
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site: http://cs224w.Stanford.edu

http://cs224w.stanford.edu/

¡ (11/4) Homework 2 is due Monday (was updated
Wed 10/23)

¡ Homework 3 is released today. Watch ED for
recitation session information. Due on 11/14

¡ No class next Tuesday 11/5 (Election day!)
¡ (11/7) Colab 3 is due next Thursday (one

week from today)
¡ (11/7) Project Milestone is due next Thursday

(one week from today)

11/4/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Information Explosion in the era of Internet
§ 10K+ movies in Netflix
§ 12M products in Amazon (350m on Marketplace)
§ 70M+ music tracks in Spotify
§ 10B+ videos on YouTube
§ 200B+ pins (images) in Pinterest

¡ Personalized recommendation (i.e., suggesting
a small number of interesting items for each
user) is critical for users to effectively explore
the content of their interest.

411/4/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Recommender system can
be naturally modeled as a
bipartite graph
§ A graph with two node types:

users and items.
§ Edges connect users and items

§ Indicates user-item interaction
(e.g., click, purchase, review etc.)

§ Often associated with timestamp
(timing of the interaction).

11/4/24 5Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

¡ Given
§ Past user-item interactions

¡ Task
§ Predict new items each user will

interact in the future.
§ Can be cast as link prediction

problem.
§ Predict new user-item interaction

edges given the past edges.

§ For 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽, we need to get
a real-valued score 𝑓(𝑢, 𝑣).

11/4/24 6Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

?

?

??

¡ Problem: Cannot evaluate 𝑓 𝑢, 𝑣 for every
user 𝑢 – item 𝑣 pair.

¡ Solution: 2-stage process:
§ Candidate generation (cheap, fast)
§ Ranking (slow, accurate)

11/4/24 7Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Embeddings of
millions of items

Search
Recommendations

User
embedding

K-NN engine

1000 candidate
items

Score/rank items
via 𝑓 𝑢, 𝑣

Return top-10 items
by score 𝑓 𝑢, 𝑣

Example 𝑓 𝑢, 𝑣 :
𝑓 𝑢, 𝑣 = 𝑧! ⋅ 𝑧"

¡ For each user, we recommend 𝐾 items.
§ For recommendation to be effective, 𝑲 needs to

be much smaller than the total number of items
(up to billions)

§ 𝐾 is typically in the order of 10—100.
¡ The goal is to include as many positive items

as possible in the top-𝐾 recommended items.
§ Positive items = Items that the user will interact

with in the future.
¡ Evaluation metric: Recall@𝐾 (defined next)

11/4/24 8Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ For each user 𝒖,
§ Let 𝑃! be a set of positive items the user will interact

in the future.
§ Let 𝑅! be a set of items recommended by the model.

§ In top-𝐾 recommendation, |𝑅(| = 𝐾.
§ Items that the user has already interacted are excluded.

11/4/24 9Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝑃! 𝑅!
Recommended
items

Positive items

¡ Recall@𝑲 for user 𝒖 is 𝑷𝒖 ∩ 𝑹𝒖 / 𝑷𝒖 .
§ Higher value indicates more positive items are

recommended in top-𝐾 for user 𝑢.

¡ The final Recall@𝐾 is computed by averaging
the recall values across all users.

11/4/24 10Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝑃! 𝑅!
Recommended
items

Positive items 𝑃(∩ 𝑅(

¡ GNN to embed users & products
¡ LLM to textify products and embed them
§ user emb. is avg. of purchased product embs.

¡ H&M fashion recommendation:

11/4/24 11Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

More info: Do Large Language Models make accurate personalized recommendations?

Embeddings of
millions of items

Recommendations

User
embedding

K-NN engine

LLM

GNN 40x3x 2x15x
better

mailto:https://kumo.ai/resources/blog/improving-predictions-with-large-language-models/

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Notation:
§ 𝑼: A set of all users
§ 𝑽: A set of all items
§ 𝑬: A set of observed user-item interactions
§𝑬	 = 𝑢, 𝑣 	 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽, 𝑢	interacted	with	𝑣}

11/4/24 13Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ To get the top-𝐾 items,
we need a score function
for user-item interaction:
§ For 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽, we need

to get a real-valued scalar
score(𝑢, 𝑣).

§ 𝑲 items with the largest
scores for a given user 𝑢
(excluding already-
interacted items) are then
recommended.

11/4/24 14Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User 𝑼 Item 𝑽

𝑢

𝑣)

𝑣*

𝑣+

𝑣,

𝑣-

𝑣.

score 𝑢, 𝑣# = 2.0

3.0

4.0

−2.3

0.7

Already-
interacted
item

For 𝐾 = 2, recommended items
for user 𝑢 would be 𝑣$, 𝑣% .

¡ We consider embedding-
based models for scoring user-
item interactions.
§ For each user 𝑢 ∈ 𝑼, let 𝒖 ∈ ℝ$

be its 𝐷-dimensional embedding.
§ For each item 𝑣 ∈ 𝑽, let 𝒗 ∈ ℝ$

be its 𝐷-dimensional embedding.
§ Let 𝑓% ⋅,⋅ : ℝ$×ℝ$ → ℝ be a

parametrized function.
§ Then, score 𝑢, 𝑣 ≡ 𝑓% 𝒖, 𝒗

11/4/24 15Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User 𝑼 Item 𝑽

𝑓! 𝒖, 𝒗

𝑢
𝑣

𝒖

𝒗

¡ Embedding-based models have three kinds of
parameters:
§ An encoder to generate user embeddings 𝒖 !∈+

§ An encoder to generate item embeddings 𝒗 ,∈-

§ Score function 𝑓% ⋅,⋅
¡ Training objective: Optimize the model

parameters to achieve high recall@𝐾 on seen
(i.e., training) user-item interactions
§ We hope this objective would lead to high

recall@𝐾 on unseen (i.e., test) interactions.

11/4/24 16Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ The original training objective (recall@𝐾) is
not differentiable.
§ Cannot apply efficient gradient-based optimization.

¡ Two surrogate loss functions are widely-used
to enable efficient gradient-based
optimization.
§ Binary loss
§ Bayesian Personalized Ranking (BPR) loss

¡ Surrogate losses are differentiable and should
align well with the original training objective.

11/4/24 17Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Define positive/negative edges
§ A set of positive edges 𝑬 (i.e., observed/training

user-item interactions)
§ A set of negative edges 𝑬𝐧𝐞𝐠 = 𝑢, 𝑣 	 𝑢, 𝑣 ∉
𝐸, 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽}

¡ Define sigmoid function 𝜎 𝑥 ≡ #
#$%&'()*)

§ Maps real-valued scores into binary likelihood
scores, i.e., in the range of [0,1].

11/4/24 18Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Binary loss: Binary classification of
positive/negative edges using 𝜎(𝑓, 𝒖, 𝒗):
−
1
|𝑬|

5
!,# ∈𝑬

log 𝜎(𝑓& 𝒖, 𝒗) −
1

|𝑬𝐧𝐞𝐠|
5

!,# ∈𝑬𝐧𝐞𝐠

log 1 − 𝜎(𝑓& 𝒖, 𝒗)

¡ Binary loss pushes the scores of positive edges
higher than those of negative edges.
§ This aligns with the training recall metric since

positive edges need to be recalled.
11/4/24 19Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

During training, these terms can be approximated
using mini-batch of positive/negative edges

¡ Issue: In the binary loss, the scores of ALL
positive edges are pushed higher than those
of ALL negative edges.

¡ This would unnecessarily penalize model
predictions even if the training recall metric is
perfect.

¡ Why? (example in the next slide)

11/4/24 20Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Let’s consider the simplest case:
§ Two users, two items
§ Metric: Recall@1.
§ A model assigns the score for every

user-item pair (as shown in the right).
¡ Training Recall@1 is 1.0 (perfect

score), because 𝑣> (resp. 𝑣?) is
correctly recommended to 𝑢>
(resp. 𝑢?).

¡ However, the binary loss would
still penalize the model prediction
because the negative 𝑢?, 𝑣>
edge gets the higher score than
the positive edge 𝑢>, 𝑣> .

11/4/24 21Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

1.0

-1.0

2.0

4.0

𝑢)

𝑢*

𝑣)

𝑣*

Positive edge

Negative edge

¡ Key insight: The binary loss is non-personalized
in the sense that the positive/negative edges
are considered across ALL users at once.

¡ However, the recall metric is inherently
personalized (defined for each user).
§ The non-personalized binary loss is overly-stringent

for the personalized recall metric.

11/4/24 22Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Lesson learned: Surrogate loss
function should be defined in
a personalized manner.
§ For each user, we want the

scores of positive items to be
higher than those of the
negative items

§ We do not care about the score
ordering across users.

¡ Bayesian Personalized
Ranking (BPR) loss achieves
this!

11/4/24 23Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

1.0

-1.0

2.0

4.0

𝑢)

𝑢*

𝑣)

𝑣*

Observed
interaction

Unobserved
interaction

¡ Bayesian Personalized Ranking (BPR) loss is a
personalized surrogate loss that aligns better
with the recall@K metric.

¡ For each user 𝑢∗ ∈ 𝑼, define the rooted
positive/negative edges as
§ Positive edges rooted at 𝑢∗

§ 𝑬 𝑢∗ ≡ 𝑢∗, 𝑣 	 𝑢∗, 𝑣 ∈ 𝑬}
§ Negative edges rooted at 𝑢∗

§ 𝑬𝐧𝐞𝐠 𝑢∗ ≡ 𝑢∗, 𝑣 	 𝑢∗, 𝑣 ∈ 𝑬𝐧𝐞𝐠}

11/4/24 24Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

𝑢∗

Note: The term “Bayesian” is not essential to the loss definition. The original paper
[Rendle et al. 2009] considers the Bayesian prior over parameters (essentially acts
as a parameter regularization), which we omit here.

¡ Training objective: For each user 𝑢∗, we want the
scores of rooted positive edges 𝑬 𝑢∗ 	to be higher
than those of rooted negative edges 𝑬𝐧𝐞𝐠 𝑢∗ .
§ Aligns with the personalized nature of the recall metric.

¡ BPR Loss for user 𝒖∗:

¡ Final BPR Loss: ?
|𝑼|
∑!∗∈𝑼 Loss(𝑢∗)

11/4/24 25Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Loss(𝑢∗) =
1

𝐸(𝑢∗) ⋅ |𝑬𝐧𝐞𝐠(𝑢∗)|
5

(&∗,("#$)∈𝑬(&∗)

5
&∗,(%&'	 ∈𝑬𝐧𝐞𝐠(&∗)

−log 𝜎 𝑓- 𝒖∗, 𝒗./0 − 𝑓- 𝒖∗, 𝒗123

Encouraged to be positive for each user
=positive edge score is higher than negative edge score

Can be approximated using a mini-batch

¡ Mini-batch training for the BPR
loss:
§ In each mini-batch, we sample a

subset of users 𝑼ABCB ⊂ 𝑼.
§ For each user 𝑢∗ ∈ 𝑼@ABA, we sample

one positive item 𝑣CDE and a set of
sampled negative items 𝑉BFG = 𝑣BFG .

§ The mini-batch loss is computed as

11/4/24 26Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

𝑢∗
𝑣>?@

𝑣ABC

𝑣ABC

Average over users
in the mini-batch

1
|𝑼&'('|

K
!∗∈𝑼4565

1
|𝑽(+,|

K
"678∈𝑽678

−log 𝜎 𝑓. 𝑢∗, 𝒗012 − 𝑓. 𝑢∗, 𝒗(+,

¡ We have introduced
§ Recall@𝐾 as a metric for personalized

recommendation
§ Embedding-based models

§ Three kinds of parameters to learn
§ user encoder to generate user embeddings
§ item encoder to generate item embeddings
§ score function to predict the user-item interaction likelihood.

§ Surrogate loss functions to achieve the high recall
metric.

¡ Embedding-based models have achieved SoTA
in recommender systems.
§ Why do they work so well?

11/4/24 27Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Underlying idea:
Collaborative filtering
§ Recommend items for a

user by collecting
preferences of many
other similar users.

§ Similar users tend to
prefer similar items.

¡ Key question: How to
capture similarity
between users/items?

11/4/24 28Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

Items
interacted
by both
users 𝑢
and 𝑢’

𝑢

𝑢′
Similar
users

Likely edge

¡ Embedding-based models can capture
similarity of users/items!
§ Low-dimensional embeddings cannot simply

memorize all user-item interaction data.
§ Embeddings are forced to capture similarity

between users/items to fit the data.
§ This allows the models to make effective prediction

on unseen user-item interactions.

11/4/24 29Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ In this lecture, we teach two representative
GNN approaches for recommender systems.

¡ (1) Neural Graph Collab. Filtering (NGCF)
¡ (2) LightGCN [He et al. 2020]

§ Improve the conventional collaborative filtering
models (i.e., shallow encoders) by explicitly modeling
graph structure using GNNs.

§ Assumes no user/item features.
¡ PinSAGE [Ying et al. 2018]

§ Use GNNs to generate high-quality embeddings by
simultaneously capturing rich node attributes (e.g.,
images) and the graph structure.

11/4/24 30Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

[Wang et al.
2019]

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Conventional collaborative
filtering model is based on
shallow encoders:
§ No user/item features.
§ Use shallow encoders for users

and items:
§ For every 𝑢 ∈ 𝑼 and 𝑣 ∈ 𝑽, we

prepare shallow learnable
embeddings 𝒖, 𝒗 ∈ ℝQ.

§ Score function for user 𝑢 and
item 𝑣 is 𝑓% 𝒖, 𝒗 ≡ 𝒛𝒖D𝒛𝒗.

11/4/24 32Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

Learnable shallow
user/item embeddingsf

¡ The model itself does not explicitly capture
graph structure
§ The graph structure is only implicitly captured in

the training objective.
¡ Only the first-order graph structure (i.e.,

edges) is captured in the training objective.
§ High-order graph structure (e.g., 𝐾-hop paths

between two nodes) is not explicitly captured.

11/4/24 33Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ We want a model that…
§ explicitly captures graph structure (beyond

implicitly through the training objective)
§ captures high-order graph structure (beyond the

first-order edge connectivity structure)
¡ GNNs are a natural approach to achieve both!
§ Neural Graph Collaborative Filtering (NGCF) [Wang et

al. 2019]

§ LightGCN [He et al. 2020]

§ A simplified and improved version of NGCF

11/4/24 34Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Neural Graph Collaborative Filtering (NGCF)
explicitly incorporates high-order graph structure
when generating user/item embeddings.

¡ Key idea: Use a GNN to generate graph-aware
user/item embeddings.

11/4/24 35Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

Initial shallow embeddings
(not graph-aware)

User
Item

Use a GNN to propagate
embeddings

User
Item

NGCF’s graph-aware
embeddings

¡ Given: User-item bipartite graph.
¡ NGCF framework:

§ Prepare shallow learnable embedding
for each node.

§ Use multi-layer GNNs to propagate
embeddings along the bipartite graph.
§ High-order graph structure is captured.

§ Final embeddings are explicitly graph-
aware!

¡ Two kinds of learnable params are
jointly learned:
§ Shallow user/item embeddings
§ GNN’s parameters

11/4/24 36Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

Shallow user/item
embeddings (learnable)

GNN

¡ Set the shallow
learnable embeddings as
the initial node features:
§ For every user 𝑢 ∈ 𝑼, set
𝒉!
(#) as the user’s shallow

embedding.
§ For every item 𝑣 ∈ 𝑽, set
𝒉%
(#) as the item’s shallow

embedding.

11/4/24 37Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

Learnable shallow
user/item embeddings

¡ Iteratively update node
embeddings using
neighboring embeddings.

11/4/24 38Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

Updated user
embeddings Updated item

embeddings

𝒉"
(45$) = COMBINE 𝒉"

(4), AGGR 𝒉!
4

!∈7(")

𝒉!
(45$) = COMBINE 𝒉!

(4), AGGR 𝒉"
4

"∈7(!)

Different architecture choices are possible for
AGGR and COMBINE.
• AGGR(⋅) can be MEAN ⋅
• COMBINE(𝒙, 𝒚) can be

ReLU Linear(Concat(𝒙, 𝒚))

High-order graph structure is captured
through iterative neighbor aggregation.

¡ After 𝐾 rounds of neighbor
aggregation, we get the final
user/item embeddings 𝒉!

(.)
and 𝒉/

(.).
¡ For all 𝑢 ∈ 𝑼, 𝑣 ∈ 𝑽, we set

𝒖 ← 𝒉!
(.), 𝒗 ← 𝒉/

(.).
¡ Score function is the inner

product
score 𝑢, 𝑣 = 𝒖0𝒗

11/4/24 39Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
Item

Final user/item
embeddings (graph-aware)

¡ Conventional collaborative filtering uses
shallow user/item embeddings.
§ The embeddings do not explicitly model graph

structure.
§ The training objective does not model high-order

graph structure.
¡ NGCF uses a GNN to propagate the shallow

embeddings.
§ The embeddings are explicitly aware of high-

order graph structure.

11/4/24 40Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Recall: NGCF jointly learns two kinds of
parameters:
§ Shallow user/item embeddings
§ GNN’s parameters

¡ Observation: Shallow learnable embeddings are
already quite expressive.
§ They are learned for every (user/item) node.
§ Most of the parameter counts are in shallow embeddings

when 𝑁 (#nodes) ≫	 𝐷 (embedding dimensionality)
§ Shallow embeddings: 𝑂(𝑁𝐷).
§ GNN: 𝑂(𝐷+).

§ The GNN parameters may not be so essential for
performance.

11/4/24 42Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Can we simplify the GNN used in NGCF (e.g.,
remove its learnable parameters)?
§ Answer: Yes!
§ Bonus: Simplification improves the

recommendation performance!
¡ Overview of the idea:
§ Adjacency matrix for a bipartite graph
§ Matrix formulation of GCN
§ Simplification of GCN by removing non-linearity

§ Related: SGC for scalable GNN [Wu et al. 2019]

11/4/24 43Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Adjacency matrix of a (undirected) bipartite graph.
¡ Shallow embedding matrix.

11/4/24 44Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
ItemEmbedding

matrix 𝑬

Shallow embedding

User

User

Item

Item
Adjacency matrix 𝑨

𝟎

𝟎

𝑹

𝑹'

𝑹!# = 1 if
user 𝑢
interacts
with item 𝑣 ,
𝑹!# = 0
otherwise.

User
emb.

Item
emb.

¡ Define: The diffusion matrix
¡ Let 𝑫 be the degree matrix of 𝑨.
¡ Define the normalized adjacency

matrix B𝑨 as
M𝑨 ≡ 𝑫_?/a𝑨𝑫_?/a

¡ Let 𝑬(1) be the embedding matrix
at 𝑘-th layer.

¡ Each layer of GCN’s aggregation
can be written in a matrix form:
𝑬(1$#) = ReLU B𝑨𝑬(1)𝑾(1)

11/4/24 45Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Matrix of node
embeddings 𝑬(D)

Each row stores
node embedding

Neighbor aggregation Learnable linear transformation

Note: Different from the
original GCN, self-
connection is omitted here.

¡ Simplify GCN by removing ReLU non-linearity:
𝑬(1$#) = B𝑨𝑬(1)𝑾(1)

¡ The final node embedding matrix is given as
𝑬(b) = M𝑨	 𝑬(b_?)𝑾(b_?)

	
 = M𝑨 M𝑨𝑬(b_a)𝑾(b_a) 𝑾(b_?)

11/4/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 46

= M𝑨 M𝑨 ⋯ M𝑨𝑬(>)𝑾(>) ⋯ 𝑾(b_a) 𝑾(b_?)

= M𝑨b 	𝑬 𝑾(>)⋯𝑾(b_?)

Set 𝑬 as input
embedding 𝑬(#)

Original idea from
SGC [Wu et al. 2019]

¡ Removing ReLU significantly simplifies GCN!
𝑬(.) = B𝑨. 	𝑬	𝑾

¡ Algorithm: Apply 𝑬 ← B𝑨	𝑬 for 𝐾 times.
§ Each matrix multiplication diffuses the current embeddings

to their one-hop neighbors.
§ Note: ;𝑨^ is dense and never gets materialized. Instead, the

above iterative matrix-vector product is used to compute
;𝑨^	𝑬.

11/4/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 47

𝑾 ≡ 𝑾())⋯𝑾(^a*)
Diffusing node embeddings
along the graph

¡ We can consider multi-scale diffusion
 𝛼#𝐸(#) + 𝛼&𝐸(&) + 𝛼'𝐸(') +⋯ +𝛼(𝐸(()

§ The above includes embeddings diffused at
multiple hop scales.

§ 𝛼>𝐸(>) = 𝛼>M𝑨>𝐸(>) acts as a self-connection
(that is omitted in the definition c𝑨)

§ The coefficients, 𝛼>, … , 𝛼b , are hyper-parameters.
¡ For simplicity, LightGCN uses the uniform

coefficient, i.e., 𝛼1 =
#

.$#
 for 𝑘 = 0,… , 𝐾.

11/4/24 48Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Given:
§ Adjacency matrix A
§ Initial learnable embedding matrix 𝑬

11/4/24 49Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Embedding
matrix 𝑬

User

User

Item

Item
Adjacency matrix 𝑨

𝟎

𝟎

𝑹

𝑹0

User
emb

Item
emb

Normalize 𝟎

𝟎

Normalized Adj. matrix c𝑨
(self-loop omitted)

Iteratively diffuse embedding matrix 𝑬 using B𝑨

11/4/24 50Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Embedding
matrix 𝑬(𝒌)
(𝑬(𝟎) is set to 𝑬)

User
emb

Item
emb

𝟎

𝟎

Normalized Adj. matrix c𝑨
(self-loop omitted)

⋅←

Embedding
matrix 𝑬(𝒌5𝟏)

User
emb

Item
emb

For 𝑘 = 0…𝐾 − 1,

¡ Average the embedding matrices at
different scales.

11/4/24 51Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

𝑬(#)

User
emb

Item
emb

←

Embedding
matrix 𝑬;'(<=

User
emb

Item
emb

1
𝐾 + 1

𝑬($) 𝑬(>)

User
emb

Item
emb

+ +⋯+
User
emb

Item
emb

¡ Score function:
§ Use user/item vectors from 𝑬dBCef	to score user-

item interaction

11/4/24 52Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

User
emb

Item
emb

Used as
embedding
𝒖 for 𝑢 ∈ 𝑼

Used as
embedding
𝒗 for 𝑣 ∈ 𝑽

𝑢

𝑣

𝒛𝒖

𝒛𝒗

Score
function
𝒛𝒖g𝒛𝒗

Embedding
matrix 𝑬;'(<=

¡ Question: Why does the simple diffusion
propagation work well?

¡ Answer: The diffusion directly encourages the
embeddings of similar users/items to be
similar.
§ Similar users share many common neighbors

(items) and are expected to have similar future
preferences (interact with similar items).

11/4/24 53Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ The embedding propagation of LightGCN is
closely related to GCN

¡ Recall: GCN (neighbor aggregation part)

𝒉,
(gh?) = Z

!∈i(,)

1
𝑑! 𝑑,

⋅ 𝒉!
(g)

§ Self-loop is added in the neighborhood definition.
¡ LightGCN uses the same equation except that
§ Self-loop is not added in the neighborhood definition.
§ Final embedding takes the average of embeddings

from all the layers: 𝒉, =
?

bh?
∑gj>b 𝒉,

(g).
11/4/24 54Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Node degree

¡ Both LightGCN and shallow encoders learn a
unique embedding for each user/item.

¡ The difference is that LightGCN uses the diffused
user/item embeddings for scoring.

¡ LightGCN performs better than shallow encoders
but are also more computationally expensive due
to the additional diffusion step.
§ The final embedding of a user/item is obtained

by aggregating embeddings of its multi-hop
neighboring nodes.

11/4/24 55Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ LightGCN simplifies NGCF by removing the
learnable parameters of GNNs.

¡ Learnable parameters are all in the shallow
input node embeddings.
§ Diffusion propagation only involves matrix-vector

multiplication.
§ The simplification leads to better empirical

performance than NGCF.

11/4/24 56Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ P2P recommendation

q Unifies visual, textual, and graph information.
q The largest industry deployment of a Graph

Convolutional Networks.
q Huge Adoption across Pinterest
q Works for fresh content and is available in

a few seconds after pin creation

Graph Convolutional Neural Networks for Web-Scale Recommender Systems, Ying et al., 2018

https://arxiv.org/pdf/1806.01973.pdf

Under review as a conference paper at ICLR 2019

sum - multiset

>
mean - distribution max - set

>
Input

Figure 2: Ranking by expressive power for sum, mean and max-pooling aggregators over a multiset.
Left panel shows the input multiset and the three panels illustrate the aspects of the multiset a given
aggregator is able to capture: sum captures the full multiset, mean captures the proportion/distribution
of elements of a given type, and the max aggregator ignores multiplicities (reduces the multiset to a
simple set).

vs.

(a) Mean and Max both fail

vs.

(b) Max fails

vs.

(c) Mean and Max both fail

Figure 3: Examples of simple graph structures that mean and max-pooling aggregators fail to
distinguish. Figure 2 gives reasoning about how different aggregators “compress” different graph
structures/multisets.

existing GNNs instead use a 1-layer perceptron � �W (Duvenaud et al., 2015; Kipf & Welling, 2017;
Zhang et al., 2018), a linear mapping followed by a non-linear activation function such as a ReLU.
Such 1-layer mappings are examples of Generalized Linear Models (Nelder & Wedderburn, 1972).
Therefore, we are interested in understanding whether 1-layer perceptrons are enough for graph
learning. Lemma 7 suggests that there are indeed network neighborhoods (multisets) that models
with 1-layer perceptrons can never distinguish.

Lemma 7. There exist finite multisets X1 6= X2 so that for any linear mapping W ,P
x2X1

ReLU (Wx) =
P

x2X2
ReLU (Wx) .

The main idea of the proof for Lemma 7 is that 1-layer perceptrons can behave much like linear
mappings, so the GNN layers degenerate into simply summing over neighborhood features. Our
proof builds on the fact that the bias term is lacking in the linear mapping. With the bias term and
sufficiently large output dimensionality, 1-layer perceptrons might be able to distinguish different
multisets. Nonetheless, unlike models using MLPs, the 1-layer perceptron (even with the bias term)
is not a universal approximator of multiset functions. Consequently, even if GNNs with 1-layer
perceptrons can embed different graphs to different locations to some degree, such embeddings may
not adequately capture structural similarity, and can be difficult for simple classifiers, e.g., linear
classifiers, to fit. In Section 7, we will empirically see that GNNs with 1-layer perceptrons, when
applied to graph classification, sometimes severely underfit training data and often underperform
GNNs with MLPs in terms of test accuracy.

5.2 STRUCTURES THAT CONFUSE MEAN AND MAX-POOLING

What happens if we replace the sum in h (X) =
P

x2X f(x) with mean or max-pooling as in GCN
and GraphSAGE? Mean and max-pooling aggregators are still well-defined multiset functions because
they are permutation invariant. But, they are not injective. Figure 2 ranks the three aggregators by
their representational power, and Figure 3 illustrates pairs of structures that the mean and max-pooling
aggregators fail to distinguish. Here, node colors denote different node features, and we assume the
GNNs aggregate neighbors first before combining them with the central node.

In Figure 3a, every node has the same feature a and f(a) is the same across all nodes (for any
function f). When performing neighborhood aggregation, the mean or maximum over f(a) remains
f(a) and, by induction, we always obtain the same node representation everywhere. Thus, mean and
max-pooling aggregators fail to capture any structural information. In contrast, a sum aggregator
distinguishes the structures because 2 · f(a) and 3 · f(a) give different values. The same argument

6

PinSage graph convolutional network:
¡ Goal: Generate embeddings for nodes in a large-scale

Pinterest graph containing billions of objects
¡ Key Idea: Borrow information from nearby nodes

§ E.g., bed rail Pin might look like a garden fence, but gates
and beds are rarely adjacent in the graph

§ Pin embeddings are essential to various tasks like
recommendation of Pins, classification, ranking
§ Services like “Related Pins”, “Search”, “Shopping”, “Ads”

60Jure Leskovec (@jure), Stanford University

A

¡ Graph has tens of billions of nodes and edges
¡ Further resolves embeddings across the

Pinterest graph

boards

pi
ns

pins

boards ...

Aggregator

...
Agg. Agg. Agg.

¡ In addition to the GNN model, the PinSAGE
introduces several methods to scale the GNN to
a billion-scale recommender system (e.g.,
Pinterest).
§ Shared negative samples across users in a mini-batch
§ Hard negative samples
§ Curriculum learning
§ Mini-batch training of GNNs on a large-graph (to be

covered in the future lecture)

11/4/24 63Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

64

Task: Recommend related pins to users

Source pin

Learn node embeddings 𝑧h such that
𝑑 𝑧ijkl*, 𝑧ijkl+ < 𝑑(𝑧ijkl*, 𝑧mnljolp)

𝑧$ 𝑧A

𝑑(𝑧E, 𝑧F)

¡ 1+B repin pairs:
§ From Related Pins surface
§ Capture semantic relatedness
§ Goal: Embed such pairs to be “neighbors”

¡ Example positive training pairs (Q,X):

¡ Recall: In BPR loss, for each user 𝑢∗ ∈
𝑼ABCB, we sample one positive item 𝑣mno
and a set of sampled negative items
𝑽Cpq = 𝑣Cpq .

¡ Using more negative samples per user
improves the recommendation
performance, but is also expensive.
§ We need to generate |𝑼@ABA| ⋅ |𝑽BFG|

embeddings for negative nodes.
§ We need to apply |𝑼@ABA| ⋅ |𝑽BFG| GNN

computational graphs (see right), which is
expensive.

11/4/24 66Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Key idea: We can share the same set of negative
samples 𝑽Cpq = 𝑣Cpq across all users 𝑼ABCB in
the mini-batch.

¡ This way, we only need to generate |𝑽BFG| embeddings
for negative nodes.

§ This saves the node embedding generation
computation by a factor of |𝑼𝐦𝐢𝐧𝐢|!

§ Empirically, the performance stays similar to the
non-shared negative sampling scheme.

11/4/24 67Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Challenge: Industrial recsys needs to make
extremely fine-grained predictions.
§ #Total items: Up to billions.
§ #Items to recommend for each user: 10 to 100.

¡ Issue: The shared negative items are
randomly sampled from all items
§ Most of them are “easy negatives”, i.e., a model

does not need to be fine-grained to distinguish
them from positive items.

¡ We need a way to sample “hard negatives” to
force the model to be fine-grained!

11/4/24 68Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Idea: use harder and harder negative samples
¡ Include more and more hard negative

samples for each epoch

Source pin Positive Hard negativeEasy negative

¡ Key insight: It is effective to make the
negative samples gradually harder in the
process of training.

¡ At 𝑛-th epoch, we add 𝑛 − 1 hard negative
items.
§ #(Hard negatives) gradually increases in the

process of training.
¡ The model will gradually learn to make finer-

grained predictions.

11/4/24 70Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ For each user node, the hard negatives are item
nodes that are close (but not connected) to the
user node in the graph.

¡ Hard negatives for user 𝑢 ∈ 𝑼 are obtained as
follows:
§ Compute random walks from user 𝑢.

§ Run random walk with restart from 𝑢, obtain visit counts for
other items/nodes.

§ Sort items in the descending order of their visit count.
§ Randomly sample items that are ranked high but not too

high, e.g., 2000th —5000th .
§ Item nodes that are close but not too close (connected) to the

user node.
¡ The hard negatives for each user are used in

addition to the shared negatives.
11/4/24 71Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

(q, p) positive pairs are given but various
methods to sample negatives to form (q, p, n)
● Distance Weighted Sampling (Wu et al., 2017)
- Sample negatives so that query-negative distance

distribution is approx uniform U[0.5, 1.4]

(q, p)

Negatives in
Batch

Sampling (q, p, n)

https://arxiv.org/abs/1706.07567

Pixie

Graph-
SAGE

Query

PinSAGE

Visual only

Pixie

Graph-
SAGE

Query

¡ PinSAGE uses GNNs to generate high-quality
user/item embeddings that capture both the
rich node attributes and graph structure.

¡ The PinSAGE model is effectively trained using
sophisticated negative sampling strategies.

¡ PinSAGE is successfully deployed at Pinterest,
a billion-scale image content recommendation
service.
§ Uncovered in this lecture: How to scale up GNNs to

large-scale graphs. Will be covered in a later lecture.

11/4/24 75Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

