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¡ (11/4) Homework 2 is due Monday (was updated 
Wed 10/23)

¡ Homework 3 is released today. Watch ED for 
recitation session information. Due on 11/14

¡ No class next Tuesday 11/5 (Election day!)
¡ (11/7) Colab 3 is due next Thursday (one 

week from today)
¡ (11/7) Project Milestone is due next Thursday 

(one week from today)
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¡ Information Explosion in the era of Internet
§ 10K+ movies in Netflix
§ 12M products in Amazon (350m on Marketplace)
§ 70M+ music tracks in Spotify
§ 10B+ videos on YouTube
§ 200B+ pins (images) in Pinterest

¡ Personalized recommendation (i.e., suggesting 
a small number of interesting items for each 
user) is critical for users to effectively explore 
the content of their interest.
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¡ Recommender system can 
be naturally modeled as a 
bipartite graph
§ A graph with two node types: 

users and items.
§ Edges connect users and items

§ Indicates user-item interaction 
(e.g., click, purchase, review etc.)

§ Often associated with timestamp 
(timing of the interaction).
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¡ Given
§ Past user-item interactions

¡ Task
§ Predict new items each user will 

interact in the future.
§ Can be cast as link prediction 

problem.
§ Predict new user-item interaction 

edges given the past edges.

§ For 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽, we need to get 
a real-valued score 𝑓(𝑢, 𝑣).
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¡ Problem: Cannot evaluate 𝑓 𝑢, 𝑣  for every 
user 𝑢 – item 𝑣 pair.

¡ Solution: 2-stage process:
§ Candidate generation (cheap, fast)
§ Ranking (slow, accurate)
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¡ For each user, we recommend 𝐾 items.
§ For recommendation to be effective, 𝑲 needs to 

be much smaller than the total number of items 
(up to billions)

§ 𝐾 is typically in the order of 10—100.
¡ The goal is to include as many positive items 

as possible in the top-𝐾 recommended items.
§ Positive items = Items that the user will interact 

with in the future.
¡ Evaluation metric: Recall@𝐾 (defined next)
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¡ For each user 𝒖, 
§ Let 𝑃! be a set of positive items the user will interact 

in the future.
§ Let 𝑅! be a set of items recommended by the model.

§ In top-𝐾 recommendation, |𝑅(| = 𝐾.
§ Items that the user has already interacted are excluded.
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¡ Recall@𝑲 for user 𝒖 is 𝑷𝒖 ∩ 𝑹𝒖 / 𝑷𝒖 .
§ Higher value indicates more positive items are 

recommended in top-𝐾 for user 𝑢.

¡ The final Recall@𝐾 is computed by averaging 
the recall values across all users.
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¡ GNN to embed users & products
¡ LLM to textify products and embed them 
§ user emb. is avg. of purchased product embs.

¡ H&M fashion recommendation:
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More info: Do Large Language Models make accurate personalized recommendations? 
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GNN 40x3x 2x15x
better

mailto:https://kumo.ai/resources/blog/improving-predictions-with-large-language-models/
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¡ Notation:
§ 𝑼: A set of all users
§ 𝑽: A set of all items
§ 𝑬: A set of observed user-item interactions
§𝑬	 = 𝑢, 𝑣 	 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽, 𝑢	interacted	with	𝑣}
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¡ To get the top-𝐾 items, 
we need a score function 
for user-item interaction:
§ For 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽, we need 

to get a real-valued scalar 
score(𝑢, 𝑣).

§ 𝑲 items with the largest 
scores for a given user 𝑢 
(excluding already-
interacted items) are then 
recommended.
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¡ We consider embedding-
based models for scoring user-
item interactions.
§ For each user 𝑢 ∈ 𝑼, let 𝒖 ∈ ℝ$  

be its 𝐷-dimensional embedding.
§ For each item 𝑣 ∈ 𝑽, let 𝒗 ∈ ℝ$  

be its 𝐷-dimensional embedding. 
§ Let 𝑓% ⋅,⋅ : ℝ$×ℝ$ → ℝ be a 

parametrized function.
§ Then, score 𝑢, 𝑣 ≡ 𝑓% 𝒖, 𝒗
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¡ Embedding-based models have three kinds of 
parameters:
§ An encoder to generate user embeddings 𝒖 !∈+

§ An encoder to generate item embeddings 𝒗 ,∈-

§ Score function 𝑓% ⋅,⋅
¡ Training objective: Optimize the model 

parameters to achieve high recall@𝐾 on seen 
(i.e., training) user-item interactions
§ We hope this objective would lead to high 

recall@𝐾 on unseen (i.e., test) interactions.
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¡ The original training objective (recall@𝐾) is 
not differentiable.
§ Cannot apply efficient gradient-based optimization.

¡ Two surrogate loss functions are widely-used 
to enable efficient gradient-based 
optimization.
§ Binary loss
§ Bayesian Personalized Ranking (BPR) loss

¡ Surrogate losses are differentiable and should 
align well with the original training objective.
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¡ Define positive/negative edges
§ A set of positive edges 𝑬 (i.e., observed/training 

user-item interactions)
§ A set of negative edges 𝑬𝐧𝐞𝐠 = 𝑢, 𝑣 	 𝑢, 𝑣 ∉
𝐸, 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽}

¡ Define sigmoid function 𝜎 𝑥 ≡ #
#$%&'()*)

§ Maps real-valued scores into binary likelihood 
scores, i.e., in the range of [0,1].
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¡ Binary loss: Binary classification of 
positive/negative edges using 𝜎(𝑓, 𝒖, 𝒗 ):
−
1
|𝑬|

5
!,# ∈𝑬

log 𝜎(𝑓& 𝒖, 𝒗 ) −
1

|𝑬𝐧𝐞𝐠|
5

!,# ∈𝑬𝐧𝐞𝐠

log 1 − 𝜎(𝑓& 𝒖, 𝒗 )

¡ Binary loss pushes the scores of positive edges 
higher than those of negative edges.
§ This aligns with the training recall metric since 

positive edges need to be recalled.
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During training, these terms can be approximated 
using mini-batch of positive/negative edges 



¡ Issue: In the binary loss, the scores of ALL 
positive edges are pushed higher than those 
of ALL negative edges.

¡ This would unnecessarily penalize model 
predictions even if the training recall metric is 
perfect.

¡ Why? (example in the next slide)
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¡ Let’s consider the simplest case:
§ Two users, two items
§ Metric: Recall@1.
§ A model assigns the score for every 

user-item pair (as shown in the right).
¡ Training Recall@1 is 1.0 (perfect 

score), because 𝑣> (resp. 𝑣?) is 
correctly recommended to 𝑢> 
(resp. 𝑢?).

¡ However, the binary loss would 
still penalize the model prediction 
because the negative 𝑢?, 𝑣>  
edge gets the higher score than 
the positive edge 𝑢>, 𝑣> .
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¡ Key insight: The binary loss is non-personalized 
in the sense that the positive/negative edges 
are considered across ALL users at once.

¡ However, the recall metric is inherently 
personalized (defined for each user). 
§ The non-personalized binary loss is overly-stringent 

for the personalized recall metric.
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¡ Lesson learned: Surrogate loss 
function should be defined in 
a personalized manner.
§ For each user, we want the 

scores of positive items to be 
higher than those of the 
negative items

§ We do not care about the score 
ordering across users.

¡ Bayesian Personalized 
Ranking (BPR) loss achieves 
this!
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¡ Bayesian Personalized Ranking (BPR) loss is a 
personalized surrogate loss that aligns better 
with the recall@K metric.

¡ For each user 𝑢∗ ∈ 𝑼, define the rooted 
positive/negative edges as
§ Positive edges rooted at 𝑢∗

§ 𝑬 𝑢∗ ≡ 𝑢∗, 𝑣 	 𝑢∗, 𝑣 ∈ 𝑬}
§ Negative edges rooted at 𝑢∗

§ 𝑬𝐧𝐞𝐠 𝑢∗ ≡ 𝑢∗, 𝑣 	 𝑢∗, 𝑣 ∈ 𝑬𝐧𝐞𝐠}

11/4/24 24Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

𝑢∗

Note: The term “Bayesian” is not essential to the loss definition. The original paper 
[Rendle et al. 2009] considers the Bayesian prior over parameters (essentially acts 
as a parameter regularization), which we omit here.



¡ Training objective: For each user 𝑢∗, we want the 
scores of rooted positive edges 𝑬 𝑢∗ 	to be higher 
than those of rooted negative edges 𝑬𝐧𝐞𝐠 𝑢∗ .
§ Aligns with the personalized nature of the recall metric.

¡ BPR Loss for user 𝒖∗: 

¡ Final BPR Loss: ?
|𝑼|
∑!∗∈𝑼 Loss(𝑢∗)
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Loss(𝑢∗) =
1

𝐸(𝑢∗) ⋅ |𝑬𝐧𝐞𝐠(𝑢∗)|
5

(&∗,("#$)∈𝑬(&∗)

5
&∗,(%&'	 ∈𝑬𝐧𝐞𝐠(&∗)

−log 𝜎 𝑓- 𝒖∗, 𝒗./0 − 𝑓- 𝒖∗, 𝒗123

Encouraged to be positive for each user
=positive edge score is higher than negative edge score

Can be approximated using a mini-batch



¡ Mini-batch training for the BPR 
loss:
§ In each mini-batch, we sample a 

subset of users 𝑼ABCB ⊂ 𝑼.
§ For each user 𝑢∗ ∈ 𝑼@ABA, we sample 

one positive item 𝑣CDE and a set of 
sampled negative items 𝑉BFG = 𝑣BFG .

§ The mini-batch loss is computed as
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¡ We have introduced 
§ Recall@𝐾 as a metric for personalized 

recommendation
§ Embedding-based models

§ Three kinds of parameters to learn
§ user encoder to generate user embeddings
§ item encoder to generate item embeddings
§ score function to predict the user-item interaction likelihood.

§ Surrogate loss functions to achieve the high recall 
metric.

¡ Embedding-based models have achieved SoTA 
in recommender systems. 
§ Why do they work so well?
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¡ Underlying idea: 
Collaborative filtering
§ Recommend items for a 

user by collecting 
preferences of many 
other similar users.

§ Similar users tend to 
prefer similar items.

¡ Key question: How to 
capture similarity 
between users/items?
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¡ Embedding-based models can capture 
similarity of users/items!
§ Low-dimensional embeddings cannot simply 

memorize all user-item interaction data.
§ Embeddings are forced to capture similarity 

between users/items to fit the data.
§ This allows the models to make effective prediction 

on unseen user-item interactions.
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¡ In this lecture, we teach two representative 
GNN approaches for recommender systems.

¡ (1) Neural Graph Collab. Filtering (NGCF)
¡ (2) LightGCN [He et al. 2020]

§ Improve the conventional collaborative filtering 
models (i.e., shallow encoders) by explicitly modeling 
graph structure using GNNs.

§ Assumes no user/item features.
¡ PinSAGE [Ying et al. 2018]

§ Use GNNs to generate high-quality embeddings by 
simultaneously capturing rich node attributes (e.g., 
images) and the graph structure.

11/4/24 30Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

[Wang et al. 
2019]



CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu



¡ Conventional collaborative 
filtering model is based on 
shallow encoders:
§ No user/item features.
§ Use shallow encoders for users 

and items:
§ For every 𝑢 ∈ 𝑼 and 𝑣 ∈ 𝑽, we 

prepare shallow learnable 
embeddings 𝒖, 𝒗 ∈ ℝQ.

§ Score function for user 𝑢 and 
item 𝑣 is 𝑓% 𝒖, 𝒗 ≡ 𝒛𝒖D𝒛𝒗.
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¡ The model itself does not explicitly capture 
graph structure
§ The graph structure is only implicitly captured in 

the training objective.
¡ Only the first-order graph structure (i.e., 

edges) is captured in the training objective.
§ High-order graph structure (e.g., 𝐾-hop paths 

between two nodes) is not explicitly captured.
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¡ We want a model that…
§ explicitly captures graph structure (beyond 

implicitly through the training objective)
§ captures high-order graph structure (beyond the 

first-order edge connectivity structure)
¡ GNNs are a natural approach to achieve both!
§ Neural Graph Collaborative Filtering (NGCF) [Wang et 

al. 2019]

§ LightGCN [He et al. 2020]

§ A simplified and improved version of NGCF
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¡ Neural Graph Collaborative Filtering (NGCF) 
explicitly incorporates high-order graph structure 
when generating user/item embeddings.

¡ Key idea: Use a GNN to generate graph-aware 
user/item embeddings.
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¡ Given: User-item bipartite graph.
¡ NGCF framework:

§ Prepare shallow learnable embedding 
for each node.

§ Use multi-layer GNNs to propagate 
embeddings along the bipartite graph.
§ High-order graph structure is captured.

§ Final embeddings are explicitly graph-
aware!

¡ Two kinds of learnable params are 
jointly learned:
§ Shallow user/item embeddings
§ GNN’s parameters
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¡ Set the shallow 
learnable embeddings as 
the initial node features:
§ For every user 𝑢 ∈ 𝑼, set 
𝒉!
(#) as the user’s shallow 

embedding.
§ For every item 𝑣 ∈ 𝑽, set 
𝒉%
(#) as the item’s shallow 

embedding.
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¡ Iteratively update node 
embeddings using 
neighboring embeddings.
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Different architecture choices are possible for 
AGGR and COMBINE. 
• AGGR(⋅) can be MEAN ⋅
• COMBINE(𝒙, 𝒚) can be 

ReLU Linear(Concat(𝒙, 𝒚))

High-order graph structure is captured 
through iterative neighbor aggregation.



¡ After 𝐾 rounds of neighbor 
aggregation, we get the final 
user/item embeddings 𝒉!

(.) 
and 𝒉/

(.).
¡ For all 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽, we set

𝒖 ← 𝒉!
(.), 𝒗 ← 𝒉/

(.).
¡ Score function is the inner 

product
score 𝑢, 𝑣 = 𝒖0𝒗
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¡ Conventional collaborative filtering uses 
shallow user/item embeddings.
§ The embeddings do not explicitly model graph 

structure.
§ The training objective does not model high-order 

graph structure.
¡ NGCF uses a GNN to propagate the shallow 

embeddings.
§ The embeddings are explicitly aware of high-

order graph structure.
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¡ Recall: NGCF jointly learns two kinds of 
parameters:
§ Shallow user/item embeddings
§ GNN’s parameters

¡ Observation: Shallow learnable embeddings are 
already quite expressive.
§ They are learned for every (user/item) node.
§ Most of the parameter counts are in shallow embeddings 

when 𝑁 (#nodes) ≫	 𝐷 (embedding dimensionality)
§ Shallow embeddings: 𝑂(𝑁𝐷).
§ GNN: 𝑂(𝐷+).

§ The GNN parameters may not be so essential for 
performance.
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¡ Can we simplify the GNN used in NGCF (e.g., 
remove its learnable parameters)?
§ Answer: Yes! 
§ Bonus: Simplification improves the 

recommendation performance!
¡ Overview of the idea:
§ Adjacency matrix for a bipartite graph
§ Matrix formulation of GCN
§ Simplification of GCN by removing non-linearity

§ Related: SGC for scalable GNN [Wu et al. 2019]
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¡ Adjacency matrix of a (undirected) bipartite graph.
¡ Shallow embedding matrix.
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¡ Define: The diffusion matrix
¡ Let 𝑫 be the degree matrix of 𝑨.
¡ Define the normalized adjacency 

matrix B𝑨 as
M𝑨 ≡ 𝑫_?/a𝑨𝑫_?/a

¡ Let 𝑬(1) be the embedding matrix 
at 𝑘-th layer.

¡ Each layer of GCN’s aggregation 
can be written in a matrix form:
𝑬(1$#) = ReLU B𝑨𝑬(1)𝑾(1)
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node embedding
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Note: Different from the 
original GCN, self-
connection is omitted here.



¡ Simplify GCN by removing ReLU non-linearity:
𝑬(1$#) = B𝑨𝑬(1)𝑾(1)

¡ The final node embedding matrix is given as
𝑬(b) = M𝑨	 𝑬(b_?)𝑾(b_?)

	
 = M𝑨 M𝑨𝑬(b_a)𝑾(b_a) 𝑾(b_?)
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= M𝑨 M𝑨 ⋯ M𝑨𝑬(>)𝑾(>) ⋯ 𝑾(b_a) 𝑾(b_?)

= M𝑨b 	𝑬 𝑾(>)⋯𝑾(b_?)

Set 𝑬 as input 
embedding 𝑬(#) 

Original idea from 
SGC [Wu et al. 2019]



¡ Removing ReLU significantly simplifies GCN!
𝑬(.) = B𝑨. 	𝑬	𝑾

¡ Algorithm: Apply 𝑬 ← B𝑨	𝑬 for 𝐾 times.
§ Each matrix multiplication diffuses the current embeddings 

to their one-hop neighbors.
§ Note: ;𝑨^ is dense and never gets materialized. Instead, the 

above iterative matrix-vector product is used to compute 
;𝑨^	𝑬.
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𝑾 ≡ 𝑾())⋯𝑾(^a*)
Diffusing node embeddings 
along the graph



¡ We can consider multi-scale diffusion
 𝛼#𝐸(#) + 𝛼&𝐸(&) + 𝛼'𝐸(') +⋯ +𝛼(𝐸(()

§ The above includes embeddings diffused at 
multiple hop scales.

§ 𝛼>𝐸(>) = 𝛼>M𝑨>𝐸(>) acts as a self-connection 
(that is omitted in the definition c𝑨)

§ The coefficients, 𝛼>, … , 𝛼b , are hyper-parameters.
¡ For simplicity, LightGCN uses the uniform 

coefficient, i.e., 𝛼1 =
#

.$#
 for 𝑘 = 0,… , 𝐾.
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¡ Given: 
§ Adjacency matrix A
§ Initial learnable embedding matrix 𝑬
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Embedding 
matrix 𝑬

User

User

Item

Item
Adjacency matrix 𝑨

𝟎

𝟎

𝑹

𝑹0

User 
emb

Item 
emb

Normalize 𝟎

𝟎

Normalized Adj. matrix c𝑨
(self-loop omitted)



Iteratively diffuse embedding matrix 𝑬 using B𝑨
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Embedding 
matrix 𝑬(𝒌)
(𝑬(𝟎) is set to 𝑬)

User 
emb

Item 
emb

𝟎

𝟎

Normalized Adj. matrix c𝑨
(self-loop omitted)

⋅←

Embedding 
matrix 𝑬(𝒌5𝟏)

User 
emb

Item 
emb

For 𝑘 = 0…𝐾 − 1,



¡ Average the embedding matrices at 
different scales.
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𝑬(#)

User 
emb

Item 
emb

←

Embedding 
matrix 𝑬;'(<=

User 
emb

Item 
emb

1
𝐾 + 1

𝑬($) 𝑬(>)

User 
emb

Item 
emb

+ +⋯+
User 
emb

Item 
emb



¡ Score function:
§ Use user/item vectors from 𝑬dBCef	to score user-

item interaction
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User 
emb

Item 
emb

Used as 
embedding
𝒖 for 𝑢 ∈ 𝑼 

Used as 
embedding
𝒗 for 𝑣 ∈ 𝑽 

𝑢

𝑣

𝒛𝒖

𝒛𝒗

Score 
function
𝒛𝒖g𝒛𝒗

Embedding 
matrix 𝑬;'(<=



¡ Question: Why does the simple diffusion 
propagation work well?

¡ Answer: The diffusion directly encourages the 
embeddings of similar users/items to be 
similar.
§ Similar users share many common neighbors 

(items) and are expected to have similar future 
preferences (interact with similar items).
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¡ The embedding propagation of LightGCN is 
closely related to GCN

¡ Recall: GCN (neighbor aggregation part)

𝒉,
(gh?) = Z

!∈i(,)

1
𝑑! 𝑑,

⋅ 𝒉!
(g)

§ Self-loop is added in the neighborhood definition.
¡ LightGCN uses the same equation except that
§ Self-loop is not added in the neighborhood definition.
§ Final embedding takes the average of embeddings 

from all the layers: 𝒉, =
?

bh?
∑gj>b 𝒉,

(g).
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Node degree



¡ Both LightGCN and shallow encoders learn a 
unique embedding for each user/item.

¡ The difference is that LightGCN uses the diffused 
user/item embeddings for scoring.

¡ LightGCN performs better than shallow encoders 
but are also more computationally expensive due 
to the additional diffusion step.
§ The final embedding of a user/item is obtained 

by aggregating embeddings of its multi-hop 
neighboring nodes.
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¡ LightGCN simplifies NGCF by removing the 
learnable parameters of GNNs.

¡ Learnable parameters are all in the shallow 
input node embeddings.
§ Diffusion propagation only involves matrix-vector 

multiplication.
§ The simplification leads to better empirical 

performance than NGCF.
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¡ P2P recommendation



q Unifies visual, textual, and graph information.
q The largest industry deployment of a Graph 

Convolutional Networks.
q Huge Adoption across Pinterest
q Works for fresh content and is available in 

a few seconds after pin creation

Graph Convolutional Neural Networks for Web-Scale Recommender Systems, Ying et al., 2018

https://arxiv.org/pdf/1806.01973.pdf


Under review as a conference paper at ICLR 2019

sum - multiset

>
mean - distribution max - set

>
Input

Figure 2: Ranking by expressive power for sum, mean and max-pooling aggregators over a multiset.
Left panel shows the input multiset and the three panels illustrate the aspects of the multiset a given
aggregator is able to capture: sum captures the full multiset, mean captures the proportion/distribution
of elements of a given type, and the max aggregator ignores multiplicities (reduces the multiset to a
simple set).

vs.

(a) Mean and Max both fail

vs.

(b) Max fails

vs.

(c) Mean and Max both fail

Figure 3: Examples of simple graph structures that mean and max-pooling aggregators fail to
distinguish. Figure 2 gives reasoning about how different aggregators “compress” different graph
structures/multisets.

existing GNNs instead use a 1-layer perceptron � �W (Duvenaud et al., 2015; Kipf & Welling, 2017;
Zhang et al., 2018), a linear mapping followed by a non-linear activation function such as a ReLU.
Such 1-layer mappings are examples of Generalized Linear Models (Nelder & Wedderburn, 1972).
Therefore, we are interested in understanding whether 1-layer perceptrons are enough for graph
learning. Lemma 7 suggests that there are indeed network neighborhoods (multisets) that models
with 1-layer perceptrons can never distinguish.

Lemma 7. There exist finite multisets X1 6= X2 so that for any linear mapping W ,P
x2X1

ReLU (Wx) =
P

x2X2
ReLU (Wx) .

The main idea of the proof for Lemma 7 is that 1-layer perceptrons can behave much like linear
mappings, so the GNN layers degenerate into simply summing over neighborhood features. Our
proof builds on the fact that the bias term is lacking in the linear mapping. With the bias term and
sufficiently large output dimensionality, 1-layer perceptrons might be able to distinguish different
multisets. Nonetheless, unlike models using MLPs, the 1-layer perceptron (even with the bias term)
is not a universal approximator of multiset functions. Consequently, even if GNNs with 1-layer
perceptrons can embed different graphs to different locations to some degree, such embeddings may
not adequately capture structural similarity, and can be difficult for simple classifiers, e.g., linear
classifiers, to fit. In Section 7, we will empirically see that GNNs with 1-layer perceptrons, when
applied to graph classification, sometimes severely underfit training data and often underperform
GNNs with MLPs in terms of test accuracy.

5.2 STRUCTURES THAT CONFUSE MEAN AND MAX-POOLING

What happens if we replace the sum in h (X) =
P

x2X f(x) with mean or max-pooling as in GCN
and GraphSAGE? Mean and max-pooling aggregators are still well-defined multiset functions because
they are permutation invariant. But, they are not injective. Figure 2 ranks the three aggregators by
their representational power, and Figure 3 illustrates pairs of structures that the mean and max-pooling
aggregators fail to distinguish. Here, node colors denote different node features, and we assume the
GNNs aggregate neighbors first before combining them with the central node.

In Figure 3a, every node has the same feature a and f(a) is the same across all nodes (for any
function f ). When performing neighborhood aggregation, the mean or maximum over f(a) remains
f(a) and, by induction, we always obtain the same node representation everywhere. Thus, mean and
max-pooling aggregators fail to capture any structural information. In contrast, a sum aggregator
distinguishes the structures because 2 · f(a) and 3 · f(a) give different values. The same argument

6

PinSage graph convolutional network:
¡ Goal: Generate embeddings for nodes in a large-scale 

Pinterest graph containing billions of objects
¡ Key Idea: Borrow information from nearby nodes

§ E.g., bed rail Pin might look like a garden fence, but gates 
and beds are rarely adjacent in the graph

§ Pin embeddings are essential to various tasks like 
recommendation of Pins, classification, ranking
§ Services like “Related Pins”, “Search”, “Shopping”, “Ads”

60Jure Leskovec (@jure), Stanford University

A





¡ Graph has tens of billions of nodes and edges
¡ Further resolves embeddings across the 

Pinterest graph

boards

pi
ns

pins

boards ...

Aggregator

... ... ...
Agg. Agg. Agg.



¡ In addition to the GNN model, the PinSAGE 
introduces several methods to scale the GNN to 
a billion-scale recommender system (e.g., 
Pinterest).
§ Shared negative samples across users in a mini-batch
§ Hard negative samples
§ Curriculum learning
§ Mini-batch training of GNNs on a large-graph (to be 

covered in the future lecture) 
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64

Task: Recommend related pins to users

Source pin

Learn node embeddings 𝑧h  such that
𝑑 𝑧ijkl*, 𝑧ijkl+ < 𝑑(𝑧ijkl*, 𝑧mnljolp)

𝑧$ 𝑧A

𝑑(𝑧E, 𝑧F)



¡ 1+B repin pairs:
§ From Related Pins surface
§ Capture semantic relatedness
§ Goal: Embed such pairs to be “neighbors”

¡ Example positive training pairs (Q,X):



¡ Recall: In BPR loss, for each user 𝑢∗ ∈
𝑼ABCB, we sample one positive item 𝑣mno 
and a set of sampled negative items 
𝑽Cpq = 𝑣Cpq .

¡ Using more negative samples per user 
improves the recommendation 
performance, but is also expensive.
§ We need to generate |𝑼@ABA| ⋅ |𝑽BFG| 

embeddings for negative nodes.
§ We need to apply |𝑼@ABA| ⋅ |𝑽BFG| GNN 

computational graphs (see right), which is 
expensive.
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¡ Key idea: We can share the same set of negative 
samples 𝑽Cpq = 𝑣Cpq  across all users 𝑼ABCB in 
the mini-batch.

¡ This way, we only need to generate |𝑽BFG| embeddings 
for negative nodes.

§ This saves the node embedding generation 
computation by a factor of |𝑼𝐦𝐢𝐧𝐢|!

§ Empirically, the performance stays similar to the 
non-shared negative sampling scheme.
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¡ Challenge: Industrial recsys needs to make 
extremely fine-grained predictions.
§ #Total items: Up to billions.
§ #Items to recommend for each user: 10 to 100.

¡ Issue: The shared negative items are 
randomly sampled from all items
§ Most of them are “easy negatives”, i.e., a model 

does not need to be fine-grained to distinguish 
them from positive items.

¡ We need a way to sample “hard negatives” to 
force the model to be fine-grained!
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¡ Idea: use harder and harder negative samples
¡ Include more and more hard negative 

samples for each epoch 

Source pin Positive Hard negativeEasy negative



¡ Key insight: It is effective to make the 
negative samples gradually harder in the 
process of training.

¡ At 𝑛-th epoch, we add 𝑛 − 1 hard negative 
items.
§ #(Hard negatives) gradually increases in the 

process of training.
¡ The model will gradually learn to make finer-

grained predictions.
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¡ For each user node, the hard negatives are item 
nodes that are close (but not connected) to the 
user node in the graph.

¡ Hard negatives for user 𝑢 ∈ 𝑼 are obtained as 
follows:
§ Compute random walks from user 𝑢.

§ Run random walk with restart from 𝑢, obtain visit counts for 
other items/nodes.

§ Sort items in the descending order of their visit count.
§ Randomly sample items that are ranked high but not too 

high, e.g., 2000th —5000th .
§ Item nodes that are close but not too close (connected) to the 

user node.
¡ The hard negatives for each user are used in 

addition to the shared negatives.
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(q, p) positive pairs are given but various 
methods to sample negatives to form (q, p, n)
● Distance Weighted Sampling (Wu et al., 2017) 
- Sample negatives so that query-negative distance 

distribution is approx uniform U[0.5, 1.4]

(q, p)

Negatives in 
Batch

Sampling (q, p, n)

https://arxiv.org/abs/1706.07567


Pixie

Graph-
SAGE

Query

PinSAGE

Visual only



Pixie

Graph-
SAGE

Query



¡ PinSAGE uses GNNs to generate high-quality 
user/item embeddings that capture both the 
rich node attributes and graph structure.

¡ The PinSAGE model is effectively trained using 
sophisticated negative sampling strategies.

¡ PinSAGE is successfully deployed at Pinterest, 
a billion-scale image content recommendation 
service.
§ Uncovered in this lecture: How to scale up GNNs to 

large-scale graphs. Will be covered in a later lecture.
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