
Online Window Shopping with NeRF

Zhengxun Wu
wukey92@stanford.edu

Abstract

When we are shopping online, we always want to know
more about the products from the product images, especially
on those unofficial e-commerce platforms like Facebook
Marketplace where images are usually the only available
media. What if we can reconstruct a 3D video out of these
images captured from the limited different angles? Wouldn’t
that be useful to give us a better shopping experience by be-
ing able to do window shopping first? Reconstructing un-
seen views from a limited number of images falls into the
category of novel view synthesis, which is a long-standing
problem at the intersection of computer graphics and com-
puter vision. Fortunately, with the explosion of Neural Ra-
diance Fields (NeRF), neural networks can be used to tackle
this challenging task and can achieve impressive results.
However, generating these 3D scenes with high-quality is
very computationally intensive for NeRF, which limits the
usage of this awesome technique to meet tasks requiring a
low end-to-end latency like our use case. In this paper, we
fine tune NeRF to find a sweet spot between performance
and image quality, and make an application generating 3D
video out of 2D product images where images are expected
to have an object positioned in the center with relatively
simple background.

1. Introduction
In this section, we revisit the problem statement and de-

scribe our overall plan including model selection and opti-
mization.

1.1. Problem Statement

In this work, we aim to reconstruct 3D video out of a
limited number of multi-view 2D images using NeRF[6].
However, the difficulty of the task will vary drastically de-
pending on the attributes of the images (e.g. number of
objects, movement, position). To limit the scope of this
project, we are restricting our use case to online shopping
on non-official e-commerce platforms like Facebook Mar-
ketplace where people can post the pictures of the goods
they want to sell. Unlike Amazon where seller provide high

Figure 1. A Screenshot of Facebook Marketplace.

quality images along with a video or even AR capabilities,
on Facebook Marketplace, image is usually the only avail-
able media with a very limited number. As for the object in
the images, they are usually positioned in the middle with a
less complicated background as shown in Figure 1. So we’ll
try to make an application that can reconstruct 3D video out
of 2D images with above attributes to enhance the online
shopping experience.

1.2. Model Selection

This problem falls in to the category of novel view syn-
thesis. Volume rendering is an effective technique intro-
duced in [4] regressing a 3D volume of density and color[1].
Then NeRF enhance the idea by taking the DeepSDF archi-

1



Figure 2. Visualization of the neural network architecture.

tecture but regressing not a signed distance function, but
density and color[1], which leads to the simplest but ulti-
mately the most influential model. It’s high impact lies in
its simplicity but one of the drawbacks comes with it is the
poor performance: it’s slow for both training and rendering.
According to the description in their Github repo, it needs
200K iterations (about 15 hours) to finish training the model
and render a high quality video.

1.3. Model Optimization

Obviously, the performance can’t meet the requirement
of using it for our use case. We plan to do experiments
to figure out the best combination of hyper parameters and
apply a few optimizations to the neural network architec-
ture to speed it up for particular inputs as described above.
NeRF mainly consists of 3 major components plus a multi-
layer perceptron (MLP). There 3 major components are: 1.
view dependence; 2. positional encoding that has a hyper
parameter L controlling the degree of higher dimensional
space for the input vector; 3. hierarchical volume sampling.
There are mainly 2 hyper parameters involved in the MLP
and they are: 1. number of training images; 2. number of
sampling.

Figure 3 shows the result of an ablation study of NeRF
model[6]. We’ll use similar strategy to find out the best
combination of these components. The evaluation metric
we are using here is the same as that used in the NeRF pa-
per: peak signal to noise ratio (PSNR). It’s calculated using
the following formula:

PSNR = −10 ∗ log(Loss) (1)

Figure 3. An ablation study of NeRF Model.

In the following subsections, we’ll discuss the detailed
optimization plan for each component.

1.3.1 View Dependence

The input of NeRF is a 5D coordinates that contains lo-
cation and viewing direction. According to NeRF paper,
removing view dependency prevents the model from recre-
ating some lighting effects (e.g. specular reflection). Given
that the accuracy requirement is low for our use case, if re-
moving view dependency can significantly improve the per-
formance, it’ll be a proper optimization.

1.3.2 Positional Encoding

In addition to adding view dependency into the input vector,
NeRF also applies positional encoding to map this 5D input
to a higher dimensional space whose degree is controlled by
a hyper parameter L. The encoding function is:

2



f(p) = (sin(20πp), cos(20πp), ..., sin(2L−1πp), cos(2L−1πp))
(2)

In NeRF paper, L is set to 10 for position vector. We’ll
try using different values to find out which one can improve
the training time while meeting our quality requirement.

1.3.3 Hierarchical Volume Sampling

Hierarchical volume sampling is a rendering strategy used
by NeRF during final rendering in order to increases ren-
dering efficiency. The idea is optimizing two networks si-
multaneously that one for ”coarse” sampling and one for
”fine” sampling. Thus, during rendering, it’s possible to get
a more informed sampling of points based on the relevant
parts sampled from the coarse network. According to Fig-
ure 3, it might be the least import factor towards overall
image quality, we’ll only explore whether it can speed up
training. If not, we’ll likely to exclude this component.

1.3.4 MLP

The neural network used by NeRF is as simply as a MLP
that mainly consists of 8 fully-connected ReLu layers, each
with 256 channels. On the 5th layer, there’s a skip connec-
tion that concatenates the input to the layer’s activation. The
positional encoding of the input location is passed through
the network.

Figure 2 details the architecture of the fully-connected
network. The area marked with dotted lines will be ex-
cluded when view dependency is removed.

2. Related Work
In this section, we go through other methods to tackle

this novel view synthesis problem before the exploration
of NeRF. Basically, there are 2 folds of methods: image-
based rendering and feature embedding-based rendering.
We analyse these methods to see whether or not they might
be a better fit for our use case. Besides, we also take a look
at some efforts to optimize NeRF to improve it’s training
and inference performance.

2.1. Image-based Rendering

2.1.1 Interpolation

The idea of using interpolation technique is quite straight-
forward, which is mainly about applying a good interpola-
tion technique on a set of input images whose difference is
small enough. This kind of methods require a dense sam-
pling of views which makes the rendering super inefficient.
Although, LLFF technique is created to reduce the input
views by 4000 times [5], it still requires lots of 2D images
to generate 360 video.

2.1.2 Feature Embedding

Another way to do image-based rendering is to optimize a
convolutional neural network to learn persistent 3D feature
embedding. However, CNN is too complicated in terms of
time and space which might not be practical for our use
case.

2.2. 3D Shape Representation

Another group of methods to tackle novel view synthe-
sis is 3D shape representation. Usually, it needs a deep net-
work being deployed and optimized to map xyz coordinates
to latent representation of 3D shapes directly. However, it
requires the dataset to have the ground truth of 3D geometry
which is hard to obtain.

2.3. NeRF Optimization

Recent works propose a variety of optimizations to mit-
igate the performance issue of NeRF. The optimization
mainly includes three aspects: generality [7], training per-
formance and inference performance [1] [3]. Let’s look
at the efforts spent on improving training performance par-
ticularly, as it will be crucial to the final user experience.
JaxNeRF [2] implements NeRF in JAX instead of TF, which
speed up training from days to hours. Learned Initialization
[8] uses meta-learning to find a good weight initialization
for faster training.

3. Technical Approach
As it described in problem statement section, this prob-

lem is essentially view synthesis - generating unseen views
from seen views. Given that NeRF has the simplest model
among all techniques in this area. We are proposing to
leverage NeRF to deliver a practical solution to enhance the
user experience of the unofficial online shopping (e.g. Face-
book marketplace, Craiglist). Due to the limited timeline,
we might not be able to integrate other optimization tech-
niques like meta-learning and JAX implementation into the
project, but we’ll analyse the improvement these techniques
can bring to us.

Figure 4 shows the visualization of the overall pipeline
and details of each component.

For this project, there are mainly 2 stages: 1. model fine
tuning and 2. application development. In the following
subsections, we discuss the detailed tasks to be done in each
stage.

3.1. Model Fine Tuning

This work is mainly within the training module. We fine
tune those hyper parameters listed in Model Optimization
section and try out the combinations listed in Table 1.3.4
and find the most efficient one by comparing the PSNR.
The reason why we can’t leverage the result of NeRF listed

3



Combination Index Images Iterations Input Dimension (L) Sampling (Nc) Has View Dependency
1 100 2000 6 64 true
2 100 2000 10 64 true
3 100 2000 6 128 true
4 25 2000 6 64 true
5 25 2000 10 64 true
6 10 2000 6 64 false
7 5 2000 6 64 true
8 5 2000 6 128 true
9 5 2000 10 64 true

10 5 2000 10 128 true

Table 1. Parameter Combinations.

Figure 4. Visualization of Overall Pipeline. There are 2 ways of feeding images to the image module: online image capturing where users
take a picture of the object from different angles online and offline images uploading where users upload images taken before. Image
module is responsible for processing images to the format required by the training module. Training module is NeRF with fine tuned
parameters. After training finishes, the trained model along with input images will be routed to rendering service to generate a 360 video.

Combination Index PSNR
1 23.5
2 23.8
3 24.2
4 25.0
5 23.8
6 22.5
7 23.0
8 15.0
9 24.0

10 16.0

Table 2. Experiment Result

in paper is because, in order to get a high quality image, the
number of images used for training is about 100 which is
not practical for our use case where we are likely to access
to a limited number images (10). In this project, we use
100 and 25 training images as the baseline and explore the

performance downgrade using 10 and 5 images.

By running the pipeline, we find out that the average
training speed is 0.25 seconds per iteration. We choose
2000 iterations in the experiment to limit the total runtime
to 500 seconds.

3.2. Application Development

Beyond optimizations, we also need to work on the fol-
lowing components to set up an end to end pipeline:

1. Image capturing/uploading module that prepares im-
ages for training.

2. Training module that trains the NeRF with found op-
timal hyper parameters combination.

3. Rendering service that infers unseen views using the
trained NeRF and generates a 360 video out of these views.

4



Figure 5. Visualization of rendered images using various number of training images. (Top Left) 5 images. (Bottom Left) 10 images. (Top
Right) 25 images. (Bottom Right) 100 images.

4. Experiments

4.1. Data

Since the input for NeRF contains the viewing direc-
tion which is represented using camera poses. It requires
a known camera matrix. Due to the fact that calibration
procedure might be time-consuming and error-prone, for
this project, we are using the tiny nerf dataset provided
by NeRF. The dataset contains 106 different views of lego
along with corresponding camera poses.

4.2. Result

The experiment results are listed in Table 5 shows some
visualizations of rendered image using models trained with
different size training set. We can have the following obser-
vations:

1. 2000 iterations is a reasonable value in terms of train-
ing progress. Considering the potential optimization tech-
niques that can save at least 2x training time (e.g. JAX im-
plementation), it’s reasonable to expect an application that
can generate a video within one minute. It should make the
application practical to be used in daily use case.

2. Beyond iteration times, we can also observe that the
more training images, the higher quality of the image espe-
cially within the area with high frequency details.

3. Surprisingly, the PSNR of the rendered image won’t
be downgraded a lot no matter what the size of the training
set is. With only 5 images from different angles, we are able
to generate a 360 video (https://github.com/zenXun/NeRF-
Applications) which illustrates the power of NeRF.

5. Conclusion
By fine tuning the model, we find the best combination

of hyper parameters of NeRF is (training size = 5, L =
10, N c = 64), with which we are able to synthesize un-
seen view with a PSNR around 24. We can also observe
that a high N c works best with a large training set (exper-
iment 1 & 3) and regresses the model with a smaller train-
ing set (experiment 7 & 8). Although the images are quite
blurry without high frequency details, we show the poten-
tials of using NeRF in practical applications. With other
optimization techniques listed in Related Work section (e.g.
meta-learning and JAX implementation), we can expect the
model to output images of higher quality.

Detailed implementation can be found at
https://github.com/zenXun/NeRF-Applications.

References
[1] F. Dellaert and L. Yen-Chen. Neural volume rendering: Nerf

and beyond. arXiv preprint arXiv:2101.05204, 2020.
[2] B. Deng, J. T. Barron, and P. P. Srinivasan. JaxNeRF: an effi-

cient JAX implementation of NeRF, 2020.
[3] L. Liu, J. Gu, K. Z. Lin, T.-S. Chua, and C. Theobalt. Neural

sparse voxel fields. arXiv preprint arXiv:2007.11571, 2020.
[4] S. Lombardi, T. Simon, J. Saragih, G. Schwartz, A. Lehrmann,

and Y. Sheikh. Neural volumes: Learning dynamic render-
able volumes from images. arXiv preprint arXiv:1906.07751,
2019.

[5] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalan-
tari, R. Ramamoorthi, R. Ng, and A. Kar. Local light field
fusion: Practical view synthesis with prescriptive sampling
guidelines. ACM Transactions on Graphics (TOG), 38(4):1–
14, 2019.

5



[6] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ra-
mamoorthi, and R. Ng. Nerf: Representing scenes as neural
radiance fields for view synthesis. In European Conference on
Computer Vision, pages 405–421. Springer, 2020.

[7] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman,
S. M. Seitz, and R.-M. Brualla. Deformable neural radiance
fields. arXiv preprint arXiv:2011.12948, 2020.

[8] M. Tancik, B. Mildenhall, T. Wang, D. Schmidt, P. P. Srini-
vasan, J. T. Barron, and R. Ng. Learned initializations for
optimizing coordinate-based neural representations. arXiv
preprint arXiv:2012.02189, 2020.

6


