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Abstract

In spaceborne vision applications, domain gap between
training and test must be overcome as one must train a neu-
ral network relying exclusively on synthetic images, which
tend to have very different characteristics compared to
spaceborne images. This project studies how neural in-
painting, an unsupervised learning technique, may bridge
the gap by forcing the network to learn the underlying rep-
resentation of the spacecraft image regardless of the image
domain. The preliminary results indicate the current im-
plementation does not improve the network’s performance
on spaceborne images compared to the baseline, therefore
we end with future directions to improve neural inpainting-
based method and to better bridge the domain gap. The
implementation is available in https://github.com/|
tpark94/CS231AFinalProject. gi

1. Introduction

Machine learning and artificial intelligence are attract-
ing ever-increasing attention from the space community in
various applications. Examples include 3-body problem
of celestial bodies [2], satellite swarm control and maneu-
ver, and spacecraft navigation about resident space objects
such as another spacecraft [[15]] and asteroids [24]. Specif-
ically, many researchers have focused on using a monoc-
ular camera as the main sensor for navigation due to its
small mass and power requirements. The on-board capabil-
ity of autonomously estimating the position and orientation
(e.g. pose) of the main spacecraft with respect to the tar-
get could significantly aid future missions such as or-orbit
servicing [[18] and active debris removal [9].

Unlike images captured on Earth, spaceborne images are
characterized by extreme lighting conditions, low signal-to-
noise ratio, high contrast, and often symmetric shape of
the target spacecraft. Naturally, previous works on pose
stimation using classical image processing methods, such
as edge and corner detections, have shown to fall short in
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Figure 1. Images of the Tango spacecraft with approximately same
pose and illumination. Left: Synthetic image from OpenGL.
Right: Spaceborne image captured during the rendezvous phase
of the PRISMA mission.

terms of performance and robustnes [6 23]. Such chal-
lenge has led researchers to instead apply machine learn-
ing for image-based spacecraft pose estimation. How-
ever, machine learning has its own difficulty in space-
borne applications; namely, it is practically impossible to
acquire large-scale dataset of the interested target in rele-
vant scenarios with accurate pose annotations. In response,
Sharma and D’ Amico [21]] presented Spacecraft Pose Es-
timation (SPEED) [22], the first publicly available bench-
mark dataset of the Tango spacecraft from PRISMA mis-
sion [6l [7]. Specifically, it comprises 15,000 synthetic
images rendered with OpenGL and 300 real images of
a mockup model captured in a high-fidelity robotics fa-
cility. SPEED was used in the 2019 Satellite Pose Es-
timation Challenge (SPEC) co-hosted by the Space Red-
nezvous Laboratory (SLAB) of Stanford University and the
Advanced Concepts Team (ACT) of the European Space
Agency (ESA) [21} [10]. In the competition, all top con-
testers presented algorithms based on Convolutional Neural
Networks (CNN) to perform pose estimation [[15} 4] with
remarkable pose accuracy.

Despite the success, these CNN-based algorithms tend
to fall short when tested on the spaceborne images from
the actual missions. It happens because a CNN naturally
overfits to the features exclusive to the synthetic imagery,
as synthetic and spaceborne images have inherently differ-
ent characteristics as shown in Figure[I] While a number
of works have attempted to improve a CNN’s performance
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Figure 2. Left: Images with shadowing occlusion. Right: Images
with glare occlusion.

by designing a better CNN architecture and pose extraction
scheme [26] or more robust navigation algorithm [3], only
a few addressed the specific issue of domain gap between
training and application images for spaceborne missions.

In this project, we will investigate how representation
learning could help bridge the domain gap in the absence
of the target spaceborne images. The idea is to force a neu-
ral network to extract relevant features for pose estimation
based on the spacecraft’s geometry or other common repre-
sentations instead of characteristics specific to the synthetic
imagery. The representation learning technique we study is
neural inpainting [16], which crops out random patches out
of an image and trains an autoencoder to “fill in the gap.”
The motivation is that, on top of the differences in low-level
features such as spacecraft textures, synthetic renderer often
cannot faithfully replicate the extreme illumination condi-
tions often seen in space. These conditions generally cause
severe occlusion due to shadowing or extreme glares by di-
rect sunlight (see Figure [2). Therefore, neural inpainting
may help cope with these occlusions and thus the absence
of visible keypoints.

Once the autoencoder is trained for neural inpainting, we
take the trained encoder (dubbed context encode in [16]) as
the feature extractor of our pose estimation network. We
report the network’s performances, both with and without
using the pre-trained context encoder, on spaceborne im-
ages and show that unfortunately the current implementa-
tion does not improve the network’s generalization capabil-

1ty.
2. Related Work
2.1. Domain Gap

The issue of domain gap arises when the training (i.e.
source) and testing (i.e. target) data are drawn from different
distributions. Domain adaptation [1] technique adjusts the
labeled source dataset to the partially-labeled or unlabeled
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Figure 3. Visualization of neural inpainting. Figure from [16].

target dataset by studying the underlying common distribu-
tion. While it is well studied and equipped with theoret-
ical bounds on generalization error, domain adaptation is
not suited for spaceborne application since we do not have
the target dataset for the relevant task (e.g. pose estimation
of a specific spacecraft).

Therefore, some works [20, [17] have attempted to cre-
ate datasets of photorealistic synthetic images of a space-
craft using 3D graphics renderer based on physically based
rendering (PBR). Other works [15] studied domain random-
ization technique [25] by applying random style transfer to
randomize the spacecraft texture, which is one of the dis-
tinguishing features between synthetic and spaceborne im-
ages.

2.2. Representation Learning

Representation learning, in an unsupervised setting with-
out labels, forces a network to learn about the underlying
representaiton of the dataset. Neural inpainting [16], or
context encoder, is one example where the network must
“paint” the patched-out area of the images, thereby learning
the image context. Similar applications include jigsaw puz-
zle [14] and image colorization [11]. While these methods
are restricted to specific learning tasks, other methods such
as contrastive learning [S]] uses a contrastive loss between
two differently augmented data to learn more general visual
representations.

3. Methods

In this project, we use a context encoder [16] trained for
neural inpainting task as a pre-trained feature extractor of
the pose estimation network. Such network is trained on
synthetic images and tested on spaceborne images to gauge
the generalization effect of the neural inpainting task.

3.1. Context Encoder

We first train a context encoder similar to [16], whose
visualization is provided in Figure[3] by training an autoen-
coder to fill in the patched-out areas of the images. The en-
coder is the feature extractor of MobileNetV2 [19] up until
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Figure 4. 11 keypoint locations on the Tango spacecraft to be de-
tected by KRN.

the end of the bottleneck operations, i.e., the encoder re-
ceives 2242 x 3 and outputs 72 x 320 feature tensor. The
decoder simply mirrors the architecture of the encoder.

3.2. Pose Estimation CNN

The pose estimation CNN is based on the keypoint re-
gression network (KRN) in [15], which uses the same
MobileNetV2-based freature extractor. The extracted fea-
tures are then processed to output a 2N x 1 vector, whose
elements correspond to the 2D coordinates of the locations
of the spacecraft’s pre-selected keypoints (Figure d)). These
keypoints can be used along with the corresponding 3D lo-
cations in the model space to compute the 6D pose solution
by solving the Perspective-n-Point (PnP) problem [12].

4. Experiments
4.1. Dataset

To train both autoencoder and KRN, 12,000 synthetic
images of the Tango spacecraft are created. These images
have the same characteristics as SPEED [21]], but are ren-
dered using the intrinsic properties of the camera actually
used during the PRISMA mission. We also prepare the
clean version of the dataset, which have exactly the same
pose labels but without any spacecraft textures (Figure [3).
The autoencoder will be trained to predict the clean images
without any spacecraft textures, effectively forcing the net-
work to disregard any visual features of the spacecraft (e.g.,
solar panel patterns) that do not concern its geometric fea-
tures.

For evaluation, 25 spaceborne images captured during
the rendezvous phase of the PRISMA mission are used, as
they are available with accurate labels and have been used
for evaluation in other literatures [23]].

Figure 5. Left: Synthetic image. Right: Clean version of the syn-
thetic image.

Figure 6. Random patches on two example images

4.2. Preprocessing

When training the autoencoder, we use the synthetic im-
ages with random background from the images of Pascal
VOC 2012 dataset [8]. Various data augmentations are ap-
plied including color jittering, blurring and Gaussian noise.
Lastly, the random patches are generated by creating ran-
dom areas whose sum is no more than 30% of the entire
image. Then, random uniform values are assigned to these
patched-out regions, as occluded regions in spaceborne im-
ages often come in various intensities from dark (due to
shadow) to bright (due to glare). Two of such examples
are given in Figure[6]

For KRN, the same patched images are used for training
as well. For both autoencoder and KRN, note that we first
crop out a random square area around the spacecraft by us-
ing the ground-truth bounding box tightly fitting around the
spacecraft. We take the tightest-fitting square area around
the spacecraft, randomly enlarge the area by 20%, then ran-
domly shift the spacecraft. The final area is cropped out
before applying all data augmentation and random patches.
The motivation is that there will be a separate object detec-
tion pipeline prior to pose estimation, which helps in pose
estimation scenario where the spacecraft may be far away
and thus only occupies a small portion of the image pixels.

4.3. Loss Functions

For autoencoder, we use the Smooth L1 loss defined as
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which is equivalent to f5-loss if a pixel’s intensity differ-
ence is less than 1 and ¢;-loss otherwise. While the original
paper for context encoder [16] also suggests using an adver-
sarial loss by employing a separate discriminator network,
we do not pursue it in this project.

The loss for KRN outputs are simply the ¢5-loss between
the predicted and ground-truth pixel locations of each key-
point.

4.4. Training

We train both autoencoder and KRN using the
AdamW [13]] optimizer with learning rate of 0.001. They
are trained for 200 and 300 epochs, respectively. The
project is implemented in PyTorch 1.7.

4.5. Evaluation

When evaluating the performance of KRN, we convert
the keypoint locations into the orientation error (Fr) and
translation error (Ey) defined as the following:

ERr = 2arccos|qse - sel 3)
Er = |tsc — tacl2, 4

where gpc is a unit quaternion aligning the spacecraft’s
body frame (B) with the camera frame (C), and tp¢ is the
position vector from the origin of B to the origin of C. These
are obtained by running the OpenCV’s EPnP algorithm [12]
on a pair of 2D and 3D coordinates of the spacecraft’s key-
points.

5. Results

Here we present the results of training the context en-
coder and the pose estimation network.

5.1. Context Encoder

We first present the result of training the autoencoder
based on visualizations only. Figure [/| shows two exam-
ples of reconstructed images. We can observe that while the
autoencoder can recover the patched-out areas, the result
tends to be quite blurry and often cannot discern the exact
shape (e.g., bottom-right antennae of the second example).
The reconstruction capability can be limited by the use of a
single smooth ¢; loss or the limited decoder capacity due to
mirroring the MobileNet architecture.

We also note that the implementation in this project is not
exactly the same as that of [16]. Whereas the autoencoder
in [16]] only recovers the patched-out areas, the autoencoder
in this project is trained to recover the entire image, both

existing and erased areas. Since this is more difficult than
just focusing on the erased areas, following the original im-
plementation may improve the reconstruction quality.

5.2. Pose Estimation

Next, Figure [§] reports the performance of KRN in dif-
ferent training and testing configurations. First, the base-
line indicates when trained on synthetic (without random
patches) and tested on spaceborne images, without employ-
ing a context encoder, there is a gap in performance com-
pared to when tested on 3,000 synthetic images, which
comes from the same distribution as the training images.
The next scenario, when trained on synthetic images with
random patches, resembles random erasing data augmen-
tation technique by [27]. Unfortunately, the augmentation
does not improve performance over domain gap with given
configurations.

The last results indicate the scenario when the pre-
trained context encoder is used as the feature extractor of
KRN. When the encoder is frozen while training KRN, we
see the pose estimation network cannot learn. This is re-
gardless of the size of the network part following the en-
coder, possibly due to imperfect training result of the con-
text encoder as shown in Figure [/| or because features ex-
tracted by the context encoder are insufficient to compute
the 2D keypoint locations. Even when the entire KRN is
trainable but initialized with the weights of the pre-trained
context encoder, we do not see any noticeable improvement.

6. Conclusion

In this project, we have trained a context encoder by
training it to fill in the gap created in the synthetic spacecraft
images in an unsupervised setting. Then, the pre-trained en-
coder was used as a feature extractor of a pose estimation
network which is tasked to predict the 2D locations of the
keypoints pre-designated on the spacecraft model. Unfor-
tunately, the pre-trained encoder was not successful in im-
proving the domain gap posed by the synthetic and space-
borne images.

There are many ways to extend this work. One is to train
the autoencoder better using adversarial loss or other means.
Then, we can try different pose estimation architectures that
may work better with the context encoder. For example, the
network of [3]] uses an autoencoder-like architecture to pre-
dict the heatmaps each corresponding to the keypoint loca-
tions. Since the network’s task is essentially a reconstruc-
tion, architectures like this may be better compatible with
the features learned by the context encoder.

Moreover, the fundamental limitation of neural inpaint-
ing is that the patching-out of random areas only simulate
occlusion, but not other differences like the surface tex-
tures of synthetic and real spacecraft. This challenge may
be overcome by using more general unsupervised learning



Figure 7. Left: Training image. Middle: Reconstructed image. Right: Ground-truth image.

Train Test Eg [deg] E; [m]
Baseline Synthetic Synthetic 3.28 0.35
Synthetic Spaceborne 27.93 1.86
Synthetic+  Spaceborne 44.72 4.40
Patches
Pre-trained encoder, Synthetic+  Spaceborne 151.98 45.94
frozen Patches
Pre-trained encoder, entire Synthetic+  Spaceborne 55.03 3.65
network trainable Patches

Figure 8. Pose results of KRN.
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