every step

@ If e =0 for all time steps, and Q is initialized randomly, a SARSA Q
state update will be the same as a Q-learning Q state update

© Not sure

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024



Optional Check Your Understanding SARSA and

Q-Learning Solutions

o SARSA: Q(st, at) + Q(st, ar) + are + vQ(St+1, ar+1) — Q(st, at))
@ Q-Learning:
Q(st, at) «+ Q(st,ar) + alr: +ymaxy Q(st+1,3) — Q(st, at))
Select all that are true
@ Both SARSA and Q-learning may update their policy after every step

Q If e =0 for all time steps, and Q is initialized randomly, a SARSA Q
state update will be the same as a Q-learning Q state update

© Not sure

Both are true.

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2024




	Generalized Policy Improvement
	Monte-Carlo Control with Tabular Representations
	Greedy in the Limit of Infinite Exploration 
	Temporal Difference Methods for Control
	Model Free Value Function Approximation
	Policy Evaluation
	Monte Carlo Policy Evaluation
	Temporal Difference TD(0) Policy Evaluation

	Control using Value Function Approximation
	Control using General Value Function Approximators
	Deep Q-Learning


