Lecture 5: Value Function Approximation

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2023

The value function approximation structure for today closely follows much
of David Silver’s Lecture 6.
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L5 Refresh Your Knowledge

@ In tabular MDPs, if using a decision policy that visits all states an infinite number of times, and in each state randomly

selects an action, then (select all)

@ Q-learning will converge to the optimal Q-values
@ SARSA will converge to the optimal Q-values
© Q-learning is learning off-policy
© SARSA is learning off-policy
@ Not sure

@ A TD error > 0 can occur even if the current V/(s) is correct Vs: [select all]
@ False
@ True if the MDP has stochastic state transitions
© True if the MDP has deterministic state transitions
@ Not sure
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L5 Refresh Your Knowledge

@ In tabular MDPs, if using a decision policy that visits all states an
infinite number of times, and in each state randomly selects an
action, then (select all)

@ A TD error > 0 can occur even if the current V(s) is correct Vs:
[select all]
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A note on Monte Carlo vs TD estimates

e Policy evaluation: V7 « (1-a) VT 4+ aViarget
® MC: Viarget(st) = G¢ (sum of discounted returns until the episode
terminates)
e Target is unbiased estimate of V7™
e Target can be high variance
o TD(O) Vtarget(st) = It + "}/V(S/)
o Target is a biased estimate of V™
o Target is lower variance

@ Which one should we use? Is there other alternatives?

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Value Function Approximation Winter 2023 5/66



n-step TD estimates

Policy evaluation: V™ « (1 —a)V7™ + a Viarget
@ MC: Viarget(st) = Gy (sum of discounted returns until the episode
terminates)

e Target is unbiased estimate of V™
o Target can be high variance

[*] TD(O) Vtarget(st) = It —+ ’}/V(Sl)
o Target is a biased estimate of V™
o Target is lower variance

Best of both worlds?
n—step TD Vta,get(st) =TIt + ’Yrt+]_ + ’}/rt+2 + ’yn V(5t+n)
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Performance of n-step TD methods as a function of «

0551
05F
Average 045f
RMS error
over 19 states 04
and first 10
episodes %[
03}
025 _I 1 1 1 1 ]
0 02 04 0.6 0.8 1
@ 19 state random walk task. Q

'Figure 7.2 from Sutton and Barto 2018
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Feature Vectors

@ Use a feature vector to represent a state s

x1(s)
x(s) = %(s)

Xn'(S)
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Recall: Linear Value Function Approximation for Prediction

With An Oracle

@ Represent a value function (or state-action value function) for a
particular policy with a weighted linear combination of features

n

V(siw) =3 x(s)ws = x(s)Tw

Jj=1

Objective function is
J(w) = E[(V7(s) = V(s: w))?]

@ Recall weight update is

1

Update is: Aw = —2a(V™(s) — x(s) T w)x
Update = step-size x prediction error x feature value
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Recall: Monte Carlo Value Function Approximation

@ Return G; is an unbiased but noisy sample of the true expected return
V7 (st)
Therefore can reduce MC VFA to doing supervised learning on a set
of (state,return) pairs: (s1, G1), (52, G2),..., (s, GT)

o Substitute G; for the true V™(s;) when fit function approximator

Concretely when using linear VFA for policy evaluation

Aw = oG — (st, w))VuV (st; w)
oGy — (St: w))x(st)
= oGy — x(st) " w)x(st)

Note: G; may be a very noisy estimate of true return
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MC Linear Value Function Approximation for Policy

Evaluation

1. Initializew =0, k=1

2: loop

3:  Sample k-th episode (sk 1, ak1, k15 k.25 - - - » Sk,L, ) given T
4 fort=1,...,L4 do

5: if First visit to (s) in episode k then

6 Ge(s) = X7k e

7 Update weights: Aw = a(G; — x(s¢) T w)x(st)

8

9

end if
end for
100 k=k+1
11: end loop
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Baird (1995)-Like Example with MC Policy Evaluation?

55

@ x(s1)=[20000001] (52)—[02000001] .x(ss) =[00000201]
x(s7)=[00000012] r(s)=0Vs 2 actions a; solid line, a» dotted

@ Small prob s; goes to terminal state st

@ Consider trajectory (s1, a1, 0, s7, a1, 0, s7,a1,0,s7). G(s1) =0

@ Let wo=[11111111]. MC update: Aw = a(G; — x(s:)"w)x(s:)
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Temporal Difference (TD(0)) Learning with Value

Function Approximation

Uses bootstrapping and sampling to approximate true V7

Updates estimate V™ (s) after each transition (s, a, r,s’):
VT(s) = V™(s)+a(r+~V™(s)— V(s))

Target is r +yV7(s')
In value function approximation, target is r + 7\7”(5’; w)

3 forms of approximation:
© Sampling
@ Bootstrapping
© Value function approximation
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Temporal Difference (TD(0)) Learning with Value

Function Approximation

o In value function approximation, target is r +~V7(s’; w), a biased
and approximated estimate of the true value V7(s)
e Can reduce doing TD(0) learning with value function approximation
to supervised learning on a set of data pairs:
o (s1,1 +yV7 (s, w)), (2,12 + 7V (s3; W), ...

@ Find weights to minimize mean squared error

J(w) = Ex[(r; + ’7\77T(5j+17 w) — V(Sj? w))?]
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Temporal Difference (TD(0)) Learning with Value

Function Approximation

@ In value function approximation, target is r + ’y\A/”(s’; w), a biased
and approximated estimate of the true value V7(s)

° SupervisedAIearning on a differentAset of data pairs:
(s1,1 +YV™(s2; w)), (s2, 2 + YV (s3; W)), . ..
@ In linear TD(0)

Aw = afr+4V7(s;w) — V(s;w))V, V™ (s; w)
= a(r+yV™(s;w) — V(s; w))x(s)
— a(r () T w — x(5)Tw)x(s)

o Note: we treat V™(s’; w) in target as a scalar (it is a function of w
but weight update ignores that)
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TD(0) Linear Value Function Approximation for Policy

Evaluation

1: Initializew =0, k=1

2: loop

3:  Sample tuple (sk, ak, rk, Sk+1) given 7
4:  Update weights:

w=w+a(r+yx(s)Tw — x(s)"w)x(s)

k=k+1
end loop

ISA
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Baird Example with T On Policy Evaluation ?

@@

@ x(s51)=[20000001] x(s2)=[02000001]...x(ss)=[00000201]
x(s7)=[00000012] r(s)=0Vs 2 actions a; solid line, a» dotted

@ Small prob s; goes to terminal state st
@ Consider tuple (s1, a1, 0, s7).
@ Let wo=[11111111]. TD update: Aw = a(r +yx(s')"w — x(s) " w)x(s)

'Figure from Sutton and Barto 2018
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Baird Example with T On Policy Evaluation ?

© x(s1)=[20000001] x(s)=[02000001]...x(ss)=[00000201]
x(s7)=[00000012] r(s)=0Vs 2 actions a; solid line, a» dotted

@ Small prob s; goes to terminal state st
@ Consider tuple (s1, a1, 0, s7).
@ Let wo=[11111111]. TD update: Aw = a(r +yx(s')"w — x(s)" w)x(s)

'Figure from Sutton and Barto 2018
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Control using Value Function Approximation

@ Use value function approximation to represent state-action values
@’r(s, aw)x QT
o Interleave
e Approximate policy evaluation using value function approximation
o Perform e-greedy policy improvement
@ Can be unstable. Generally involves intersection of the following:

e Function approximation
e Bootstrapping
o Off-policy learning
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Control with VFA

@ Represent state-action value function by Q-network with weights w

~

Q(s,a; w) ~ Q(s, a)

s o
S (s
a ) ¥*)
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Action-Value Function Approximation with an Oracle

° Q’r(s, aw)~ Q"
@ Minimize the mean-squared error between the true action-value
function Q7 (s, a) and the approximate action-value function:

J(w) = E<[(Q"(s,3) — Q7(s, a; w))’]
@ Use stochastic gradient descent to find a local minimum

A(w) = aV,J(w)
= o [(Q’T(s, a) — Q"(s,a;w))Vw Q" (s, a; w)

@ Stochastic gradient descent (SGD) samples the gradient
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Check Your Understanding L5N2: Predict Control Updates

@ The weight update for control for MC and TD-style methods will be
near identical to the policy evaluation steps. Try to see if you can
match the right weight update equations for the different methods:
SARSA control update, Q-learning control update and MC control

update.

Aw = o(r+~4Q(s,a;w) — (A ))VW(:?(AS, a;w)(l)

Aw = oG+ vQ(s,a;w) — Q(s, a; w))VwQ(s,Aa; w)(2)
Aw = ofr+7v max Q(s',a; w) — Q(s, 2, w))Viw Q(s, a; w)(3)
Aw = oG (st7 at; W)V Q(se, ar; w)(4)

Aw = ofr+~v max Q(s',a;w) — Q(s, a; w))Vyw Q(s, a; w)(5)
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Check Your Understanding L5N2: Answers

@ The weight update for control for MC and TD-style methods will be
near identical to the policy evaluation steps. Try to see if you can

predict which are the right weight update equations for the different
methods.
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Linear State Action Value Function Approximation with an

Oracle

@ Use features to represent both the state and action

xi(s, a)

Xn(s, a)
@ Represent state-action value function with a weighted linear
combination of features

n

Q(s,a;w) = x(s,a)Tw = ij-(s, a)w;

Jj=1
@ Stochastic gradient descent update:

V(W) = VWE-[(Q"(s,a) — Q" (s, a; w))?]
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Incremental Model-Free Control Approaches

@ Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value

@ In Monte Carlo methods, use a return G; as a substitute target
Aw = Oé(Gt — Q(St, dt, W))VWQ(St, dt, W)

o For SARSA instead use a TD target r + yQ(s’, a; w) which leverages
the current function approximation value

Aw = ar+vQ(s',a'; w) — Q(s, a; W)V, Q(s, a; w)

@ For Q-learning instead use a TD target r + v max @(s’, a’; w) which
leverages the max of the current function approximation value

Aw = a(r + vy max Qs w) — Q(s, a; w))V, Q(s, a; w)
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Challenges of Off Policy Control: Baird Example !

e

7(solid|-) =1
yi(dashed|-) = 6/7
@ u(solid|) = 1/7
\\ V/’;"
A -

v =0.99
@ Behavior policy and target policy are not identical
@ Value can diverge
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Check Your Knowledge

@ In TD learning with linear VFA (select all):
O w=w+a(r(s) +yx(ses1)Tw — x(s:) "w)x(s;)
Q V(s) = w(s)x(s)
© Not sure
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Check Your Knowledge Solutions

@ In TD learning with linear VFA (select all):
QO w=w-+a(r(s) +vx(st31)"w — x(s;) Tw)x(s;)
Q V(s) = w(s)x(s)
© Not sure
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RL with Function Approximation

@ Linear value function approximators assume value function is a
weighted combination of a set of features, where each feature a
function of the state

@ Linear VFA often work well given the right set of features
@ But can require carefully hand designing that feature set

@ An alternative is to use a much richer function approximation class
that is able to directly go from states without requiring an explicit
specification of features

@ Local representations including Kernel based approaches have some

appealing properties (including convergence results under certain
cases) but can't typically scale well to enormous spaces and datasets
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Neural Networks 3

Input Hidden Output
layer layer layer

Input #1
Input #2

/'] - Qutput
Input #3 -

Input #4

3Figure by Kjell Magne Fauske
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The Benefit of Deep Neural Network Approximators

@ Uses distributed representations instead of local representations
@ Universal function approximator

e Can potentially need exponentially less nodes/parameters (compared
to a shallow net) to represent the same function

@ Can learn the parameters using stochastic gradient descent
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Deep Reinforcement Learning

@ Use deep neural networks to represent

o Value, Q function
e Policy
o Model

@ Optimize loss function by stochastic gradient descent (SGD)
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Model-Free Control with General Function Approximators

@ Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value

@ Similar to linear value function approximation, but gradient with
respect to complex function

@ Monte Carlo: use return G; as target

PN A

Aw = Oé(Gt — Q(St, dt, W))VWQ(St, dt, W)

@ SARSA: use a TD target r —{—VCA)(stH, ar4+1; w), with current function
approximation value

Aw = a(r +vQ(st41, a+1; w) — Q(st, ae; W)V Q(st, ari w)
o For Q-learning

Aw = or+ 7 max Q(se41,a;w) — Q(se, ar; w)) Vi Q(st, a; w)
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Using these ideas to do Deep RL in Atari

state 4\ 1 /| . ) action
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Q-Learning with Value Function Approximation

Q-learning converges to the optimal Q*(s, a) using table lookup
representation

In value function approximation Q-learning we can minimize MSE loss
by stochastic gradient descent using a target @ estimate instead of
true Q (as we saw with linear VFA)

But Q-learning with VFA can diverge
Two of the issues causing problems:

o Correlations between samples
o Non-stationary targets

Deep Q-learning (DQN) addresses these challenges by

e Experience replay
o Fixed Q-targets
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DQNs: Experience Replay

@ To help remove correlations, store dataset (called a replay buffer) D

from prior experience

S1,4d1,12,52

52,4d2,13,53

53,43, /4,54

Sty at, 't4+1, St+1

— s,a,r,s

@ To perform experience replay, repeat the following:
o (s,a,r,s’) ~ D: sample an experience tuple from the dataset

N

o Compute the target value for the sampled s: r + v maxy Q(s',a"; w)
o Use stochastic gradient descent to update the network weights

Aw = afr + v max Q(s',a; w) — Q(s, 3, w))Vw Q(s, a; w)
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DQNs: Experience Replay

@ To help remove correlations, store dataset D from prior experience

51,41, 12,52

/
52,4d2,13,53 — Ss,a, s
53,43, 4, 54

Sty Aty Mt+1, St+1

@ To perform experience replay, repeat the following:
o (s,a,r,s’") ~ D: sample an experience tuple from the dataset

N

o Compute the target value for the sampled s: r + ymaxy Q(s’,a’; w)
o Use stochastic gradient descent to update the network weights

Aw = ofr + v max Q(s',a;w) — Q(s,a; w))V, Q(s, a; w)

o Uses target as a scalar, but function weights will get updated
on the next round, changing the target value
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DQNs: Fixed Q-Targets

@ To help improve stability, fix the target weights used in the target
calculation for multiple updates

@ Target network uses a different set of weights than the weights being
updated
o Let parameters w— be the set of weights used in the target, and w
be the weights that are being updated
@ Slight change to computation of target value:
o (s,a,r,s') ~ D: sample an experience tuple from the dataset

PN

o Compute the target value for the sampled s: r + vy maxy Q(s',a’; w™)
o Use stochastic gradient descent to update the network weights

Aw = afr + ymax Q(s’,a;w™) — Q(s, 3, w))Vw Q(s, a; w)
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DQN Pseudocode

1: Input C, o, D = {}, Initialize w, w~ =w, t =0

2: Get initial state s

3: loop

4. Sample action a; given e-greedy policy for current é(st, a; w)
5: Observe reward r; and next state sy 1

6: Store transition (s¢, ar, rt, Se+1) in replay buffer D

7: Sample random minibatch of tuples (s;, a;, rj, sj+1) from D
8: for j in minibatch do

9: if episode terminated at step i + 1 then

10: Yi=r

11: else

12: yi =r +ymaxy Qsiy1,2a;w™)

13: end if

14: Do gradient descent step on (y; — Q(sj, aj; w))? for parameters w: Aw = a(y; — Q(sj, aj; w))Vw Q(s;, aj; w)
15: end for

160 t=t+1

17:  if mod(t,C) == 0 then

18: w4~ w

19:  endif

20: end loop

Note there are several hyperparameters and algorithm choices. One needs to choose the neural network architecture, the
learning rate, and how often to update the target network. Often a fixed size replay buffer is used for experience replay, which

introduces a parameter to control the size, and the need to decide how to populate it.
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Check Your Understanding: Fixed Targets

@ In DQN we compute the target value for the sAampIed (s,a,r,s) using
a separate set of target weights: r + vy maxy Q(s’,a’; w™)

@ Select all that are true

@ This doubles the computation time compared to a method that does
not have a separate set of weights

@ This doubles the memory requirements compared to a method that
does not have a separate set of weights

@ Not sure
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Check Your Understanding: Fixed Targets Solutions

In DQN we compute the target value for the sampled (s, a, r, s") using
a separate set of target weights: r +ymaxy Q(s’,a’;w™)
Select all that are true

This doubles the computation time compared to a method that does
not have a separate set of weights

This doubles the memory requirements compared to a method that
does not have a separate set of weights

Not sure
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DQNs Summary

DQN uses experience replay and fixed Q-targets

Store transition (s, at, re41, St+1) in replay memory D
Sample random mini-batch of transitions (s, a, r,s’) from D
Compute Q-learning targets w.r.t. old, fixed parameters w—

Optimizes MSE between Q-network and Q-learning targets

Uses stochastic gradient descent
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DQNs in Atari

End-to-end learning of values Q(s, a) from pixels s
Input state s is stack of raw pixels from last 4 frames

Output is Q(s, a) for 18 joystick/button positions

Reward is change in score for that step

32 4x4 filcers 256 hidden units Fully-connected linear

output layer
16 8x8 filters
= %

DQN source code:
sites.google.com/a/deepmind.com/dgn/

@ Network architecture and hyperparameters fixed across all games
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Figure: Human-level control through deep reinforcement learning, Mnih et al,
2015
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Which Aspects of DQN were Important for Success?

. Deep
Game Linear Network
Breakout 3 3
Enduro 62 29

River Raid | 2345 1453
Seaquest 656 275

Space 301 302
Invaders

Note: just using a deep NN actually hurt performance sometimes!
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Which Aspects of DQN were Important for Success?

. Deep | DQN w/
Game Linear Network | fixed Q
Breakout 3 3 10
Enduro 62 29 141
River Raid | 2345 1453 2868
Seaquest 656 275 1003
Space 301 302 373
Invaders
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Which Aspects of DQN were Important for Success?

. Deep DQN w DQN w DQN w/repla
Game Linear Network | fixed Q/ replay / and fixe{i Q ’
Breakout 3 3 10 241 317
Enduro 62 29 141 831 1006
River Raid | 2345 1453 2868 4102 7447
Seaquest 656 275 1003 823 2894
Space 301 302 373 | 826 1089
Invaders

@ Replay is hugely important

@ Why? Beyond helping with correlation between samples, what does
replaying do?
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@ Success in Atari has led to huge excitement in using deep neural
networks to do value function approximation in RL
@ Some immediate improvements (many others!)
o Double DQN (Deep Reinforcement Learning with Double Q-Learning,
Van Hasselt et al, AAAI 2016)
o Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR
2016)
o Dueling DQN (best paper ICML 2016) (Dueling Network Architectures
for Deep Reinforcement Learning, Wang et al, ICML 2016)

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Value Function Approximation Winter 2023 55 /66



hould Understand

o Be able to implement TD(0) and MC on policy evaluation with linear
value function approximation

@ Be able to implement Q-learning and SARSA and MC control
algorithms

o List the 3 issues that can cause instability and describe the problems
qualitatively: function approximation, bootstrapping and off policy
learning

@ Be able to implement DQN and know some of the key features that
were critical (experience replay, fixed targets)
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Class Structure

o Last time and start of this time: Model-free reinforcement learning
with function approximation

@ Next time: Deep RL continued
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Batch Monte Carlo Value Function Approximation

@ May have a set of episodes from a policy 7

@ Can analytically solve for the best linear approximation that minimizes
mean squared error on this data set

@ Let G(s;) be an unbiased sample of the true expected return V7 (s;)

argmlnz (si) — x(s7) "w)?

@ Take the derivative and set to 0
w=(XTX)"1X"G

@ where G is a vector of all N returns, and X is a matrix of the features
of each of the N states x(s;)

@ Note: not making any Markov assumptions
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For next class
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Convergence Guarantees for TD Linear VFA for Policy

Evaluation: Preliminaries

For infinite horizon, the Markov Chain defined by a MDP with a
particular policy will eventually converge to a probability distribution
over states d(s)

d(s) is called the stationary distribution over states of 7

2..d(s) =1

d(s) satisfies the following balance equation:

d(s) = 32 3 w(als)p(s'ls, 2)d(s)
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Convergence Guarantees for Linear Value Function

Approximation for Policy Evaluation

@ Define the mean squared error of a linear value function
approximation for a particular policy 7 relative to the true value given
the distribution d as

MSVEy(w) =Y d(s)(V™(s) — V(s w))?

seS

@ where
e d(s): stationary distribution of 7 in the true decision process
o V7(s;w) = x(s)"w, a linear value function approximation
e TD(0) policy evaluation with VFA converges to weights wrp which is
within a constant factor of the min mean squared error possible given
distribution d:

MSVE(wrp) < 1_17 min 3 d(s)(V7(s) ~ V(s w))?
seS
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Check Your Understanding L5N1: Poll

e TD(0) policy evaluation with VFA converges to weights wp which is
within a constant factor of the min mean squared error possible for
distribution d:

MSVE(wrp) < 1_17 min 3" d(s)(V7(s) ~ V(s w))?
seS

o If the VFA is a tabular representation (one feature for each state),
what is the MSVE, for TD?

Depends on the problem
MSVE = 0 for TD

Not sure

© 00
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Check Your Understanding L5N1 : Poll

e TD(0) policy evaluation with VFA converges to weights wrp which is
within a constant factor of the min mean squared error possible for
distribution d:

o If the VFA is a tabular representation (one feature for each state),
what is the MSVE, for TD?
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Convergence of TD Methods with VFA

@ Informally, updates involve doing an (approximate) Bellman backup
followed by best trying to fit underlying value function to a particular
feature representation

@ Bellman operators are contractions, but value function approximation
fitting can be an expansion
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Convergence of Control Methods with VFA

Algorithm

Tabular

Linear VFA

Monte-Carlo Control

Sarsa

Q-learning
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