
Simple Siamese Representation Learning with RGB-D Images

Bryan Zhu
Department of Computer Science

Stanford University
bwzhu@stanford.edu

Abstract

Siamese neural networks have become a common mech-
anism for self-supervised representation learning on im-
ages in the past few years. Inspired by the simplicity and
strong performance of these models, especially SimSiam,
we experiment with using Siamese network structures on
representation learning for 3-dimensional data in the form
of RGB-D images. While our initial results find that our
model does not perform as well as the baseline SimSiam,
it achieves comparable performance, and we identify a few
areas which could lead to model improvement.

1. Introduction
Learning good image representations is an important

task in modern computer vision because it allows for bet-
ter performance on a wide variety of downstream tasks.
One class of self-supervised representation learning meth-
ods, known as contrastive learning, seeks to generate rep-
resentations that minimize the distance between augmented
views of the same object (“positive pairs”) while maximiz-
ing the distance between views of different objects (“nega-
tive pairs”). Recently, various methods using Siamese neu-
ral networks have been developed to do this, such as Sim-
CLR [1], BYOL [4], and SimSiam [2]. SimSiam in particu-
lar is interesting because it manages to achieve good compa-
rable performance while being simpler than the other vari-
ants: SimCLR requires training on a large number of neg-
ative pairs while SimSiam doesn’t require any, and BYOL
uses an additional “momentum encoder” component which
SimSiam doesn’t need.

The Siamese network structure in general consists of one
encoder model which runs on two different inputs and then
compares the two outputs for similarity or dissimilarity. In
the case of positive pairs, SimSiam takes one image, aug-
ments it with transforms in two different ways, and runs the
two through its encoder. One of the encoded representations
is passed through a predictor whose output is then compared
to the other representation for similarity. The idea is that

Figure 1: SimSiam architecture, an example of a Siamese
neural network. Figure taken from [2].

even though the images look slightly different because of
the augmentations, they contain the same semantic content
so their representations should be similar. Without negative
pairs, one issue with this structure is collapse to a constant:
similarity can be maximized if all inputs produce the same
encoding. However, Chen and He show that with a par-
ticular method of gradient backpropagation during training,
known as stop-gradient, degenerate solutions like that are
not produced.

This project aims to investigate whether SimSiam can
produce even better representations when trained on images
with additional 3-dimensional information through the use
of RGB-D images. RGB-D images are images which, in
addition to the standard three color channels, adds a fourth
depth channel that encodes how far away each pixel was
from the camera. Gupta et al. show that using the depth
channel, one can calculate a 3-channel image that encodes
at each pixel the horizontal disparity, the height above a
ground plane, and the angle the pixel’s local surface nor-
mal makes with the inferred gravity direction [6]. This is
referred to as an HHA image. Convolutional neural net-

1



works which are designed for and pretrained on RGB im-
ages can be finetuned on HHA images, allowing us to use
pre-existing structures on RGB-D data.

We find that in our experiments, representations created
with RGB-D images using the HHA conversion did not per-
form as well on our downstream task of object classifica-
tion, although their performance is not too far below that of
representations created from standard RGB images. We hy-
pothesize that this could have been caused by errors in the
HHA images from where the depth map was missing data,
and overfitting on the artifacts caused by those errors.

2. Related Work

Most work relating to image representation learning falls
into one of two categories: generative and discriminative.
Generative learning generally aims to learn image distri-
butions through data and then generate images directly in
pixel space, usually through autoencoding [9] or adversar-
ial training [3]. However, full pixel-level image generation
can be computationally expensive and this level of detail is
often not necessary for representation learning.

Discriminative learning on the other hand has models
learn a task using objective functions similar to those in
supervised learning, often a classification or discrimination
task, except that both the inputs and labels are obtained from
an unlabeled dataset. Contrastive learning is a common ex-
ample of such methods.

2.1. Contrastive learning and Siamese networks

There have been many variations on using Siamese
network structures for contrastive representation learning.
Chen et al. [1] propose a simple framework for this known
as SimCLR that employs both positive and negative pairs.
They experiment with different types of input augmenta-
tions and show that a combination of cropping and color
jitter performs by far the best. They also show that these
network structures require large batch sizes during training
to be most effective. Instead of using negative pairs directly,
He et al. [7] store them in a queue and turn one branch
of the Siamese structure into a momentum encoder which
improves consistency, creating a system they call MoCo.
BYOL [4] also uses the Siamese structure and a momentum
encoder but have one branch of the network directly try to
predict the output of the other branch, and manage to avoid
collapsing to degenerate solutions without negative pairs.

The most recent and simplest version of this is SimSiam
[2], which has been referred to as “SimCLR without neg-
ative pairs” and “BYOL without the momentum encoder”.
Using SimSiam, Chen and He show that none of these meth-
ods are needed to prevent degenerate solutions as long as
a “stop-gradient” technique is used, where gradients are
backpropagated through one branch of the Siamese network

but not through the other. They hypothesize that the stop-
gradient actually turns the network’s algorithm into alter-
nating between optimizing two separate sets of variables in
the fashion of expectation-maximization (EM) algorithms,
which helps prevent collapse. Due to SimSiam’s simplic-
ity and ease of training, this is the model that we base our
methods on.

2.2. RGB-D images and deep learning

Gupta et al. [6] devise the approach where HHA images
are constructed from the depth channel of RGB-D images
and then used in CNNs pretrained on RGB images. They
choose these channels to add because they require extra in-
formation about the world that they believe models are un-
likely to learn by themselves. They show that these CNNs
can still perform decently on object detection and image
segmentation tasks when only provided the HHA image,
and they perform better when given both RGB and HHA
than with just the RGB. We hoped to continue these results
on representation learning.

3. Approach
An overview of the SimSiam architecture is given in Fig-

ure 1. The encoder, which produces the representations of
input images, consists of a CNN backbone followed by a
projection head which is a 3-layer multilayer perceptron
(MLP) network. During each step of training, a batch of im-
ages is augmented in two different ways and passed through
this encoder. Then, the output of one side is passed through
a predictor, which is a 2-layer MLP, and the output of that is
compared to the direct output of the other encoder for sim-
ilarity. The loss function we use is cosine similarity: given
projection output u and encoder output v we compute

L = − u · v
‖u‖2‖v‖2

(1)

for each representation and then average loss across the
batch. The starter code we used for this model came from
https://github.com/leaderj1001/SimSiam.

We modify the encoder to handle RGB-D images by sim-
ply laying two CNN backbones side by side, one which
learns from the RGB image and the other which learns from
the corresponding HHA image constructed from the depth
channel. Given a RGB-D image, we construct the HHA im-
age from its depth channel and feed (augmented versions of)
the two images into the encoder’s CNNs. The outputs are
then concatenated and this vector passes through the pro-
jection head to become the output of the modified encoder.
This structure is shown in Figure 2.

3.1. Image augmentation

The key to robust representation learning is a good
choice of augmentations. Chen et al. [1] show that crop-

2



Figure 2: Comparison of SimSiam and SimSiam RGB-D
encoders.

ping and color jitter are both almost absolutely necessary
to prevent the network from learning spurious connections
such as identifying objects solely by their color, so we fol-
low their example in using these two transforms. In addi-
tion, we add a random chance to horizontal flip the image
and a random chance to convert it to grayscale, which are
both used in [2]. We take care that any random transforms
applied to the RGB side of an image, such as the random-
ness in the choice of cropping window, must be applied in
the same way to the HHA side.

3.2. Constructing HHA images

Recall that HHA stands for three channels:

• Horizontal disparity

• Height above ground plane

• Angle between surface normal and gravity direction

The horizontal disparity can be directly calculated from
the depth channel, as disparity is directly proportional to
depth. The other two values require the gravity direction
g and the camera intrinsics K to calculate. In the general
case, Gupta et al. [5] present an iterative algorithm for es-
timating g from a single RGB-D image by calculating the
surface normals at each point and finding the direction that
maximizes the number of points with normals parallel to
that direction (corresponding to floor-like and tabletop-like
surfaces) and perpendicular to that direction (correspond-
ing to wall-like surfaces). It is important to note that this
method was designed for indoor scenes and may not have
the same accuracy elsewhere. In our case, the dataset we
used consisted of images taken at specific angles above the
horizon towards a turntable, so we directly knew the gravity
direction of each image and did not need to estimate it. The
camera intrinsic matrix was also provided to us from our
dataset.

With these values, we calculate the second H and A
channels as follows: First, using the camera intrinsics and
the depth values D, we project the depth map into a 3D

point cloud p representing the surface of our scene as fol-
lows:

p(x, y) = K−1

xD(x, y)
yD(x, y)
D(x, y)

 (2)

The ground planes are exactly those perpendicular to the
gravity direction, so we take the dot product of the gravity
direction with each point to calculate a relative height:

H(x, y) = g · p(x, y) (3)

It is impossible to get any absolute height without more in-
formation, so we simply take the lowest value in our image
to be ground height and scale the rest accordingly. The sur-
face normals are calculated by taking the gradients in the
row and column directions of the point cloud grid to obtain
two tangent vectors at each point. The normal is then the
cross product of these tangent vectors. We scale the nor-
mals to unit length and then calculate the angles between
these and the gravity direction:

N(x, y) = ∇xp(x, y)×∇yp(x, y) (4)

A(x, y) = arccos

(
g · N(x, y)

‖N(x, y)‖

)
(5)

Given disparity, relative height, and angles, we scale
each channel to fit between 0 and 255 to match the format
of RGB images. An example of a RGB image and its cor-
responding HHA image presented as an RGB can be seen
in Figure 3. One can see that although color information
is obviously lost, the HHA image captures the shape and
contours of the object fairly well.

3.3. Model parameters

The specific parameters we use in our experiment are as
follows. Most of them are the same as the ones Chen and
He use in [2], although we reduced some of the sizes to be
easier to train on the Google Cloud Platform VMs that were
available to us.

• The CNN backbone structure we use for both RGB and
HHA channels is ResNet-18 [8].

• The projection layer is a 3-layer MLP with ReLU and
dropout. Its hidden layers have sizes of 2048.

• The prediction layer is a 2-layer MLP with ReLU and
dropout. Its hidden layer has a size of 512. As its input
and output have size 2048, this gives it a bottleneck
structure.

• We use stochastic gradient descent for optimization
with a learning rate of lr× BatchSize/256 for base
learning rate lr = 0.05, and a momentum of 0.9. The
learning rate uses a cosine decay schedule with weight
decay 0.0001.

3



Figure 3: Example images from our dataset and their corre-
sponding HHA images.

We pretrained the model using the Siamese structure on
our training set, described below in section 4. Training ran
for 100 epochs.

4. Experiments

4.1. Data

We trained our model with the Washington RGB-D Ob-
ject Dataset [10], which consists of RGB-D images of 300
household objects arranged in 51 categories photographed
on a turntable from various angles. Following Lai et al., we
split the dataset into train/test sets by taking one instance of
each category for the test set and using the rest for training.
We sampled the turntable images by taking every fifth frame
for each object and angle, leaving us with about 35000 im-
ages for training and 7000 for testing. To normalize for
input into ResNet-18, we center cropped each image to a
square image and rescaled to dimensions of 224× 224.

4.2. Model evaluation

We compared three variants of our SimSiam model. The
baseline model used the same structure as Chen and He’s
model, where we only fed in the RGB channels of each
RGB-D image. The second was the modified model which
used both RGB and HHA information.

The third variant of our experiment also used RGB and
HHA information, but we only applied the spatial transfor-
mations (random crop and chance to horizontal flip) that
we used on the RGB side to the HHA side, leaving out

the color transformations (color jitter and random chance
to grayscale). The reason for this experiment was because
the HHA image is not truly a color image, but rather us-
ing color as a proxy to represent various facets of depth,
and therefore we believed that color augmentation was dis-
torting depth in ways that we did not intend. In addition,
because the color profile of all the HHA images are simi-
lar (blue background, red towards the bottom, yellow-white
object in the center), we believed that it was less likely that
the model would falsely use HHA color as a proxy for ob-
ject class.

After pre-training the models on the train set, the model’s
encoder was used to produce representations which are then
evaluated on a downstream task. In this case, we used the
representations on the task of object classification by train-
ing a supervised linear classifier to classify frozen represen-
tations of images in our training set and then evaluating it
representations from our test set. We measured classifica-
tion accuracy on our test set as a metric of representation
performance.

4.3. Results

The downstream model accuracy on the evaluation task
for our three model variants is given in Table 1.

Model Eval accuracy (%)
Baseline 70.62

RGB-D (all transforms) 66.38
RGB-D (HHA spatial only) 67.12

Table 1: Comparison of baseline and RGB-D models

For comparison, Chen and He [2] achieve accuracies of
66 to 68 percent (depending on the model parameters) on
the 1000-class ImageNet training and validation sets, so our
experiments result in similar results with a smaller dataset.
However, we do notice that the RGB-D models did not per-
form as well as the baseline, and removing color transforms
from the HHA encoder only improves the network slightly.

5. Analysis

We plot the training loss over time during pre-training
for the baseline and the first RGB-D model in Figure 4.
Looking at these graphs, we see that the loss for the RGB-D
model dropped much faster, stabilizing at a loss of around
-0.95 within fifty epochs. On the other hand, the baseline
model didn’t drop so sharply so quickly, but continued to
slowly decrease in loss throughout the duration of training.
(Note that in both cases, the stop-gradient technique did pre-
vent collapse to degenerate solutions, which would look like
the loss function dropping immediately to -1 and staying
there. Thus we manage to reproduce this facet of Chen and

4



Figure 4: Training loss per epoch for representation learn-
ing. The top graph uses the baseline SimSiam model, the
bottom uses SimSiam RBG-D.

He’s work as well.) This, combined with the reduced per-
formance on the evaluation set, suggests that there is some
measure of overfitting happening in our RGB-D model.

One possible issue we could have had is missing depth
data. Many of the images in the RGB-D Object Dataset
had patches which were missing depth data, and they could
be quite large in some cases. We decided to fill them in
with black areas when reconstructing the HHA image, and
the model could have attempted to learn some correlations
based on these black patches which really shouldn’t have
any meaning. A few examples of these are shown in Figure
5.

We attempted to preprocess the depth maps by filling the
missing areas in with simple interpolation; however, since
most of the missing spots were on the borders between the
object and the table, or worse, between the object and the
far wall, the images resulting from this preprocessing did
not turn out very well. Smarter machine learning techniques

Figure 5: RGB images and their corresponding HHA im-
ages in a few cases where the depth channel was missing
data.

would likely perform better, but that is beyond the scope of
this project. If the depth maps could be filled in accurately,
it would be interesting to experiment on the full unblem-
ished RGB + HHA images.

Another issue is that we are likely adding too many pa-
rameters using our method. By placing two CNNs side
by side, we basically double the number of parameters in
our model, while there is not double the informational con-
tent going in: the HHA image adds clarity to the three-
dimensional shape of the object, but many of the outline
and edge filters that CNNs might want to take advantage of
can already work on just the RGB side. Adding too many
parameters can lead to overfitting. A better way to lever-
age depth data might be to use it or its corresponding point
cloud map directly in a 3D CNN structure. For example,
Zia et al. [11] have developed a kind of hybrid 2D/3D CNN
designed for RGB-D data which might be more effective for
this purpose.

One final factor which could have influenced our results
is batch size during pretraining. Chen and He show in their
experiments that SimSiam, while fairly robust to batch size
and significantly more robust than methods like SimCLR
that need large batches, is still somewhat affected. On their
ImageNet data, lower batch sizes result in lowered perfor-
mance on object classification by about two points. Because
of memory constraints on available Google Cloud Platform
resources, we were only able to use a batch size of 64, which
is lower than recommended for SimSiam, and the smaller
size could have disproportionately affected the larger RGB-
D network.

5



6. Conclusion

In this project, we explored self-supervised represen-
tation learning with Siamese networks by modifying a
Siamese network structure to work with 3-dimensional data
in the form of RGB-D images. Our model achieves com-
parable performance to SimSiam on only RGB images, al-
though some errors with overfitting and missing depth data
prevent the model from achieving higher performance.

Future work in this area involves experimenting with dif-
ferent types of 3-dimensional CNN to see whether they can
improve performance without the kind of overfitting we see
here. In addition, it would be interesting to extend this
functionality to tasks beyond object recognition and RGB-
D images beyond object closeups (such as indoor or out-
door scenes), as the purpose of representation learning is to
produce representations which are general and good for a
variety of tasks. Finally, as we discussed monocular depth
estimation in class, it would be interesting to see if we can
leverage the outputs of monocular depth estimation to use
RGB-D techniques on standard RGB data and compare how
they perform.

References
[1] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple

framework for contrastive learning of visual representations,
2020.

[2] X. Chen and K. He. Exploring simple siamese representation
learning, 2020.

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems, vol-
ume 27. Curran Associates, Inc., 2014.

[4] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond,
E. Buchatskaya, C. Doersch, B. A. Pires, Z. D. Guo,
M. G. Azar, B. Piot, K. Kavukcuoglu, R. Munos, and
M. Valko. Bootstrap your own latent: A new approach to
self-supervised learning, 2020.

[5] S. Gupta, P. Arbelaez, and J. Malik. Perceptual organization
and recognition of indoor scenes from rgb-d images. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 564–571, 2013.

[6] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning
rich features from rgb-d images for object detection and seg-
mentation, 2014.

[7] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momen-
tum contrast for unsupervised visual representation learning,
2020.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition, 2015.

[9] D. P. Kingma and M. Welling. Auto-encoding variational
bayes, 2014.

[10] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchi-
cal multi-view rgb-d object dataset. In IEEE International
Conference on Robotics and Automation (ICRA), May 2011.

[11] S. Zia, B. Yuksel, D. Yuret, and Y. Yemez. Rgb-d object
recognition using deep convolutional neural networks. In
Proceedings of the IEEE International Conference on Com-
puter Vision Workshops, pages 896–903, 2017.

A. Appendix: Source Code
The source code for this project is located at

https://github.com/bwzhu352/cs231a-project.
It is a private repository, please contact Bryan at
bwzhu@stanford.edu for access.

6


