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Class Structure

@ Last time: Model-free value function approximation control and Deep
Q-learning

@ This time: Model-free value function approximation and more DQN

@ Next time: Policy search in large spaces / policy gradient methods
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Refresh Your Understanding: Modified AB Example: (Ex.

6.4, Sutton & Barto, 2018)

@ Two states A, B withy =1

@ Given 8 episodes of experience:
e A1, B,0 (observed 2 times)
e B,1 (observed 4 times)
o B,0 (observed 2 times)
@ Imagine run TD updates over data infinite number of times, and
(separately) MC over data an infinite number of times?

e What is VP(B) and VTP(A)? What is VM¢(B) and VMC(A)?
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Refresh Your Understanding: Modified AB Example: (Ex.

6.4, Sutton & Barto, 2018). Solution

@ Two states A, B withy =1

@ Given 8 episodes of experience:
e A1, B,0 (observed 2 times)
e B,1 (observed 4 times)
o B,0 (observed 2 times)
@ Imagine run TD updates over data infinite number of times, and
(separately) MC over data an infinite number of times?

e What is VP(B) and VTP(A)? What is VM¢(B) and VMC(A)?
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0 Model-free Function Approximation Convergence
@ Policy Evaluation
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Convergence Guarantees for Linear Value Function

Approximation for Policy Evaluation

@ Define the mean squared error of a linear value function
approximation for a particular policy 7 relative to the true value as

MSVE,(w) = u(s)(V(s) = V7(s; w))?

seS

@ where
o 4i(s): probability of visiting state s under policy 7 . Note " _pu(s) =1
o V7(s;w) = x(s)Tw, a linear value function approximation
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Convergence Guarantees for Linear Value Function

Approximation for Policy Evaluation

@ Define the mean squared error of a linear value function
approximation for a particular policy 7 relative to the true value as

MSVE,(w) = u(s — V™ (s; w))?
seS

@ where
o 4i(s): probability of visiting state s under policy 7 . Note > _pu(s) =1
o V™(s;w) = x(s)Tw, a linear value function approximation

@ Monte Carlo policy evaluation with VFA converges to the weights

wyc which has the minimum mean squared error possible with
respect to the distribution pu:

MSVE,(wyc) = mMi/nZ/L(s)(VW(s) — V7(s: w))?
seS
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Convergence Guarantees for TD Linear VFA for Policy

Evaluation: Preliminaries

For infinite horizon, the Markov Chain defined by a MDP with a
particular policy will eventually converge to a probability distribution
over states d(s)

d(s) is called the stationary distribution over states of 7

2..d(s) =1

d(s) satisfies the following balance equation:

d(s) = 32 3 w(als)p(s'ls, 2)d(s)
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Convergence Guarantees for Linear Value Function

Approximation for Policy Evaluation

@ Define the mean squared error of a linear value function
approximation for a particular policy 7 relative to the true value given
the distribution d as

MSVEy(w) =Y d(s)(V™(s) — V(s w))?

seS

@ where
e d(s): stationary distribution of 7 in the true decision process
o V7(s;w) = x(s)"w, a linear value function approximation
e TD(0) policy evaluation with VFA converges to weights wrp which is
within a constant factor of the min mean squared error possible given
distribution d:

MSVE(wrp) < 1_17 min 3 d(s)(V7(s) ~ V(s w))?
seS
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Check Your Understanding L5N1: Poll

e TD(0) policy evaluation with VFA converges to weights wp which is
within a constant factor of the min mean squared error possible for
distribution d:

MSVE(wrp) < 1_17 min 3" d(s)(V7(s) ~ V(s w))?
seS

o If the VFA is a tabular representation (one feature for each state),
what is the MSVE, for TD?

Depends on the problem
MSVE = 0 for TD

Not sure

© 00
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Check Your Understanding L5N1 : Poll

e TD(0) policy evaluation with VFA converges to weights wrp which is
within a constant factor of the min mean squared error possible for
distribution d:

o If the VFA is a tabular representation (one feature for each state),
what is the MSVE, for TD?
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Table of Contents

0 Model-free Function Approximation Convergence

@ Model-free Control with Linear Function Approximation Convergence
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Recall Incremental Model-Free Control Approaches

@ Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value

@ In Monte Carlo methods, use a return G; as a substitute target
Aw = Oé(Gt — Q(St, dt, W))VWQ(St, dt, W)

o For SARSA instead use a TD target r + yQ(s’, a; w) which leverages
the current function approximation value

Aw = ar+vQ(s',a'; w) — Q(s, a; W)V, Q(s, a; w)

@ For Q-learning instead use a TD target r + v max @(s’, a’; w) which
leverages the max of the current function approximation value

Aw = a(r + vy max Qs w) — Q(s, a; w))V, Q(s, a; w)
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Challenges of Off Policy Control: Baird Example !

e

7(solid|-) =1
yi(dashed|-) = 6/7
@ u(solid|) = 1/7
\\ V/’;"
A -

v =0.99
@ Behavior policy and target policy are not identical
@ Value can diverge
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Convergence of Policy Evaluation and Control Methods

with VFA

Algorithm Tabular | Linear VFA | General VFA
Monte-Carlo Control
Sarsa
Q-learning
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Active Area: Off Policy Learning with Function

Approximation

o Extensive work in better TD-style algorithms with value function
approximation, some with convergence guarantees: see Chp 11 SB

@ Will come up further later in this course
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Value Function Approximation®
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'Figure from Sutton and Barto 2018
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© Maximization Bias and Q-learning
@ Maximization bias
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Maximization Bias?

Consider single-state MDP (|S| = 1) with 2 actions, and both actions have 0-mean
random rewards, (E(r|a = a1) = E(r|a = a2) = 0).

Then Q(s,a1) = Q(s,a) =0= V(s)

Assume there are prior samples of taking action a; and a»

Let Q(s, a1), Q(s, a2) be the finite sample estimate of Q

Use an unbiased estimator for Q: e.g. Q(s,a1) = ﬁ Z:fl’al) ri(s, a1)

Let & = arg max, @(s, a) be the greedy policy w.r.t. the estimated Q

2Example from Mannor, Simester, Sun and Tsitsiklis. Bias and Variance
Approximation in Value Function Estimates. Management Science 2007
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Maximization Bias® Proof

Consider single-state MDP (|S| = 1) with 2 actions, and both actions have
0-mean random rewards, (E(r|a = a;) = E(r|a = ap) = 0).

Then Q(s,a1) = Q(s,a2) =0 = V(s)

Assume there are prior samples of taking action a; and a;

Let Q(s, a1), Q(s, a2) be the finite sample estimate of Q

Use an unbiased estimator for Q: e.g. Q(s,a1) = ﬁ S (s, a)

Let # = arg max, @(5, a) be the greedy policy w.r.t. the estimated Q

Even though each estimate of the state-action values is unbiased, the
estimate of #'s value V® can be biased:

3Example from Mannor, Simester, Sun and Tsitsiklis. Bias and Variance
Approximation in Value Function Estimates. Management Science 2007
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© Maximization Bias and Q-learning

@ Double Q-learning
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Double Q-Learning

@ The greedy policy w.r.t. estimated @ values can yield a maximization
bias during finite-sample learning

@ Avoid using max of estimates as estimate of max of true values
@ Instead split samples and use to create two independent unbiased
estimates of Qi(s1,a;) and Qx(s1, a;) Va.
o Use one estimate to select max action: a* = arg max, Q1(s1, a)

o Use other estimate to estimate value of a*: Qx(s, a*)
o Yields unbiased estimate: E(Qx(s, a*)) = Q(s, a*)
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Double Q-Learning

@ The greedy policy w.r.t. estimated @ values can yield a maximization
bias during finite-sample learning
@ Avoid using max of estimates as estimate of max of true values

@ Instead split samples and use to create two independent unbiased
estimates of Q1(s1, a;) and Qx(s1, a;) Va.
o Use one estimate to select max action: a* = arg max, Qy(s1, a)
o Use other estimate to estimate value of a*: Qy(s, a*)
o Yields unbiased estimate: E(Qx(s, a*)) = Q(s, a*)

@ Why does this yield an unbiased estimate of the max state-action
value?

@ If acting online, can alternate samples used to update Q1 and @»,
using the other to select the action chosen

@ Next slides extend to full MDP case (with more than 1 state)
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Double Q-Learning

1: Initialize Qi(s,a) and Q(s,a),Vs € S,a € A t =0, initial state s; = 5o
2: loop
3:  Select a; using e-greedy m(s) = argmaxa Qi(s¢, a) + Qa(s¢, a)
Observe (r¢, se+1)
if (with 0.5 probability) then
Qi(st, ar) < Quse, ar) + afre + yQ2(Ser1, arg maxa Qu(Se41,a)) — Qu(se, ar))
else
Q2(st, ar) +— Qa(st, ar) + alre + YQi(St41, arg maxa Qz(se41, a)) — Q2(st, ar))
9: end if
10: t=t+1
11: end loop

N a s

Compared to Q-learning, how does this change the: memory requirements,
computation requirements per step, amount of data required?
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Double Q-Learning

1: Initialize Qi(s,a) and Q(s,a),Vs € S,a € A t =0, initial state s; = 59
2: loop
3:  Select a; using e-greedy m(s) = arg max, Qi(st, a) + Q2(st, a)
Observe (re, se+1)
if (with 0.5 probability) then
Qi(st; ar) < Qu(se, ar) + a(re + yQ(se+1, arg maxa Qi(se+1,a)) — Qui(st, ar))
else
Q2(st, ar) + Qa(st, ar) + are + 7 Qu(Se+1, arg maxas Qo(se+1, ) — Qo(st, ar))
9: end if
10: t=t+1
11: end loop

N aa

Compared to Q-learning, how does this change the: memory requirements,
computation requirements per step, amount of data required?
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Double Q-Learning (Figure 6.7 in Sutton and Barto 2018)

100%

[\ 0 /0 0
75% D@ left kA/ right D

% left
actions 50%"
from A Q-learning
Double )
25% Q-learning
B%f—————m—mmmmmmmm—— — — — - — oo oo optimal
0
1 100 200 300

Episodes

Due to the maximization bias, Q-learning spends much more time
selecting suboptimal actions than double Q-learning.
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© Maximization Bias and Q-learning

@ Double DQN
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Recall DQN

@ Deep Q-learning (DQN): Q-learning with deep neural networks and

e Experience replay
o Fixed Q-targets

Aw = a(r + v max Q(s’,a;w™) — Q(s,a; w)) VW Q(s, a; w)

Emma Brunskill (CS234 Reinforcement Learn Lecture 6: Model-free RL with Value Functic Winter 2023 30/ 44



Recall DQN Pseudocode

1: Input C, o, D = {}, Initialize w, w~™ =w, t =0

2: Get initial state s

3: loop

4. Sample action a; given e-greedy policy for current O(st, a; w)
5: Observe reward r; and next state sy 1

6: Store transition (s¢, at, rt, Se+1) in replay buffer D

7: Sample random minibatch of tuples (s;, aj, rj, sj;1) from D
8: for j in minibatch do

9: if episode terminated at step i + 1 then

10: Yi=r

11: else

12: Yi = ri +ymaxy @(si+1,a’;w7)

13: end if

14: Do gradient descent step on (y; — Q(sj, aj; w))? for parameters w: Aw = a(y; — Q(sj, aj; w)) Vi Q(s;, aj; w)
15: end for

160 t=t+1

17: if mod(t,C) == 0 then

18: wo o—w

19:  endif

20: end loop
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Double DQN

@ Double DQN (Deep Reinforcement Learning with Double Q-Learning,
Van Hasselt et al, AAAI 2016)

o Extend double Q learning to DQN
@ Current Q-network w is used to select actions

@ Older Q-network w™ is used to evaluate actions

Action evaluation: w—

Aw = ofr + v Q(arg max Q(s',a;w); w™)—Q(s, a; w))

J/

Vv
Action selection: w
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Double DQN

Double DQN (Deep Reinforcement Learning with Double Q-Learning,
Van Hasselt et al, AAAI 2016)

Extend double Q learning to DQN

Current Q-network w is used to select actions

Older Q-network w™ is used to evaluate actions

Action evaluation: w—
7\

Aw = a(r + v Q(arg max Q(s',a; w); w™) —Q(s, a; w))

/

-~

Action selection: w

@ How is this different from fixed target network update used in DQN?
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Double DQN

@ Double DQN (Deep Reinforcement Learning with Double Q-Learning,
Van Hasselt et al, AAAI 2016)

Extend double Q learning to DQN
Current Q-network w is used to select actions

Older Q-network w™ is used to evaluate actions

Action evaluation: w—

A

PN

Aw = or + fyré(arg max Q(s',a; w); w™) —Q(s, a; w))

~~

Action selection: w

@ How is this different from fixed target network update used in DQN?
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Double DQN

@ Double DQN (Deep Reinforcement Learning with Double Q-Learning,
Van Hasselt et al, AAAI 2016)

o Extend double Q learning to DQN
@ Current Q-network w is used to select actions
@ Older Q-network w™ is used to evaluate actions
Action evaluation: w—
A Al - R A .
Aw = o(r+ v Q(arg max Q(s',a';w);w™) —Q(s, a; w))
Action selection: w
@ Very small code change, often can lead to significantly

improved results
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© Advances in Deep Model-free Based RL
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Rainbow: Combining Improvements in Deep Reinforcement

Learning. Hessel et al. 2018 (DeepMind)

DON
— DDQN
— Prioritized DDQN
~— Dueling DDQN
200%- A3C

Distributional DQN
— Noisy DQN
== Rainbow

100%

Median human-normalized score

L
100 200
Millions of frames

Figure: Median human-normalized performance across 57 Atari games. Curves
smoothed with a moving avg over 5 points.
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Many new methods

@ One (of many) significant ideas: use additional objectives

fo

online — I — q'li""ﬂ"g — > Q-learning Loss

encoder a1
z
t Qpyeees Qppk—1

conv. fransition

exponential model p
moving avg. i o q
P online g -~
2tk —> 0% | predicion —> Yi+k
6 projection Cosine
i Similarity Loss
target = farget ~
e
encoder | — EEEE Zt+k —> | projection Ytk
fm Im

St+k + aug.

Figure: Data-efficient reinforcement learning with self-predictive
representations. Schwarzer et al. ICLR 2021.
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What is Enabling Progress?

@ Benchmark tasks. Atari, Atari 100k, Mujoco, ...
@ Standing on the shoulders of giants... : building on past algorithms
e and code bases for said algorithms
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Model-free value function approximation RL: What You

Should Know

@ Be able to derive weight update for generic function approximation
for Q/VT™

@ Understand various (MC/SARSA/Q-learning) targets used when
updating Q function

Know what TD vs MC converge to for policy evaluation with a linear
function approximator

Be able to implement DQN

Define the maximization bias and give one tool for alleviating it
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Class Structure

@ Last time: Model-free value function approximation control and Deep
Q-learning

@ This time: Model-free value function approximation and more DQN

@ Next time: Policy search in large spaces / policy gradient methods
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Lecture 6: Refresh Your Knowledge

@ In TD learning with linear VFA (select all):
O w=w+a(r(s) +yx(ses1)Tw — x(s:) " w)x(s;)
Q V(s) = w(s)x(s)
© Asymptotic convergence to the true best minimum MSE linear
representable V/(s) is guaranteed for o € (0,1), v < 1.
© Not sure
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Lecture 6: Refresh Your Knowledge Solutions

@ In TD learning with linear VFA (select all):
QO w=w-+a(r(s)+vx(str1)"w — x(s:) Tw)x(s;)
Q V(s) = w(s)x(s)
© Asymptotic convergence to the true best minimum MSE linear

representable V/(s) is guaranteed for o € (0,1), v < 1.
@ Not sure
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