
Room Layout Estimation using Convolutional Neural Networking

Derek Chung
Stanford University

Department of Computer Science: CS 231A Computer Vision Final Project
dchung22@stanford.edu

Abstract

Room estimation layout involves estimating the inter-
nal structure of a room, given an RGB picture of the
room. The picture of a room is from a single viewpoint,
taken from the interior, and may contain objects within or
other than the room’s natural boundaries. The estimation
our model aims to provide takes the form of a 3d cube,
where we estimate the corner locations of a given room
(see http://deeplayout.stanford.edu/ for examples)[1]. I will
use the project of a public GitHub repository[3] to load
the Large-scale Scene Understanding Challenge (LSUN)
dataset[2] and the model. I will modify the relevant files
to create the Fully Convolutional Neural Network Model
and the optimization algorithms described in the research
paper titled DeLay: Robust Spatial Layout Estimation for
Cluttered Indoor Scenes[8]. I test my model on established
benchmarks made specifically for the LSUN dataset.

The model includes 2 parts. One is a convolutional neu-
ral network that is described in detail later on. The other
part is a greedy optimization algorithm that tries to find the
relevant corner points to maximize a scoring algorithm. We
output the label map of the entire room where each pixel
maps to a predicted surface and the locations of the rele-
vant corners.

1. Introduction
The Princeton 2016 Large-scale Scene Understanding

Challenge asked challengers to create a model where given
a single image of the interior of a room, to predict the geo-
metric layout of the room by estimating the locations of the
corners and the walls. The task is made difficult by the fact
that we are given ”clutter” within each image; there may
be objects or furniture within each room that obscure the
geometric layout in the image. In other words, we, as hu-
mans, can tell that a table is not part of the floor, wall, or
ceiling, but our goal is to model a program that can intelli-
gently overlook the clutter and accurately estimate the room
layout.

Figure 1. Basic representations of the input and output of my in-
tended model.

There are many works that involve scene recognition,
multiple camera views, and RGBD images. For my project,
I will use a single RGB image in the form of a 3x320x320
matrix. I will use the image to produce a layout in the form
of a 320x320 image. The layout will contain integers that
correspond to a certain section of the room, namely the front
wall, left wall, right wall, floor, and ceiling. See this figure
for a visual representation; the different colors correspond
to different surfaces of a room, and will correspond to dif-
ferent values in my output matrix.

The ideas that I will attempt to implement are described
in a research publication[8] called DeLay: Robust Spatial
Layout Estimation for Cluttered Indoor Scenes. The first
stage of my solution involves recreating the model imple-
mented in the DeLay paper. The model involves taking an
RGB image as input, feeding it into a convolutional neu-
ral network, pruning the output to get initial estimates for
key points, and optimizing those key points to maximize
a scoring algorithm. The Stanford DeepLayout website[1]
provides a nice overview of the inner workings of the algo-
rithm. See Figure (2).

2. Background/Related Works
The DeLay model[8], the design which this paper at-

tempts to emulate, includes a fully convolutional neural net-
work that produced an initial room layout. Fully convolu-
tional networks take in images of arbitrary size and pro-
duce a corresponding output. This allows my model to take
in RGB images of varying size, as long as it is an RGB

4321

fig:model


Figure 2. A more detailed diagram of the inner workings of the
model. Note that the neural network is only part of the model.
Picture taken from deeplayout.stanford.edu

image. For example, one could experiment with how the
model’s prediction changes given high and low resolutions
of the same RGB image. DeLay also extracts line segments
l1, l2, l3, l4 and vanishing point v shown in Figure (3) and
runs an optimization algorithm to find the lines minimizing
a scoring function. My model has the same structure, but
points p1, p2, p3, p4 are maximized using a slightly differ-
ent algorithm.

The model proposed in DeLay[8] was introduced by Var-
sha Hedau in the paper ”Recovering Spatial Layout of Clut-
tered Rooms”[6]. Hedau proposes a solution where 3 or-
thogonal vanishing points are estimated, which are used
to guess the layout of the room. Given that the RGB im-
age is taken from the inside of the room, we are guar-
anteed a layout similar to the interior of a cube, with at
least one wall guaranteed to be in the image. Using these
constraints,there is a finite number of possible ”layouts”,
with each layout containing geometric constraints that de-
fine which walls/edges/corner are visible in the image.

Another paper titled ”Indoor Scene Layout Estimation
from a Single Image”[7] by Hung Jin Lin, Sheng-Wei
Huang, Shang-Hong Lai, and Chen-Kuo Chiang proposes
a similar method described in the DeLay paper. One of the
main differences is that the neural network is pretrained us-
ing the ResNet101 network[5]. The ResNet101 framework
is a neural network pretrained on the ImageNet dataset. The
framework is ultimately used for image classification, but
the residual learning framework may be helpful for some
models that rely on scene based algorithms that attempt to
classify clutter using image recognition. In contrast, the In-
door Scene Estimation Layout paper takes the output of the
neural network and applies optimization algorithms to gen-
erate lines, which then produces a final output where all
edges are smoothed out.

3. Approach
Some of the formulas below are taken from the DeLay

model and the paper associated with it. [8].

3.1. Overview

Given an RGB image I ∈ RWxH , I produce an output
L ∈ RWxHx5 where

Lij ∈ {Left, Front,Right, Ceiling,Ground} (1)

and
Lij = Îij (2)

, where Îij is our model’s prediction for what section of the
room pixel Iij resides in. I assume the room’s adjacent sur-
faces are orthogonal, and that opposite surfaces are parallel.
In my model, an integer of 0 represents the front wall, 1 is
the left wall, 2 is the right wall, 3 is the floor, and 4 is the
ceiling.

To calculate L, I feed I into a Fully Convolutional Neu-
ral Network with 21 layers that produces an output T ∈
RWxHx5, where after we normalize,

T k
ij = P (Lij = k|I) k ∈ {0, 1, 2, 3, 4} (3)

k also corresponds to the various locations that a pixel could
be in.

After we get T , we get an initial estimate given by the
equation below:

L̂ij = argmaxkT
k
ij (4)

The initial estimate gives us a starting layout map that map
each pixel in our image to a label described in equations 1
and 2. This initial estimate, however, performs very poorly,
as there are no geometric or labeling constraints. As a re-
sult, L∗ turns out to be, in most cases, an ambiguous cluster
where we can’t easily draw borders to divide each label.
The locations of surfaces are hard to tell as well, due to
there being several disjointed components in many cases.

We end up pruning all, but the largest connected compo-
nents. We use a k-nearest-neighbors algorithm to reassign
the rest of the components to a better label. We solve the
problem of disjointed components this way.

In addition, I calculated initial estimates of
p1, p2, p3, p4, and v points delineated in Figure (3). I
attempt to optimize the locations of p1, p2, p3, p4, and v
that maximize the following equation:

S(L = f(τ)|T ) = 1

WH

∑
i,j

T
(Lij)
i,j (5)

where τ = (p1, p2, p3.p4, v), and f is a function that maps
τ to awxhmatrixL resembling a layout estimation. Having
this optimization function enforces the smoothness of the
output.

4322



Figure 3. Layout with lines li and a vanishing point v. We try to
optimize values of li and v using S.

Figure 4. The fully convolutional neural network used in the first
part of my model. Each Convolutional layer is followed by a rec-
tified linear unit (ReLU), and I established the Interpolated output
as a linear layer. The 2nd, 3rd, and 4th maxpool layers have a ker-
nel space of 2 to make up for smaller features in the convolutional
networks.

3.2. Manhattan Assumption

I assume the Manhattan World Assumption described
in more detail in a paper[4] titled ”The Manhattan world
assumption: regularities in scene statistics which enable
Bayesian inference”. In the context of my project, I assume
that all surfaces within the input rooms are orthogonal. The
assumption allows me to model the room as shown in Fig-
ure (3).

3.3. Fully Convolutional Neural Network

The first part of my model involves feeding an RGB im-
age into a convolutional neural network further described in
the DeLay paper[8] and Figure (4).

The model outputs T , a WxHx5 matrix, which is the
same output produced in equation (3).

3.4. Finetuning and Constraints

Once I have T , the output from the neural network, we
extract L̂ in equation (4). The first 2 dimensions of T repre-
sent pixels in the RGB image, and the last dimension of T
represents a probability distribution of a pixel being mapped
to a certain label. A label is in {0, 1, 2, 3, 4}, where each in-
teger represents a particular surface that can exist within a
room. I assume a given image contains at most a front wall
(the wall directly opposite to the camera), a left wall, a right
wall, the floor, and the ceiling. Some of these surfaces may
be missing in T . My model accounts for this when estimat-
ing points p1, p2, p3, p4, and v in Figure (3).

Then, I prune all components in L̂ except for the largest
connected component for each label. I use a breath-first
search algorithm to get all the connected components for
each label. After selecting the largest component for each
label, I use a k-nearest-neighbors algorithm to indepen-
dently reassign the other components to a new label. I now
have a matrix

L∗ = g(L̂) (6)

where g is a function that prunes and reassigns components
in the way described above.

We are left with L∗, a matrix that has at most one con-
nected component per label, but doesn’t necessarily have
the smooth edges in Figure (3) that I would like. I enforce
smoothness by generating a variable

τ = (p1, p2, p3, p4, v) (7)

corresponding to the labels in Figure (3). I provide initial
estimates for (p1, p2, p3, p4) by starting from the center of
L̂ and traversing diagonally in different directions until I hit
a point not labeled as being part of the front wall. I employ
the method in part because I enforce a constraint that L̂must
have a component representing the front wall, or the dark
blue section in Figure (3). I initialize v as the midpoint of
(p1, p2, p3, p4).

With this information, I can easily create a function f for
equation (5) such that

f : A −→ B,A ∈ (p1, p2, p3, p4), B ∈ RWxH (8)

f maps my list of points to a matrix resembling a layout
estimation.

3.5. Optimization

I propose the modified cordinent ascent algorithm in-
spired by a similar one in DeLay[8]

Initialize (p1, p2, p3, p4, v)

For 3 iterations or until
score didn’t improve:

for all points:

4323



shift the point
(3 - iter_num) * 4
units left/down/up/right

#the first iteration
is number 0

evaluate
Score(p1, p2, p3, p4, v | T)

if the score improved:
set the corresponding
point equal to
the shifted one

I continuously shift the points in the layout until the score
doesn’t improve, or after 3 iterations. The (3 - iteration
number) * 4 factor shifts the points more in early iterations,
and less so in later iterations, further refining the algorithm
the closer the coordinates approach their optimal values. T
is the WxHx5 matrix outputted in Equation (3).

I chose only to optimize for a max of 3 iterations due
to performance constraints and/or unoptimal code. In other
words, we maximize Equation (5) using our above algo-
rithm, which tries to find optimal values for τ . Once my al-
gorithm gets an optimal value of τ , I return the correspond-
ing labeling matrix f(τ) for training and evaluation.

4. Experiment
4.1. Overview

I train my neural network on the Large-scale Scene Un-
derstanding Challenge (LSUN) Dataset[2] for 30 epochs
and a batch size of 8. The dataset contains 4000 training ex-
amples and 394 validation examples that I will use through-
out training. My optimization algorithm will attempt to find
the set of parameters that maximize the score. The scoring
function is given by Equation (5).

I then test my data on the dataset published by Hedau[6],
containing 105 testing images.

I compare my results to the existing model provided in
a public GitHub Repository[3], which is the same model
described in ”Indoor scene layout estimation from a sin-
gle image”[7], which I refer to as the ”baseline” model in
the following sections. The baseline model is a ResNet101
model pretrained on the ImageNet database, and does not
include the optimization algorithm outlined in Section 3.5.

4.2. Benchmarks

The built-in framework outputs 4 different scoring mech-
anisms for testing, but I will focus on the number labeled
”score”, which is the averaged maximum bipartite labeling
between my prediction and the ground truth. Consider a
predicted layout matrix P and the ground truth matrix T .

Both P and T are dimensions (w, h) and contain elements
from the set k ∈ {0, 1, 2, 3, 4}, where each integer corre-
sponds to a specific surface.

Consider a matrix C ∈ Rmxn, where m is the number of
unique labels in P and n is the number of unique labels in
T . I calculate C such that

Cij = −SUM(MASK(P,M [i] & MASK(T,N [i])
(9)

where SUM(x) is the total sum of elements in x, M and
N are matrices with dimensions m and n respectively that
store the values of the unique labels in P and T respectively,
and MASK(X, y) = Z such that Zij = 1 if Xij = y, 0
otherwise. The & is the bitwise operator.

In other words, what Equation (9) does is take every
combination of unique labels from P and T in the form
of (M [a], N [b]). If we denote P∗ and T∗ as the set of all
points where Pij = M [a] and Tij = N [b] respectively,
Cab is the negative sum of the set intersetion between P∗
and T∗. Labels that have more common matrix indices will
have a more negative value in C.

Next, I find the linear sum problem, or min
∑

i

∑
j Cij

such that each row i corresponds to at most 1 column j, and
vice versa. This formula is the same as Minimum Weight
Matching in Bipartite Graphs.

I get the cost of the assignment from the linear sum prob-
lem. The positive normalized cost represents the percentage
of elements in P and T that have the same label if I reas-
sign labels in P or T using the mapping produced by the
linear sum problem. Note that a score of 1.0 means that
the predicted layout matches the ground truth layout ex-
actly in terms of the geometric layout outlined in Figure
(3), but may have different label values for the same area.
The higher the score, the better the prediction.

Therefore I can model the score of a particular model as

Score(Model) =
1

n

∑
n

F (Model, an) (10)

where F produces the positive normalized linear sum of C
using a prediction matrix P generated from model Model
and testing data an, and T as the ground truth layout of an.

4.3. Methodology

I use Google’s Collab to develop and run the baseline
model and my model. A link to the page is included at
supplementary material at the bottom of the paper. I use
a Jupyter Notebook to download requirements and import
necessary modules. I run the models using a GPU runtime
on Colab to utilize PyTorch tensor.

4.4. Quantitative results

The baseline model produced a score of 0.54773 testing
on the dataset published by Hedau[6]. The output is pro-
vided in Figure (5).

4324



Figure 5. The validation scores after training the baseline model.

Figure 6. The validation scores after training my customized De-
Lay model.

My model produces a score of 0.612, which is approxi-
mately a 7 percent increase from the baseline model. More
details in Figure (6),

4.5. Qualitative results

The runtime of my model was significantly longer that
the baseline model, with testing taking an average of 80 sec-
onds per iteration. In contrast, the baseline model took 2-3
seconds on average per iteration. I can attribute the drop
in efficiency to the optimization of code described in sec-
tions 3.4 and 3.5. Significant improvements should be pos-
sible to improve the speed of getting the score of a layout
(p1, p2, p3, p4, v).

Even though the optimization algorithm can run a max-
imum of 3 iterations, the overwhelming majority of test-
ing examples ran 2 iterations, which means there was no
score improvement on iteration 2. Given the algorithm
shifts points 12 units in the first iteration and 8 units in
the second, I make the assumption that the optimal val-
ues pf (p1, p2, p3, p4, v) are contained within a 40 by
40 box surrounding the initial estimates of each point.
Given that my image size is 320x320, there are 64 40x40
squares contained in the image. In optimizing the layout
(p1, p2, p3, p4, v), I can add constraints to evaluate scores
only if all points remain within the bounding box.

5. Conclusion
Estimating the layout of a room given an RGB image

seems like a reasonable task to the human eye, but when
clutter is introduced, there are several approaches that a
computer can take to perform the same task. Some meth-

ods include using image classification techniques to iden-
tify clutter, optimizing parameters from convolutional neu-
ral networks to enforce geometric constraints, and using
vanishing point estimates to get a predefined layout of a
room. I combined developments in Fully Convolutional
Neural Networks and principles of coordinate ascent to get
a collection of 5 key points defining a room layout. While
my optimization wasn’t ideal, my benchmarks were better
than I expected, given the runtime constraints on Google
Collab.

The coordinate ascent optimization algorithm described
in Section 3.5 is unlikely to get the exact set of points that
maximize the scoring function. If I knew how to optimize
the code, then my model’s score would increase, as I could
increase or remove constraints on the number of iterations
presented in the optimization algorithm. I can also decrease
the increment that I use to shift each point to get more fine-
tuned and accurate results. Finally, I can utilize multiple
cores and vectorize the optimization algorithm to simulta-
neously run the algorithm on all batches. Currently, I opti-
mize one batch at a time, and I structured my code so that
another batch cannot start until the previous one finishes.

It is also necessary for me to understand the different
types of errors shown and integrate the standard bench-
marks into my testing models. For example, pixel accu-
racy and corner accuracy were included in the output, but I
have yet to comprehend the mathematics behind the bench-
marks, and didn’t include them as a result. Many of the
related works on room layout estimation include these two
metrics when comparing results to other models, so to in-
crease the relevance of these results, there is a need to take
into account corner and pixel accuracy in my analysis.

6. Supplementary Material
My Google Collab project: https://

drive.google.com/drive/folders/
17z50KCQS6bFHMjgMhnmTMsMZLOa3lEyY?usp=
sharing

References
[1] Deep layout estimation. http://deeplayout.

stanford.edu/. Website of project this paper is
based off.

[2] Largescale scene understanding challenge: Room layout esti-
mation.

[3] levirve lsun github repository. https://github.com/
leVirve/lsun-room.

[4] J. M. Coughlan and A. L. Yuille. The manhattan world
assumption: Regularities in scene statistics which enable
bayesian inference. In Proceedings of the 13th Interna-
tional Conference on Neural Information Processing Systems,
NIPS’00, page 809–815, Cambridge, MA, USA, 2000. MIT
Press.

4325

https://drive.google.com/drive/folders/17z50KCQS6bFHMjgMhnmTMsMZLOa3lEyY?usp=sharing
https://drive.google.com/drive/folders/17z50KCQS6bFHMjgMhnmTMsMZLOa3lEyY?usp=sharing
https://drive.google.com/drive/folders/17z50KCQS6bFHMjgMhnmTMsMZLOa3lEyY?usp=sharing
https://drive.google.com/drive/folders/17z50KCQS6bFHMjgMhnmTMsMZLOa3lEyY?usp=sharing
http://deeplayout.stanford.edu/
http://deeplayout.stanford.edu/
https://github.com/leVirve/lsun-room
https://github.com/leVirve/lsun-room


[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition, 2015.

[6] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial
layout of cluttered rooms. pages 1849–1856, 2009.

[7] H. J. Lin, S. Huang, S. Lai, and C. Chiang. Indoor scene
layout estimation from a single image. pages 842–847, 2018.

[8] K. C. S. S. Saumitro Dasgupta, Kuan Fang. Delay: Robust
spatial layout estimation for cluttered indoor scenes. Recom-
mended by course advisor for final project ideas.

4326


