Winter 2020 CS231A Final Project Report

Depth estimation from a single view augmented
by semantic segmentation

Changqing Lu (eljulu)
eljulu@stanford.edu

March 19, 2021



1 Introduction

Autonomous vehicles are an important and fast-developing industry nowadays, where lots of artificial
intelligence techniques are being developed and researched. For a successful autonomous vehicle
system to work, the vechile must be able to sense and map its environment in a fast and accurate
manner so that the control algorithm can navigate through complicated traffic situations. Computer
vision techniques such as 3D recognition, 3D reconstruction, motion estimation and tracking can
help ensure the safety of the passengers on the vehicle as well as other vehicles or pedestrians on
the road.

Figure 1: Autonomous Driving System!

Apart from that, depth estimation of the entire street scene is also an important topic. Even
though nowadays vehicles highly rely on radar or LiDAR for proximity detection, it would be
helpful for the system to have additional visional verification of the distance estimation. For depth
estimation, for example, Markov Random Field (MRF) can be used to estimate both the relative
depth and absolute depth using certain feature vectors along with local depth relationships as well
as global image correlations [3].

Semantic segmentation is also helpful because using semantic segmentation, the control system
of the vehicle can better understand the scene so that it can make "better decisions". Features such
as texture variation, gradients, haze or defocus can be used to separate the image patches [3].

We can see that from the comparison, depth estimation and semantic segmentation share image
features such as gradients and texture variation, which suggest some correlation between depth
estimation and semantic segmentation.

Thereofre, for this project, we intend to investigate whether depth estimation of a single view
can be improved by semantic segmentation.

2 Technical Approach

2.1 Data Set

For the dataset, we are using the Make3D dataset?, which contains 534 320 x 240 RGB images
as well as the pixel-by-pixel depth value and semantic classification data for each image. There

!Source:https: //www.smartcitiesworld.net /opinions/opinions/driving-autonomous-vehicles-forward-with-
intelligent-infrastructure
*Make3D dataset: http://dags.stanford.edu/projects/scenedataset.html



are altogether 9 classes: unknown, sky, tree/bush, road/path, grass, water, building, mountain,
foreground. The dataset is separated into 400 training images and 134 test/evaluation images.

2.2 Models

Since we are trying to investigate whether semantic segmentation data can improve depth estimation
results, we need to setup two models, one of which is a benchmark.

For both models, the output is 320 x 240 x 1 pixel-by-pixel depth value.

For the input, the first model will not see any data regarding the semantic segmentation of the
images since it is constructed as a benchmark. So the input is simply the 320 x 240 x 3 RGB images.

For the second model, the semantic segmentation data will be added to the input as another
layer or channel of the image. Therefore, the input will be 320 x 240 x 4 RGB images plus semantic
segmentation labels.

After training both models, we will see whether the results on the test sets suggest that the
semantic segmentation data is helpful to more improved depth estimation results.

3 Result and Discussion

Benchmark Model

For the first model, we first tried to implement a simple CNN network (Figure 2). As we can see
from the structure, since all the layers are convoluted layers, this model doesn’t deal with global
image relations.

self.model = nn.Sequential (
nn.Conv2d (3, 16, 5, stride = 1, padding = 2),

nn.RelLU(),
nn.Conv2d(l6, 32, 5, stride = 1, padding = 2),
nn.RelLU(),

nn.Conv2d (32, 1, 5, stride = 1, padding = 2)

Figure 2: Initial benchmark model structure

Using this model, the training results were not satisfactory (Figure 3). As we can see from the
training loss versus epoch plot, the training loss doesn’t decrease monotonically. Note that in our
traning process, we are using the standard mean-squared error loss. Since the pixel-by-pixel depth
estimation value is continuous, the mean-squared error loss might be large because we are using a
simple architecture, but the loss should still decrease monotonically. This unstable loss over epoch
might suggest insufficient parameters.



i5

3.0 1

25 1

201

Losses

15 1

10 1

05 1

0 5 10 15 20 25 e
Epoch

Figure 3: Initial model: Training loss vs. Epochs

Therefore, we tried to increase the complexity of the model (Figure 4). As we can see from the
architecture, now it has more convoluted layers, which try to extract more local features from the
images.

self.model = nn.Sequential(
nn.Conv2d(3, 128, 5, stride = 1, padding = 2),
nn.RelLU(),
nn.Conv2d(128, 128, 5, stride = 1, padding = 2),
nn.RelLU(),
nn.Conv2d(128, 64, 5, stride = 1, padding = 2),
nn.RelLU(),
nn.Conv2d(64, 64, 5, stride = 1, padding = 2),
nn.RelLU(),
nn.Conv2d(64, 32, 5, stride = 1, padding = 2),
nn.RelLU(),
nn.Conv2d(32, 16, 5, stride = 1, padding = 2),
nn.RelLU(),
nn.Conv2d(16, 1, 5, stride = 1, padding = 2),

Figure 4: Model with increased complexity

Using the above architecture, the training result is the following (Figure 5).



3.0 1

2.5 1

210 1

Losses

15 1

10 4

o 5 10 15 20 25 30
Epoch

Figure 5: Training loss over epochs for model with increased complexity

We can see from the figure that the traning loss is still somehow "unstable". But compared to
the initial model, we can see that the overall training loss for each epoch has decreased. Since for
the initial model, we can see data points where the training loss is over 3.0 but for the second model,
the maximum training loss is under 3.0. Therefore, we can conclude that for the initial model, there
are not sufficient parameters.

However, since for the second model, the traning loss is still not decreasing monotonically, more
parameters are still needed. And now we tried to include a global connection between pixels from
the image (Figure 6).

linear_input_size = 153600
linear_hidden_size = 76800
76800

linear_output_size

self.model = nn.Sequential(
nn.Conv2d(3, 16, 5, stride = 1, padding = 2),
nn.RelLU(),
nn.MaxPool2d(2, stride = 1),
nn.Conv2d(16, 32, 5, stride = 1, padding = 2),
nn.ReLU(),
nn.MaxPool2d(2, stride = 1),
nn.Flatten(),
nn.Linear(linear_input size, linear hidden_size),
nn.Linear(linear_hidden_size, linear_hidden_size),
nn.Linear(linear_hidden_size, linear_ output_size)

Figure 6: Model with both convoluted layers and fully-connected layers

This model has both convoluted layers and fully-connected layers, where convoluted layers try to
extract local features of the image while the fully-connected layers try to build global connections
so that all the features can contribute to final depth estimation results. However, due to the
computation capacity, we were unable to train this model since due to the image size of the data set
(320 x 240 x 3), although we tried to reduce the size before the fully-connected layer, the number



of paramters are still too large.

Augmented Input

However, we still wanted to see whether the input with semantic segmentation might produce better
training loss results. Now our input size is 320 x 240 x 4. And for the initial model, we have the
following training loss (Figure 7).

225 1

2.00 1

175 1

Losses

125 1

100 4

075 4

DSG h T T T T T T
15 20 25 0
Epoch

=
un
]

Figure 7: Initial model with semantic segmentation data

Note that the overall training loss is less than the overall training loss compared to the model
without the semantic segmentation data.

3151

3.0 1

25 1

Losses

210 1

15 1

10 1

05 1

15 20 25 30
Epoch

=
un
]

Figure 8: Increased complexity model with semantic segmentation data

Using the second model where the number of convolution layers are increased, we can see the
same trend where the overall training loss at each epoch is less than the one without the semantic
segmentation data.



Therefore, even without sufficient parameters, we can see a trend that the semantic segmentation
data can improve the depth estimation.

Limitation

The major problem of our models are that they are with insufficient parameters, which result in
the situation where the training loss is not monotonically decreasing.

Note that from the dataset, the depth estimation values are all continuous, which might be a
reason that a more complicated model is required to have better results. Since the depth values
are continous, after extraction of local features, the fully-connected layers are responsible for linear
regression instead of logistic regression (classification), which requires far more parameters. That
is to say, for the depth estimation value of each pixel, we should first extract local image features,
then use the fully-connected layers to conduct linear regression algorithms.

There are researches on using depth estimation values to improve semantic segmentation results
[6], which can suggest a strong correlation between depth estimation and semantic segmentation.
And since the output of a semantic segmentation process is labels instead of continous depth values,
it might require less complicated model or less parameters.

However, with insufficient parameters, the training process still suggest that with semantic
segmentation data, the model can have a better prediction on depth estimation of an image.



References

1]

2]

3]

4]

[5]

(6]

7]

A.Torralba, A. Oliva. Depth Estimation from Image Structure. IEEE Trans. On Pattern
Analysis and Machine Intelligence (PAMI), 2002.

A. Saxena, S. H. Chung, A. Y. Ng. Learning Depth from Single Monocular Images.
Proceedings of Advances in Neural Information Processing Systems (NIPS), 2005.

A. Saxena, M. Sun, A. Y. Ng. Make3D: Learning 3D Scene Structure from a Single Still
Image. IEEE Trans. of Pattern Analysis and Machine Intelligence (PAMI), 2009.

B. Liu, S. Gould, D. Koller. Single Image Depth Estimation from Predicted Semantic
Labels. Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR), 2010.

S. Gould, R. Fulton, D. Koller. Decomposing a Scene into Geometric and Semantically
Consistent Regions. Proceedings of International Conference on Computer Vision (ICCV),
2009.

L. Hoyer, D. Dai, Y. Chen, A. Koring, S. Saha, .. Gool. Three ways to improve semantic
segmentation with self-supervised depth estimation. arXiv preprint arXiv:2012.10782,
2020.

M. Liu, S. Lin, S. Ramalingam, O. Tuzel. Layered Interpretation of Street View Images.
Robotics Science and System (RSS), 2015.



