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Abstract

Depth estimation is key for many autonomous tasks -
from driving, over indoor navigation, to grasping and ma-
nipulation. Monocular depth estimation (depth estimation
coming from a single view) is an interesting area that has
seen many recent contributions for the potential upsides it
provides - single camera systems are cheap, ubiquitous and
require no calibration or correspondence matching. Contri-
butions then center around improving the inherit issues of
monocular estimation, from potentially low accuracy and
coarse depth values, to the requirements of ground-truth
data for supervised learning, and the inherit scale ambi-
guity present in single view reconstructions. In this project,
I explore monocular depth estimation through the lense of
‘PackNet‘ - a deep network architecture introduced by the
Toyota Research Institute (TRI) in recent publications to
learn a network to infer depth from monocular systems.
In my work I adjust their architecture to me used on an-
other dataset, and only use the Encoder/Decoder structure
from their work to produce depth estimates. I show that at
least with minimal learning, the architecture’s results don’t
achieve the same results as a simpler baseline (with, and
without pre-training). This is then concluded by suggesting
next steps to explore why there is a performance delta, and
whether it’s really due to the structure, or an artifact of the
environment, or restricted learning resources.

1. Introduction and Motivation

For this project, I want to replicate and analyze the con-
tributions of the Toyota Research Institute (TRI) 2020 pa-
per [4] on monocular depth estimation. The paper intro-
duces a new network architecture (PackNet) to improve
depth estimation on those images. I want to experiment with
PackNet, see whether the performance matches the paper’s
claims, and whether the architecture is generalizable and
produce similar results on other datasets (Make3D [[1O][11],
NYU Depth v2 [7]]). Motivated by the second part of the
CS231A offering at Stanford (Winter 2021), I also want to
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see whether the learnt parameters generalize well in a trans-
fer learning setting - by using the weights trained with their
data to test on one of the previously mentioned datasets. I
want to approach this in order to further my understand-
ing of a deep neural network architecture based approach to
depth estimation.

1.1. Problem Statement

This projects attempts to reproduce the results intro-
duced in the TRI 2020 paper [4] on monocular depth es-
timation, and analyze the two main technical contributions
of that paper - a new network architecture, and a new loss -
and their impact on the 3D depth map reconstruction.
Understanding and analyzing the contribution of the net-
work the paper introduces (PackNet) can be done not only
on the dataset that the paper introduces, and others used in
the paper ([14][2]][3]), but also on unseen data as all its re-
quires are depth images and ground truth labels. Through
reproducing that architecture, and passing it through those
works, I aim to understand this architecture in particular,
and residual neural networks in general better, and collect
qualitative data to see what the new networks contributions
yields (in terms of test performance, and generalizability).
Analyzing the contribution of the loss is more constrained
to the dataset the paper introduces and the KITTI [14] as it
relies on instantaneous velocity data available between the
images to address scale ambiguity.

2. Background and Related Work

Monocular depth estimation has been around for a
while and gained many recent contributions to the area
[15]. In general, these methods can all be grouped into
the standard three categories: supervised, semi-supervised,
and unsupervised. The semi-supervised, and unsupervised
methods generally fall into a similar framework, where
the supervision happens through reconstructing a target
image. In the unsupervised case, the target image tends to
come from a sequence of monocular images e.g. a video
sequence. In the semi-supervised case, the supervision
tends to come from the other other camera in a stereo setup.
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The problem itself is also inherently ambigious to scale,
which requires algorithms and methods to come up with
ways to address this. Common approaches include as
hinted at before retrieving groud-truth data for supervision,
using stereo rather than monocular vision during training,
or using sequences with some ground truth annotation e.g.
lidar. The requirements, though strictly only required dur-
ing training and evaluation, do introduce extra complexity
to setup and training, limiting one of the main advantages
of monocular depth estimation: the simplicity of the setup.
Next, let’s discuss residual neural networks, and why we
want to use them here (not just ‘PackNet‘, but many of
the recent contributions to monocular depth estimation).
The basic idea is that in a very deep network, gradients
tend to become very small as they travel towards the
intial layers. This can limit learning in two fundamental
ways: 1. the weights don’t change a lot as the gradients
magnitude is vanishingly small 2. other layers might start
to go overboard in their adjustments as the initial layers
lag behind [12]. To combat this, one way is to use skip
connections, or more formally a residual neural network.
Here, we don’t a layer in the network does not learn the
mapping f(x) = y where x is the input and y is the output,
but rather f(x) + 2 = y i.e. by passing x forward, we only
need to learn the residual function. This has spawned a
variety of very successful deep neural networks that also
work very well for monocular depth estimation [15[][5]
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‘PackNet* itself is an extension of the ideas introduced with
ResNet [3)]. Namely, it relies on a residual neural network
architecture rather than a simple deep neural network.
Unlike common residual networks, ‘PackNet‘ does not
use pooling and striding to reduce the dimensionality, but
rather relies on their notion of "packing’. This also allows
for ’unpacking’, rather than unsampling. The motivation
there is that this avoids loss of information [4]].

3. Contribution Analysis: PackNet

The paper has multiple contributions as they will outline:
a new network structure, a new loss, and a new dataset (with
lidar data and from multiple cities)[4]. For this project 'm
mostly interested in exploring the network’s contribution,
though the velocity loss contribution also needs to be high-
lighted.

3.1. velocity loss

The idea is simple: rather than replying on expensive
data to scale the estimate, scale the estimate by introduc-
ing a penalty on the pose network as the system goes from
one frame to the next. Getting instantaneous velocity sen-
sors and information is much cheaper and widely available
than depth sensors. Similarly, if the scale is off, the true ve-
locity information will disagree with the pose change from
one frame to the next and thus induce the network to not
only learn to retrieve depth estimates, but metrically accu-
rate depth estimates.

3.2. network

The main contribution that the network highlights is its
superior ability to act as an auto-encoder as it avoids the
loss of information. In normal operations, when striding
and pooling is happening, some pixels receive less attention
than others. While the reduction in dimensionality is de-
sired to detect a lower dimensional feature representation,
the loss of information is less so. The authors here tackle
this issue by folding and packing dimensions on a chan-
nel into new channels, rather than having large striding and
pooling. Similarly, on the decoder side, the decode then
unpacks that information back, rather than having to gener-
ate new information through upsampling, to get back to the
high dimensional representation. This further allows for a
more meaningful usage of 3d convolutions on the tensors.
This is because there now is a clear relationship between
the channels (as the information across multiple channels
originally came from one channel before packing occured).
With this technique, at least on the samples shown in the pa-
per, the quality of the reconstruction of the auto-encoder is
impressive. In the final section I talk about how validating
and tuning this auto-encoder capability is key to determin-



Packing / Unpacking

—
Space2Depth

Packing

—
Conv3D

—_— B —
Reshape Conv2D

(a) PackNet

w®

.

Figure 2: Schematic of packing operations
youtube.com/watch?v=8_Vw6HgmhGY
(TRI presentation)

source:

ing whether this structure has fundamental advantages over
simpler networks.

4. Technical Approach

The goals of the project are to understand monocular
depth estimation better, and to do so by diving deep into the
TRI 2020 paper [4]. This required using a structure that lets
me experiment with ‘PackNet* - the main network contri-
bution of the paper - and a baseline to see the performance,
how the network works, and where things can be tuned for
performance.

Ultimately, the proposed setup is to leverage prior work
from the Stanford CS231A course [?] and reuse the home-
work notebook on monocular depth estimation to provide
a framework to train and baseline on the NYU dataset
[7]. This allowed me to train and test ‘PackNet‘’s struc-
ture (the encoder/decoder layers) and compare them to the
‘DenseDepth* [[1]] baseline that the class used for their as-
signment. It also provided a simple environment to experi-
ment with the network.

The original idea was to first prove that ‘PackNet* can out-
perform ‘DenseDepth‘, and subsequently investigate what
leads to these performance improvements. This was an
ill-posed approach in that ‘PackNet‘ does not outperform
‘DenseDepth‘, neither in my setup with NYU, nor on online
benchmarks with KITTT [[14][8]. This meant that the same
analysis could still be carried out to some extent, though the
baseline was always beating the ‘PackNet* result. It also al-
lowed for more investigation into debugging why ‘PackNet*
was performing poorly.

The network used for ‘PackNet* here is taken from the tri
implementation [6] with a few modifications

 aversion C’ is introduced that sets all skips to O (turns
the network into a plain deep network rather than a
residual)

* the second to last layer is returned rather than the last,
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as our ground-truth depth maps come at half the reso-
lution. This allows us to keep the guarantee that we do
not upsample, but rather use the unpacking operations
and stop when the right output resolution is found

* a small bug in the version 'B’ is fixed that prevented
the system from producing the right skip2 outputs

This overall leads to a network with 72 million param-
eters, and 2.5 hours of training time (compared with
‘DenseDepth‘ clocking in at 1.3 hours of training time) per
epoch.

4.1. Abandoned Approaches

This section outlines other approaches that for various
reasons failed, but might be insightful in other ways to
tackle the question of whether this structure provides tan-
gible benefits.
synthetic temporal context
An approach was to make a synthetic temporal context win-
dow for NYU, or Make3D, so that the entire pipeline on the
TRI paper [4] could be evaluated, rather than just the en-
coder/decoder layer, and not the velocity loss introduced.
This was cancelled because the main motivation for the ve-
locity loss is to leverage it when ground truth data is absent,
though it is available on these datasets, so initial evaluation
needn’t be blocked on that. However, the problem posed on
the TRI paper about the lack of datasets with velocity an-
notation is a real one, so there is a motivation in generating
synthetic frames and velocities to remove another source of
uncertainity for evaluation during training: faulty instanta-
neous velocity information from sensors.
reproduction of full KITTI and DADD
This approach was to fully reproduce the results of the paper
on the two main datasets used by the authors. This was can-
celled because of the potentially low learning rewards (aca-
demic learning for this paper’s author in this case). If the
reproduction works - and the TRI team has done a fantas-
tic job releasing code, configs, and docker containers online
[6] - then T will have spent hours and computing resources
on something that doesn’t bring me closer to understanding
their solution. If it doesn’t work, it doesn’t enable me to de-
bug or understand the failure reasons more. Therefore, this
was cancelled in favor of smaller experimentation as out-
lined above
parallel implementation, more datasets
This approach would have seen me expand their imple-
mentation, and their baseline to run on pytorch’s parallel
GPU system [9] to accelerate learning on multiple datasets.
This was cancelled as 1. not enough computing resources
were acquired, so at most one GPU could be used anyways,
and 2. as expressed above, the baseline consistently over-
performed in the experiments, motivating debugging and
experiments on the basic experiments over expansion.



5. Experiments

This section outlines the base experiments and subse-
quent experiments that were run before diving into the re-
sults. Subsequently, you can find environment, test parame-
ters, and runtime information towards the end of the section.
It should be outlined that one of the main achievements that
‘PackNet* claims is that it does not require pre-training the
structure. Therefore, the baseline below with ‘DenseDepth*
uses a version without pre-training and learns all weights
from scratch.

. The base experiment was running ‘PackNet‘ vs
‘DenseDepth* in the framework provided through the
class, and comparing the results. Subsequent experi-
ments then deal with the details of ‘PackNet* and their
contributions

. ‘PackNet‘ provides a second version where rather than
summing in the skip connections, they are padded on
as another dimension. This experiment runs that sec-
ond version and compares the output

. ‘PackNet‘ uses sigmoid as an activation function for
the depth prediction (output) layers, which might suf-
fer from diminishing gradients. This experiment is re-
placing that activation with a leaky ReLU

. ‘PackNet" predicts the inverse of the depth by default,
rather than the depth directly. This experiment tackles
replacing that with predicting the depth directly

. ‘PackNet" as a residual decoder uses skip connections.
This experiment removes skip connections to see the
plain network performance

5.1. Results

experiment 1: basic

The first experiment already showed that ‘PackNet‘ does
not outperform ‘DenseDepth‘ in this setup. Even though
‘PackNet* spent almost 2x more time learning for the epoch,
the average loss was 0.612 (compared to ‘DenseDepth* at
0.401). There are two peculiar things when observing the
learning on ‘PackNet‘. 1. From the first few batches the
loss per batch improves drastically, but then quickly set-
tles in and only slowly increases over the remaining thou-
sands of batches. This is in contrats to ‘DenseDepth* that
shows a clearer, steeper drive towards a reduced loss. 2. The
variance between individual batches remains high through-
out, something not seen on ‘DenseDepth‘. This means that
while the average loss was already trending towards 0.7z,
‘PackNet‘ could often be seen still having 0.8z batches.
Overall, the gradient steps appear much less guided.
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experiment 2: version ’A’ of ‘PackNet*
This experiment produced comparable results to experi-
ment 1 (the average loss was 0.623). It appears that skip
connections being an extra dimension or being summed
into the dimension don’t change the performance too much.

experiment 3: leaky ReL U replaces sigmoid

This experiment was aborted after the initial batches. The
initial average loss for the first half an hour hovered at
around ~ 0.66 and was showing the same patterns de-
scribed above. While ultimately it might have helped a bit,
the patterns were all the same and the changed activation
did not seem to be the main culprit explaining the large per-
formance delta.

experiment 4: non-inverted depths
The next experiment changed the output layers of the depth
prediction from returning the inverse of a sigmoid activation
to returning the actual sigmoid activation. This produced
worse results, at an average loss of 0.731.

experiment 5: non-inverted depths

This experiment was also aborted after the first half an hour,
because the average loss was significantly higher than be-
fore (average loss > 1.21) and showed no signs of dras-
tically improving with subsequent batches. The residual
structure thus seems to contribute a great deal in making
sure that the large pipeline actually works as intended and
can have meaningful performance even on the first batch.



5.2. Analysis

The main question that the experiments raise is why does
‘PackNet* perform worse than ‘DenseDepth‘, even though
it has two main advantages:

1. structurally, it is a much larger network with many more
parameters, and therefore should exhibit larger expressivity
2. the packing/unpacking layers avoid the loss of informa-
tion in a way that the ‘DenseDepth‘ does not

From the observations, it appears that the issue is that ‘Pack-
Net* on this setup gets into a rather diffuse (high variance)
state and does not move out of it in a meaningful way batch
after batch. Thus while there is some improvement over the
entire epoch, the main improvements happens very early on,
and the subsequent batches don’t guide the network nearly
as strongly. This would open up the question of whether
the network is having very small gradients, or a disadvan-
tageous learning rate so that any insights are lost when the
next batch comes. Another possibility might be that the net-
work simply requires many epochs to properly leverage its
size and expressivity. While this might be the case, it would
also raise questions on ‘PackNets complexity if extra com-
plexity only leads to requiring extra training to achieve the
same result as a simpler network. Another area that might
cause issues might be the loss and what the network is trying
to optimize against. On a preliminary experiment, I noticed
that the predicted depths all hovered around one singular
value - for the entire image. This might mean that the loss
is inducing the network to learn the mean depth of the im-
age, rather than the depth of specific sections. Lastly, some
of the pre-processing might be interfering with the pack-
ing layers. ‘PackNet‘ uses channels to create more feature
channels and avoid information loss, so it might be an issue
that we randomly swap around channels, if the relationship
between those channels were beneficial for the network. On
that last poin though, I would suspect that a swapped chan-
nel simply requires a different layer of neurons to be active,
and therefore this preprocessing should not strongly inter-
fere with the results.

5.3. Computing Environment

The notebook is adapted, and basic sanity checks were
run on Google Colab Pro, to make sure processing and net-
work structure work as intended.

The actual experiment is run on a Google Cloud Instance
with 8 vCPUs, 52 GB memory, and one Nvidia V100 GPU,
to leverage the cuda framework interface on pytorch.

This is then overseen through the notebook on a remote
host, and debugging happens through ssh, and architecting
the code in the notebook so that each cell reloads all con-
tents that it needs, to allow for runtime reusage.
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5.4. Tests and parameters

The tests conducted mirror the class assignment [?] in

that they simply take a split from the NYU dataset, and
learn from there the depth prediction, using the same loss.
To keep the systems comparable (‘PackNet* from this pa-
per’s experimentation and ‘DenseDepth® from the assign-
ment as a baseline), the system is run for 1 epoch, with a
Ir = 0.0001 and a batch size of 4.
The batch-size has interesting impacts on both the runtime
and the memory constraints. A lower batch-size (2) does
not reduce the runtime enough to justify it. A larger batch-
size (8) expands the runtime on ‘PackNet* at least to 8 hours
(up from 2.5h), while not improving the loss incurred for the
initial batches. Any batch-size larger than that would have
motivated multiple GPUs and implementing the system as
a parallel GPU architecture, as it runs out of memory on
‘PackNet".

6. Conclusion

In conclusion, the project has helped me a lot learn about
the current state of the art in monocular depth estimation,
the limits inherit with the approach, and practical experi-
ence with implementing and tuning a model for monocular
depth estimation - albeit the results were not quantitatively
very fruitful. It has also allowed me to get experience with
the theoretical side of residual neural networks, and pratical
experience implementing one and tuning it.

The experiment with skip connection removals shows
that the underlying idea of leveraging residual neural
networks to improve the models learning ability works
in practice, and that the structures benefits do general-
ize, even if the overall performance of the network does not.

7. Takeaways and Next Steps
7.1. Technical Steps

The obvious next step is seeing if the networks size is
the main contributing factor to the bad performance, and
slow learning. This could be achieved by letting it actually
run for 20-30 epochs (not even the whole 100 suggested in
[4D.

On a more fundamental level, it appears that ‘PackNet*
relies heavily on the claim that it has a very small loss
reconstruction loss when trained as an autoencoder. The
next step there is validating that claim across multiple
sets of datasets, including the ones suggested initially for
expansion here [7][1O][11]

I think the biggest takeaway for me is the need to produce
clear environments, to progressive tune and evaluate
models, and modifications, and their overall impact. The
structure I chose to build upon here limited that to some



extent i.e. training takes a long time, and that cost is hard to
reduce (financially, and timewise). However, even if those
are addressed, there is still a need to develop a pipeline and
tooling to let one quickly iterate over results and see the
impact on smaller batches, that still have some significance.
The authors at TRI [4] for example provide a sanity check
dataset, a full dataset, and nothing in between. The obvious
need here is for a small dataset and hardware environment
that allows for rapid prototyping.

7.2. Beyond Monocular Estimation

Lastly, two other papers that I came across, one the pa-
per motivating DenseDepth [1] and one motivating focusing
on stereo for depth estimation [13]], do raise some interest-
ing questions about the architecture overall. DenseDepth
achieves (both in the school assignment baseline I used
here, and online [§] better performance than PackNet on the
NYU dataset [[7]. If this holds across multiple datasets, then
the premise of leveraging deeper and harder to train (the
‘PackNet* authors use 8§ GPUs in parallel during training)
networks might not yield the extra benefits that are desired
- it might at least motivate having an extra layer that decides
based on the complexity of the task to use a much simpler
architecture. Nvidia researchers [[13]] on the other hand ar-
gue that even given the advances in monocular depth esti-
mation, the importance of stereo cannot be understated, and
that the inherit limitations on monocular estimation limit
the accuracy that could be achievable. Given my results
here I'm curious to dive into that topic and see the bene-
fits and complexities of stereo next. Even the better results
here on ‘DenseDepth°, or the claimed larger scale results of
‘PackNet* when properly trained appear much more coarse
than would be suitable for any but the most basic ’object
avoidance’ tasks (e.g. autonomous driving, as many of the
research motivates), but would not be suited for anything
finer grained.
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