Ping Pong Shot Charts and Training Games

Dillon Koch
Stanford University
dkochl8@stanford.edu

Abstract

Shot charts are commonly used in sports to visualize data
from the game. Often times these charts are used in basket-
ball and tennis, but they can also be applied to ping pong
to show where the ball bounces during a point. To create
the charts, three models from the TTNet [2|] framework
are replicated to track the ball, detect bounces, and locate
the table. The models replicated from TTNet are trained
on the same publicly available OpenTTGames dataset and
perform similarly to the researchers’ models. Next, this
work presents a method to use the table’s corners to perform
camera calibration that allows points from the video to be
mapped to the corresponding point in the shot chart. Once
these charts are created, they can be used to create train-
ing games that encourage players to train specific skills like
aiming for the corner of the table.

1. Introduction

Shot charts are a familiar tool for visualizing data in
sports, used most often in basketball and tennis. The charts
show an overhead view of the court combined with data
from the game. In basketball, the data would be X’s and O’s
showing where players from each team missed and made
shots on the court. This way, people can look at the chart
and immediately see where every shot was taken and its re-
sult. Shot charts are also used in tennis to show where the
ball bounced on the court during a point. Similarly, data
from ping pong games can also be displayed on a shot chart.

Much like the tennis shot chart, the ping pong chart
would simply add a small dot to every location on the ta-
ble where the ball bounces (Figure 1). Anyone interested
in ping pong can use these to gain a better understanding
of the game. In particular, players can analyze where they
hit the ball most frequently. They can use that knowledge to
understand their performance better and identify their weak-
nesses. For example, if a player notices they hit the ball to
the right side a large amount of the time, they may decide
to practice hitting the ball to the left more often. Players
may also use the chart to learn about their opponents’ weak-

nesses, and devise a strategy to take advantage of them.

The objective of this work is to examine a video of a
ping pong game to create a shot chart. The approach used in
this work involves three main steps. First, it is necessary to
track the ball’s position in the video throughout each point
to know where it bounces. Second, a model must be trained
to detect each time the ball bounces to know when it’s time
to add a new point to the shot chart. Finally, each time a
bounce is detected, the ball’s position in the video needs to
be mapped to the appropriate position in the shot chart.

Figure 1. A sample ping pong shot chart visualizing where the ball
bounced during a point.

Once the chart is created, it can also be used to create
training games for players to improve their skills. Rather
than just visualizing bounces, the charts can be used to en-
courage players to refine their accuracy by awarding points
for hitting the ball in certain areas. For example, the shot
chart could be used to create a new scoring system where
players earn points by hitting the ball close to the corners
of the table (Figure 3). The closer the ball lands to the cor-
ner, the more points the players score. As a result, the shot
chart is providing valuable feedback to players as they train
specific areas of their skill set.

2. Related Work

Some of the necessary work to create a ping pong shot
chart can be accomplished by replicating the results of the
deep learning system TTNet (Table Tennis Net) [2] pub-

150 100

50

25

T
|
|
|
|
|
;
.100 . . 1
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|

Figure 2. Sample shot chart after playing the coffin-corner chal-
lenge.

lished by computer vision researchers at OSAI. The motiva-
tion for this research was to create an Al table tennis refer-
eeing system. TTNet introduces deep learning model archi-
tectures for ball tracking, bounce detection, and table seg-
mentation. These methods are all necessary to know where
the ball is, when it bounces, and where the table is. Plus,
the authors of this paper also published the OpenTTGames
dataset composed of ping pong videos and labels necessary
to train all three models.

Another work [1] has performed similar camera cali-
bration involving basketball shot charts. Instead of tracking
data from the game and visualizing it on a shot chart, an
existing shot chart’s contents were mapped onto the video
of the game itself. Before mapping the entire shot chart to
the video, this work began by locating corresponding points
on the court between the court and chart. Once enough cor-
respondences were identified, they were used to calculate
the camera calibration matrix. That matrix was capable of
mapping all points from the shot chart to the video, not just
the correspondences that were easy to identify. Finally, the
result of this project was the original video from the game
with the shot chart added on the court. This enhanced the
viewers’ experience by showing the shot data and the game
itself in one place.

3. Approach

The first task to create a ping pong shot chart is to make
a diagram of a ping pong table that will later be populated
with data. Ping Pong tables have a length of 9 feet and width
of 5 feet in 3D, and the shot chart diagram (Figure 3) has the
same proportions. It also includes the horizontal center line
and a vertical dashed grey line representing the net.

Once the blank shot chart is created, the next step is to
replicate models from the TTNet framework. First, the ball
detection model is used to predict the location of the ball in
each frame. Next, the event detection model identifies when
the ball bounces or hits the net. The net hits are unnecessary
for this project and are ignored. These models are necessary

Figure 3. Empty Ping Pong shot chart diagram

to know when and where a new dot must be added to the
shot chart.

In addition to replicating these results, more features
must be added to create a shot chart. Knowing where the
ball is when it bounces in a video is not enough to add
a point to a shot chart. This is because ping pong tables
are shaped differently in videos than they are in shot charts.
From the traditional camera angle of a ping pong game, the
table is located in the middle, with the two players on each
side (Figure 5). The table is shaped like a trapezoid in this
view, with the nearest side of the table being wider than the
far side as a result of their distances from the camera. How-
ever, shot charts depict the table from an overhead view,
showing the tabletop’s true rectangular shape we know it to
be in 3D. Therefore, it is also necessary to map the table’s
trapezoid shape seen in the traditional camera angle to the
rectangular shape used in shot charts. This mapping is ac-
complished by using camera calibration between the game
video and shot chart. In each source, the four corners of the
table are located and used as correspondences for calibra-
tion. As a result, any point on the table in the video can be
converted into its corresponding point on the shot chart.

3.1. Ball Tracking

To track the ball during a given frame, the TTNet re-
searchers trained a neural network to predict the ball’s lo-
cation given a stack of nine consecutive frames. The ad-
vantage of using nine frames is that the model can track
the ball’s movement, rather than just looking at one frame
where the ball may appear blurry. The model’s task is to
predict the center of the ball in the last frame of the stack.

The model’s architecture is split into two identical halves
that perform different functions (Figure 4). The first half
of the model predicts the ball’s location in a downscaled
version of the original frames. The input frames are down-
scaled from the original 1920x1080 resolution to 320x128.
Once the ball’s center is predicted in the downscaled stack,
the TTNet researchers cropped another 320x128 image
around the predicted center from the original full-resolution

——

Ball detection, global stage

Ball detection, local stage

Feature Feature
extractor extractor
@
5 -~ & % @ ERE ® x,
g s33832% g’ g sE3838% gl
"§§ 9 o - ‘] “§§ gg§ - |coord.
B RELHETEE N
(v} [¥]
; 888858 NN, § 888888| "5,
v 2
Video frames 1920x1080
Q b
Semantic Segmentation @Q@ Events spotting
' T J L Concat

il

Conv 3x3
TransposedConv 3x3

DeconvBlock?2
DeconvBlock3
DeconvBlock4
DeconvBlockS

Semantic masks 320x128

CNN decoder

events
probabilities

(Pocunce P

-

Con£ x1
ConvBlock1
ConvBlock?2

FC1
FC2

d

Figure 4. All three model architectures used in the TTNet framework (diagram originally published in [2])

Figure 5. Sample frame from table tennis videos in the
OpenTTGames dataset found at lab.osai.ai.

frame. This newly cropped image at full resolution is fed
into the second half of the ball detection model, where the
ball’s location is predicted again. This process of predicting
the ball’s center on a downscaled image, then predicting the
center again on a cropped high resolution image is faster
than predicting on the original frame once.

3.2. Event Detection

The event detection model is used for detecting ball
bounces and net hits, but this work ignores the net hits.
Similar to the ball detection model, it takes stacks of nine
frames as input. It has a similar structure as the ball detec-
tion model, but with additional convolutional blocks (Fig-
ure 4). This model also uses a sigmoid activation function

to output two probabilities, one for a net hit and another for
a bounce. Due to the higher frequency of ball bounces com-
pared to net hits, the TTNet researchers trained the model
with a weighted cross entropy loss. They also added ran-
dom frames that did not include an event to the training set
to help predict the absence of an event.

3.3. Table Segmentation

The semantic segmentation model uses an encoder-
decoder approach to identify three classes: humans, the
table, and the scoreboard. Similar to the event detection
model, this work only makes use of the table’s segmenta-
tion. Also similar to the other models, the semantic segmen-
tation model accepts downscaled frames from the videos as
input. This model is trained on ground truth segmentation
masks from the OpenTTGames dataset, and is evaluated us-
ing binary cross-entropy. The goal behind segmenting the
table from the video is to locate its corners for camera cali-
bration.

3.4. Camera Calibration

The final step in creating shot charts is to map points
from the table in the video to the table in the shot chart.
This can be accomplished by performing camera calibration
using correspondences from the table’s corners in the video
and shot chart. Identifying the four corners in the shot chart
is trivial because this work creates the shot chart. On the
other hand, the semantic segmentation of the table from 3.3

can be used to find the four corners in the video.

Once the correspondences are identified, each point p in
the video and each point p’ in the shot chart can be repre-
sented in Homogeneous coordinates as:

!

8

(D

hS)
Il
—_

These corresponding points are related by the camera
calibration matrix H as follows:

p' = Hp (2)

This matrix H is a 3x3 matrix with 8 degrees of free-
dom. Therefore 8 constraints are necessary to solve for its
unknown parameters. This means at least four sets of cor-
respondences are needed for calibration, since each corre-
spondence produces two equations.

The process of finding those equations starts with repre-
senting H as a block matrix:

hy
H = ho 3)
hs

Now the equation defined in (2) can be rewritten as:

u’ h1 U
v = | ho v 4)
1 hs | |1
u hip
' = | hap &)
1 hgp

Converting these matrices from Homogeneous coordi-
nates back to Euclidean will provide equations that can be
used to solve for H:

/ hip;
v =

/ hap;
[’ Uy =
h3p;

= 6

hip; — wjhsp; =0, hop; — vihap; =0 @)

All four sets of correspondences can be used to create
the equations from (7). Those 8 equations can then be rear-
ranged as a matrix-vector product as follows:

[p1 07 —uipf]
0" p{ —wvipl | [A]
: hY | =Ph=0 (8)
pi 07 —ujpl | [1
| 07 pi —vipl |

The vector h from (8) can be solved using singular value
decomposition. After the 9x1 vector / is solved, its contents
can be reformatted into the 3x3 matrix H.

Once H is solved for, it can be used to map any of the ta-
ble’s pixels in the video to the corresponding location in the
shot chart. This process begins with converting the bounce’s
pixel location into a homogeneous vector # with three com-
ponents.

t= ©)]

_ e

Multiplying that vector ¢ by the newly solved H matrix
will produce another vector ¢’ with three components that
represents where a new dot belongs in the shot chart.

o Hyy Hip Hiz| |u
t=|v]| = Hyy Hyy Hos v| = Ht (10)
z Hsy H3z Hiz| |1

Finally, the vector ¢’ can be converted into a 2D pixel
location in the shot chart by converting the vector from Ho-
mogeneous coordinates back to Euclidean.

m = H (11)

The final shot charts can be created by combining all the
models and methods described above. However, it’s com-
putationally expensive to constantly run each of the models
on every frame. To be more efficient, the only model that is
run on every single frame in the input video is the event de-
tection model. When that model detects a bounce, the ball
tracking model is executed to locate the ball’s position in the
video. The ball’s position is then used to add a new point
to the shot chart. That way, the ball tracking model isn’t
consuming unnecessary computational power when there’s
no bounce detected.

Additionally, the semantic segmentation model does not
need to be run continuously either. This model does need
to be run at the beginning of the video to locate the table
and its corners, since those corners are required for camera
calibration. However, it is possible that the table’s corners
may shift a small amount over the course of the video. Per-
haps someone bumped into the camera, one of the players
nudged the table, or some other event could cause the table’s
location to move slightly. To accommodate for this, I run
the semantic segmentation model periodically throughout
the video to reevaluate where the corners are. This strikes a
proper balance between consuming too much computations
and not detecting the table’s movement.

4. Experiment

In summary, the experiment is conducted by first running
the event detection model on each frame to detect bounces.
Each time a bounce is detected, the ball tracking model lo-
cates the ball in the frame. After that, camera calibration
is performed using the table’s corners that are found by pe-
riodically running the semantic segmentation model. This
process is repeated throughout the video.

4.1. Dataset

The same researchers who created TTNet also published
the OpenTTGames dataset for computer vision research. It
includes 5 longer videos of table tennis gameplay to use for
training models and 7 shorter videos for testing. The videos
are recorded with 1920x1080 resolution at 120 frames per
second. Each video is captured from a similar angle, with
the table in the middle of the frame and the two players to
the left and right (Figure 5). All videos come with a json
file indicating the frames in which the ball bounces, another
json file with the two-dimensional position of the ball in
each frame, and also images with the semantic segmentation
masks of the table. These three files respectively serve as
the labels used to train the bounce detection, ball tracking,
and table segmentation models.

4.2. Evaluation

There are two main objectives that this work is evalu-
ated on. First, the three models used in this method must
be evaluated. To evaluate the ball detection model, I used
the RMSE of the ball’s labeled position compared to the
predicted position. To evaluate the event detection model, I
computed the percentage of correct events predicted. Fi-
nally, table segmentation was evaluated with Intersection
Over Union (IoU). The TTNet researchers achieved 1-3 pix-
els RMSE for ball detection in most settings, about 97%
accuracy predicting events, and nearly 93% IoU for table
segmentation.

Second, the shot charts themselves must also be evalu-
ated. Numeric metrics cannot be computed without pos-
sessing ground truth labels, so this objective will be visu-
ally evaluated. This can be accomplished by watching ping
pong videos and ensuring dots are added in the appropriate
place each time the ball bounces. Visually evaluating the
shot charts monitors multiple aspects of the project. First, it
ensures that bounces are detected at the appropriate times.
If dots are added when the ball didn’t bounce, or if the ball
did bounce and no dot was added, then the event detection
model would be at fault. It also helps evaluate the seman-
tic segmentation of the table and the ball detection model.
These methods could be at fault if a bounce is correctly de-
tected and a dot was inserted in the wrong place. This could
be due to an inaccurate prediction of the ball’s location or
flawed segmentation of the table. Thankfully these models
are also numerically evaluated, because it would be difficult

to tell which model was at fault in this situation, if not both.
Finally, evaluating the training games will involve manually
calculating each player’s score based on the shot chart and
comparing that to the score shown above the chart.

4.3. Results

The results of the three models are presented in the table
below, along with the TTNet researchers’ results. The met-
rics between the two sets of models are very similar. This
is not surprising given that the models were trained on the
same OpenTTGames dataset described in section 4.1 ear-
lier.

Me | TTNet
Ball Detection - RMSE 2.7 1-3
Event Spotting Accuracy 94% | 97%
Semantic Segmentation IoU | 93% | 93%

Other qualitative results were measured by visually eval-
uating the shot charts. To do this, I placed the original ping
pong game videos and the shot charts side-by-side in a new
video to compare the two. The shot chart is blank at the be-
ginning of this new video, and is populated as the bounces
are detected. This was helpful to see how the shot chart was
updated in real time, rather than comparing the video to all
the data in the final shot chart at once. After watching those
videos, it became clear that the event detection model’s mis-
takes were almost always missing a bounce rather than pre-
dicting a bounce that didn’t actually occur. At times this re-
sulted in fewer dots on the shot chart than there should have
been. However, the correctly identified bounces were con-
sistently mapped to the appropriate place on the shot chart.
This indicated that the ball tracking model, table segmen-
tation, and camera calibration generally performed well. If
bounces were detected and dots were misplaced on the shot
chart, any one of those three could be at fault.

Finally, the training games also performed well. Since
the input to these games is purely the shot chart data, the
games’ performance can be evaluated separate from the
models’ performance. Every time the ball bounced in a
shaded region, the score was correctly updated. Many of
these results can be viewed from the videos included in the
supplementary matrerial section at the end of this work.

5. Conclusion

In this work, methods from the TTNet framework were
combined with camera calibration to create a ping pong shot
chart that visualizes bounces during a game. The TTNet
models were used to track the ball’s location, detect when
the ball bounced on the table, and locate the table within
the video. Camera calibration was also performed using
the four corners of the table from the video and the shot
chart. This calibration was useful for mapping locations

on the table in the video to the corresponding location in
the shot chart. Optional training games were also presented
that used the shot charts to help players train specific parts
of their skill set.

5.1. Lessons Learned

One of the things I learned from this project was that
it can be more effective to run a convolutional neural net-
work twice on smaller inputs rather than once on the full
image. This was done in the ball tracking model by passing
a downscaled image first, then a cropped section of the full
resolution image to locate the ball. This method performed
well and will be an interesting strategy to keep in mind.

Another lesson learned is that the camera calibration can
perform differently depending on the angle of the camera.
All videos in the dataset present the table from a side view,
but the camera has a higher altitude in some videos com-
pared to others. In the videos where the camera is up higher,
the view of the table top is closer to the overhead view in
shot charts, and the camera calibration generally performed
better. This makes sense because when more of the table’s
details are shown, it’s easier to get a more exact measure-
ment of where the ball bounces.

Finally, I learned how helpful it can be to use multiple
video frames at once as inputs when training the deep learn-
ing models. The idea behind this was to track the ball’s
motion across a small set of frames. All the models in this
work used stacks of 9 frames as input, but this could be
adjusted for other purposes. For example, the TTNet re-
searchers mentioned how detecting a serve would require
larger stacks of frames since serves generally take more
time than a simple bounce or net hit.

5.2. Future Ideas

Perhaps the most important piece of this work is finding
the table’s location in the videos with semantic segmenta-
tion. It is important to accurately identify the table to en-
sure the shot chart is accurate as well. However, the method
proposed by the TTNet authors uses downsampled video
frames that are less precise than the original 1920x1080 res-
olution to perform semantic segmentation. This could lead
to decreased accuracy in the shot chart. Therefore, it may
be worthwhile to construct new segmentation masks on full-
resolution frames from the training videos to locate the table
with more precision.

This work could also be improved by adding new func-
tionality to detect when each point begins and ends. By
segmenting each point from a larger video, individual shot
charts can be created for each point rather than one chart per
video. The overall goal of the TTNet paper was to create
an Al refereeing system that used gameplay video to keep
score. Although the paper didn’t introduce all the necessary
components for creating an Al referee, if those components

were built it could help create individual shot charts.

Similarly, the training games would benefit from the Al
having more awareness of ping pong rules and events be-
yond those displayed in this work. For example, players are
required to hit the ball on their own side of the table when
they serve before the ball goes over the net to the other side.
In this work, that first bounce from the serve is identified
by the event detection model from TTNet. The bounce is
treated the same as any other bounce, which can sometimes
cause problems. For instance, while running the coffin cor-
ner training game on one of the test videos, a player served
the ball into the corner of his own side of the table. The
bounce was correctly identified, and the server effectively
scored points against himself similar to an own goal in soc-
cer. If the Al were able to recognize serves like it does ball
bounces and net hits, logic could be added to ignore the first
bounce after a serve in the training games and eliminate this
issue.

Additionally, there are more possibilities for training
games using this shot chart. I previously mentioned games
that awarded points for hitting the ball close to the corners
or in the center of the table. Similar games can be created
to encourage players to hit the ball near the side of the ta-
ble, the front or back of the table, or even award points for
hitting the ball far away from the last bounce. These new
games would help players improve their accuracy in more
ways.

Figure 6. Setup of the Center Challenge training game

Finally, the camera calibration mapping pixel locations
to the shot chart can be used in reverse. Instead of adding
points to the shot chart based on bounces observed in the
video, the transformation can be used to add data from the
shot chart back into the video as outlined in [1]]. The dots
seen on shot charts could be added to the table in the video,
as well as the colored regions in the training games. The
semicircles in the coffin-corner challenge can be added onto
the table to create an all-in-one video with both gameplay
and shot chart data.

5.3. Supplementary Material

All of the code for this project can be found
at https://github.com/DillonKoch/
Ping-Pong-Shot-Chart. A video demo
of the project can also be found at https:
//youtu.be/zhFcnpBYkKQ.

References

[1] N. Dixit. Adding shot chart data to nba scenes. 2016.

[2] R. Voeikov, N. Falaleev, and R. Baikulov. Ttnet: Real-
time temporal and spatial video analysis of table tennis. In
The IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2020.

https://github.com/DillonKoch/Ping-Pong-Shot-Chart
https://github.com/DillonKoch/Ping-Pong-Shot-Chart
https://youtu.be/zhFcnpBYkKQ
https://youtu.be/zhFcnpBYkKQ

