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Note to other teachers and users of these slides: We would be delighted if you found our 
material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify 
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lecture, please include this message, or a link to our web site: http://cs224w.Stanford.edu 
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¡ Homework 1 due today
§ Late submissions accepted until end of day 

Monday, 10/21
¡ Regrade request deadlines
§ Colab 1: Thursday, 10/24

§ Solutions and statistics released on Ed
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020c

https://arxiv.org/pdf/2011.08843.pdf
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020c
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GNN design space Graph Transformer design space

¡ We know a lot about the design space of GNNs
¡ What does the corresponding design space for Graph 

Transformers look like?

?

https://arxiv.org/pdf/2011.08843.pdf
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¡ There is lots of multi-billon node/graph scale data to learn from



¡ Part 1: 
§ Introducing Transformers
§ Relation to message passing GNNs

¡ Part 2:
§ A new design landscape for graph 

Transformers
¡ Part 3 (time permitting):
§ Sign invariant Laplacian positional encodings 

for graph Transformers
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¡ Transformers map 1D sequences of vectors to 1D sequences 
of vectors

Tokens𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

Transformer

INPUT

OUTPUT

The cat sat on the mat and sang
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𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

Transformer

𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

¡ Transformers map 1D sequences of vectors to 1D sequences 
of vectors known as tokens
§ Tokens describe a ”piece” of data – e.g., a word

¡ What output sequence?
§ Option 1: next token => GPT

Next token

OUTPUT

Tokens

INPUT
The cat sat on the mat and sang

cat sat on the mat and sang
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¡ Transformers map 1D sequences of vectors to 1D sequences of vectors 
known as tokens
§ Tokens describe a ”piece” of data – e.g., a word

¡ What output sequence?
§ Option 1: next token => GPT
§ Option 2: pool (e.g., sum-pool) to get sequence level-embedding (e.g., for 

classification task)

Transformer

Sum pool

OUTPUT

Tokens𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

INPUT
The cat sat on the mat and sang

Predict: kids story
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¡ How are tokens processed?

¡ Lots of components 
§ Normalization
§ Feed forward networks
§ Positional encoding (more later)

§ Multi-head self-attention

¡ What does self-attention 
block do?



¡ Before “multi-head” self-attention, what is 
“single head” self-attention?
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See: Illustrated Transformer tutorial, https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/
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See: Illustrated Transformer tutorial, https://jalammar.github.io/illustrated-transformer/

Step 1 Model 
parameters

¡ Step 1: compute “key, value, query” for each input  

https://jalammar.github.io/illustrated-transformer/
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See: Illustrated Transformer tutorial, https://jalammar.github.io/illustrated-transformer/

Step 1 Step 2

(num heads)

Model 
parameters

¡ Step 1: compute “key, value, query” for each input  
¡ Step 2 (just for 𝒙𝟏): compute scores between pairs, turn into 

probabilities (same for 𝒙𝟐)

https://jalammar.github.io/illustrated-transformer/
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See: Illustrated Transformer tutorial, https://jalammar.github.io/illustrated-transformer/

Step 1 Step 2

𝒛𝟏 = 𝟎. 𝟖𝟖𝒗𝟏 + 𝟎. 𝟏𝟐𝒗𝟐
Step 3

¡ Step 1: compute “key, value, query” for each input  
¡ Step 2 (just for 𝒙𝟏): compute scores between pairs, turn into 

probabilities (same for 𝒙𝟐)
¡ Step 3: get new embedding 𝑧+by weighted sum of 𝑣+, 𝑣,

https://jalammar.github.io/illustrated-transformer/
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See: Illustrated Transformer tutorial, https://jalammar.github.io/illustrated-transformer/

¡ Same calculation in matrix form

Step 1

Step 2 

Step 3 

Model 
parameters

https://jalammar.github.io/illustrated-transformer/
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See: Illustrated Transformer tutorial, https://jalammar.github.io/illustrated-transformer/

¡ Do many self-attentions in parallel, and combine
¡ Different heads can learn different “similarities” between 

inputs
¡ Each has own set of parameters 

https://jalammar.github.io/illustrated-transformer/
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𝑥! 𝑥" 𝑥#

GNN

Node features

Node 
embeddings

INPUT

OUTPUT𝑧+
𝑧,

𝑧-

𝑧! 𝑧" 𝑧#

𝑥+
𝑥,

𝑥-

¡ Similarity: GNNs also take in a sequence of vectors (in no 
particular order) and output a sequence of embeddings

¡ Difference: GNNs use message passing, Transformer 
uses self-attention
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¡ Difference: GNNs use message passing, Transformer 
uses self-attention

¡ Are self-attention and message passing really different?

Message Passing Vs. Self-attention
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𝑧!

𝑥! 𝑥" 𝑥#

Transformer

Input tokens

OUTPUT

𝑥%𝑥$

𝑧" 𝑧# 𝑧%𝑧$

𝑋 = 𝑥+[ ]
Inputs stored row-wise¡ Recall Formula for attention update: 

𝐴𝑡𝑡 𝑋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾, 𝑉

𝑄 = 𝑋𝑊- , 𝐾 = 𝑋𝑊., V = 𝑋𝑊/



¡ Recall Formula for attention update: 

¡ This formula gives the embedding for all 
tokens simultaneously

¡ What if we simplify to just token     ? 
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𝐴𝑡𝑡 𝑋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾, 𝑉 𝑋 = 𝑥+[ ]
Inputs stored row-wise

𝑥!

𝑧!

𝑥! 𝑥" 𝑥#

Transformer

Input tokens

OUTPUT

𝑥%𝑥$

𝑧" 𝑧# 𝑧%𝑧$

𝑄 = 𝑋𝑊- , 𝐾 = 𝑋𝑊., V = 𝑋𝑊/



¡ This formula gives the embedding for all 
tokens simultaneously

¡ What if we simplify to just token     ? 

z! =>
01!

%

𝑠𝑜𝑓𝑡𝑚𝑎𝑥0 𝑞!,𝑘0 𝑣0
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𝑥!

𝑋 = 𝑥+[ ]
Inputs stored row-wise

How to interpret this?

𝑧!

𝑥! 𝑥" 𝑥#

Transformer

Input tokens

OUTPUT

𝑥%𝑥$

𝑧" 𝑧# 𝑧%𝑧$

¡ Recall Formula for attention update: 

𝐴𝑡𝑡 𝑋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾, 𝑉

𝑄 = 𝑋𝑊- , 𝐾 = 𝑋𝑊., V = 𝑋𝑊/



¡ Steps for computing new embedding for token 1:
§ 1. Compute message from j:
§ 2. Compute query for 1: 
§ 3. Aggregate all messages:

¡ This formula gives the embedding for all 
tokens simultaneously

¡ If we simplify to just token       what does 
the update look like?

z! =>
01!

%

𝑠𝑜𝑓𝑡𝑚𝑎𝑥0 𝑞!,𝑘0 𝑣0
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𝑥!

𝑋 = 𝑥+[ ]
Inputs stored row-wise

𝐴𝑔𝑔 𝑞!, 𝑀𝑆𝐺 𝑥0 : 𝑗 = >
01!

2

𝑠𝑜𝑓𝑡𝑚𝑎𝑥0 𝑞!,𝑘0 𝑣0
	

𝑞! = 𝑀𝑆𝐺 𝑥! = 𝑊-𝑥! 
𝑣0 , 𝑘0 = 𝑀𝑆𝐺 𝑥0 = (𝑊/𝑥0 ,𝑊.𝑥0)

How to interpret this?

𝐴𝑡𝑡 𝑋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾, 𝑉

𝑄 = 𝑋𝑊- , 𝐾 = 𝑋𝑊., V = 𝑋𝑊/



¡ Steps for computing new embedding for token 1:
§ 1. Compute message from j:
§ 2. Compute query for 1: 
§ 3. Aggregate all messages:

¡ Takeaway: Self-attention can be written as message + 
aggregation – i.e., it is a GNN!

¡ But so far there is no graph – just tokens. 
§ So what graph is this a GNN on?

¡ Clearly tokens = nodes, but what are the edges?
¡ Key observation:

§ Token 1 depends on (receives “messages” from) all other tokens
§ è the graph is fully connected!

¡ Alternatively: if you only sum over                   you get ~GAT 

z! =>
01!

%

𝑠𝑜𝑓𝑡𝑚𝑎𝑥0 𝑞!,𝑘0 𝑣0
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𝐴𝑔𝑔 𝑞!, 𝑀𝑆𝐺 𝑥0 : 𝑗 = >
01!

2

𝑠𝑜𝑓𝑡𝑚𝑎𝑥0 𝑞!,𝑘0 𝑣0
	

𝑗 ∈ 𝑁(𝑖)

𝑞! = 𝑀𝑆𝐺 𝑥! = 𝑊-𝑥! 
𝑣0 , 𝑘0 = 𝑀𝑆𝐺 𝑥0 = (𝑊/𝑥0 ,𝑊.𝑥0)



¡ Steps for computing new embedding for token 1:
§ 1. Compute message from j:
§ 2. Compute query for 1: 
§ 3. Aggregate all messages:

¡ Takeaway 1: Self-attention is a special case of 
message passing

¡ Takeaway 2: It is message passing on the fully 
connected graph

¡ Takeaway 3: Given a graph 𝐺, if you constrain the 
self-attention softmax to only be over 𝒋	adjacent 
to 𝒊 nodes, you get ~GAT!
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𝐴𝑔𝑔 𝑞!, 𝑀𝑆𝐺 𝑥0 : 𝑗 = >
01!

2

𝑠𝑜𝑓𝑡𝑚𝑎𝑥0 𝑞!,𝑘0 𝑣0
	

𝑞! = 𝑀𝑆𝐺 𝑥! = 𝑊-𝑥! 
𝑣0 , 𝑘0 = 𝑀𝑆𝐺 𝑥0 = (𝑊/𝑥0 ,𝑊.𝑥0)



¡ Part 1: 
§ Introducing Transformers
§ Relation to message passing GNNs

¡ Part 2:
§ A new design landscape for graph 

Transformers
¡ Part 3 (Time-permitting):
§ Sign invariant Laplacian positional encodings 

for graph Transformers
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020c
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(2) Aggregation

(1) Message
GNN Layer 2

GNN Layer 1

(4) Graph augmentation

(5) Learning objective

(3) Layer connectivity

GNN design space Graph Transformer design space

¡ We know a lot about the design space of GNNs
¡ What does the corresponding design space for Graph 

Transformers look like?

?

https://arxiv.org/pdf/2011.08843.pdf


¡ We start with graph(s)
¡ How to input a graph into a Transformer?
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START

?
𝑥! 𝑥" 𝑥#

Transformer

OUTPUT

𝑥%𝑥$



¡ To understand how to process 
graphs with Transformers we 
must:
§ Understand the key components of 

the Transformer. Seen already: 
§1) tokenizing,
§2) self-attention

§ Decide how to make suitable graph 
versions of each 

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020c

𝑥! 𝑥" 𝑥#

Transformer

(1) Input tokens

OUTPUT

𝑥%𝑥$

(2) Attention module

https://arxiv.org/pdf/2011.08843.pdf


¡ There is one other key missing piece we have not yet 
discussed…
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¡ There is one other key missing piece we have not yet 
discussed …

¡ First recall update formula

¡ Key Observation: order of tokens does not matter!!!

z! =>
01!

%

𝑠𝑜𝑓𝑡𝑚𝑎𝑥0 𝑞!,𝑘0 𝑣0



Outputs swap, but do not otherwise change

Transformer

𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(
The cat sat on the mat and sang
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Transformer

𝑥" 𝑥! 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(
cat The sat on the mat and sang

¡ There is one other key missing piece we have not yet 
discussed …

¡ First recall update formula

¡ Key Observation: order of tokens does not matter!!!

z! =>
01!

%

𝑠𝑜𝑓𝑡𝑚𝑎𝑥0 𝑞!,𝑘0 𝑣0

𝑧! 𝑧" 𝑧# 𝑧$ 𝑧% 𝑧& 𝑧' 𝑧( 𝑧" 𝑧! 𝑧# 𝑧$ 𝑧% 𝑧& 𝑧' 𝑧(

Swap tokens 1 and 2



¡ This is a problem
¡ Same predictions no matter what order the words are in! 

(A “bag of words” prediction model)…
§ How to fix?

Transformer

𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(
The cat sat on the mat and sang
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Transformer

𝑥" 𝑥! 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(
cat The sat on the mat and sang

𝑧! 𝑧" 𝑧# 𝑧$ 𝑧% 𝑧& 𝑧' 𝑧( 𝑧" 𝑧! 𝑧# 𝑧$ 𝑧% 𝑧& 𝑧' 𝑧(

Swap tokens 1 and 2

Sum pool Sum poolIdentical outputs



¡ Transformer doesn’t 
know order of inputs

¡ Extra positional features 
needed so it knows that
§  Je = word 1, 
§ suis = word 2
§ etc.

¡ For NLP, positional 
encoding vectors are 
learnable parameters
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¡ Key components of Transformer
§ (1) tokenizing
§ (2) positional encoding
§ (3) self-attention

¡ Key question: What should these be for a graph input?
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

𝑥! 𝑥" 𝑥#

Transformer

+ + + + + + + +

(2) Positional 
encoding

𝑥+ (1) Tokens

(3) self-attention 

How to chose these 
for graph data?

https://arxiv.org/pdf/2011.08843.pdf


¡ A graph Transformer must take the 
following inputs:
§ (1) Node features?
§ (2) Adjacency information?
§ (3) Edge features?
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

¡ Key components of Transformer
§ (1) tokenizing
§ (2) positional encoding
§ (3) self-attention

https://arxiv.org/pdf/2011.08843.pdf


¡ A graph Transformer must take the 
following inputs:
§ (1) Node features?
§ (2) Adjacency information?
§ (3) Edge features?

¡ There are many ways to do this
¡ Different approaches correspond to different 

“matchings” between graph inputs (1), (2), 
(3) transformer components (1), (2), (3)
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

¡ Key components of Transformer
§ (1) tokenizing
§ (2) positional encoding
§ (3) self-attention

https://arxiv.org/pdf/2011.08843.pdf


¡ Key components of Transformer
§ (1) tokenizing
§ (2) positional encoding
§ (3) self-attention

¡ A graph Transformer must take the 
following inputs:
§ (1) Node features?
§ (2) Adjacency information?
§ (3) Edge features?

¡ There are many ways to do this
¡ Different approaches correspond to different 

“matchings” between graph inputs (1), (2), 
(3) transformer components (1), (2), (3)
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Today

https://arxiv.org/pdf/2011.08843.pdf


¡ Q1: what should our tokens be?
¡ Sensible Idea: node features = input tokens
¡ This matches the setting for the “attention is message passing 

on the fully connected graph” observation
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𝑧!

𝑥! 𝑥" 𝑥#

Transformer

OUTPUT

𝑥%𝑥$

𝑧" 𝑧# 𝑧%𝑧$START

?
(1) Input tokens = Node features



¡ Problem? We completely lose adjacency info!
¡ How to also inject adjacency information?
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020c

𝑧!

𝑥! 𝑥" 𝑥#

Transformer

(1) Input tokens = Node features

OUTPUT

𝑥%𝑥$

𝑧" 𝑧# 𝑧%𝑧$START

?

https://arxiv.org/pdf/2011.08843.pdf
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¡ Idea: Encode adjacency info in the positional encoding for 
each node

¡ Positional encoding describes where a node is in the graph 

INPUT

(2) Positional encoding

𝑧!

Transformer

OUTPUT𝑧" 𝑧# 𝑧%𝑧$

+ + + + +

(1) Input tokens = Node features
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INPUT

(2) Positional encoding

Q2: How to design 
a good positional 
encoding?

𝑧!

Transformer

OUTPUT𝑧" 𝑧# 𝑧%𝑧$

+ + + + +

(1) Input tokens = Node features

¡ Idea: Encode adjacency info in the positional encoding for 
each node

¡ Positional encoding describes where a node is in the graph 



¡ Last lecture: positional encoding 
based on relative distances

¡ Similar methods based on 
random walks

¡ This is a good idea! It works well 
in many cases

¡ Especially strong for tasks that 
require counting cycles
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𝑠+ 𝑠, 𝑠-
𝑣+ 1 2 1
𝑣- 1 2 0

Relative Distances

𝑣+

𝑣-

𝑠+ 𝑠,

A

A

BA
B

BSize-2
Anchor-set

Anchor
𝑠-

Anchor 𝑠!, 𝑠" cannot differentiate 
node 𝑣!, 𝑣#, but anchor-set 𝑠# can

=
Positional 
encoding for 
node 𝑣!



¡ Last lecture: Relative 
distances useful for 
position-aware task

¡ But not suited to 
structure-aware tasks
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𝑠+ 𝑠, 𝑠-
𝑣+ 1 2 1
𝑣- 1 2 0

Relative Distances

𝑣+

𝑣-

𝑠+ 𝑠,

A

A

BA
B

BSize-2
Anchor-set

Anchor
𝑠-

Anchor 𝑠!, 𝑠" cannot differentiate 
node 𝑣!, 𝑣#, but anchor-set 𝑠# can

=
Positional 
encoding for 
node 𝑣!

!"
!#

A

A

B
A

A

B

!" !#A

A

BA B

B



¡ What other ways to make positional 
encoding?
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¡ What other ways to make positional encoding?

¡ Draw on knowledge of Graph Theory (many useful and 
powerful tools)

¡ Key object: Laplacian Matrix L = Degrees - Adjacency
§ Each graph has its own Laplacian matrix
§ Laplacian encodes the graph structure
§ Several Laplacian variants that add degree information 

differently 
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𝑣!

𝑣!

𝑣#

𝑣$

L =

1 0 0 0

0 2 0 0

0 0 2 0

0 0 0 1

0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

Degree of each node Adjacency

-



¡ Laplacian matrix captures graph structure

¡ Its eigenvectors inherit this structure

¡ This is important because eigenvectors are vectors (!) and so 
can be fed into a Transformer

¡ Eigenvectors with small eigenvalue = global structure, large 
eigenvalue = local symmetries
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𝐿𝑣	 = 	λ𝑣𝑣
𝐿: 𝑛	×𝑛	

Eigenvector:        such that 

Refresher

𝑣: 𝑛
𝜆:

matrix

dimensional vector 

Scalar eigenvalue

Visualize one eigenvector 



¡ Positional encoding steps:
§ 1. compute 𝑘 eigenvectors     𝑣+, 𝑣,, 𝑣- 
§ 2. Stack into matrix:
§ 3. 𝑖th row is positional 
encoding for node 𝑖
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(𝑘 = 3)

𝑛
nodes

𝑥! 𝑥" 𝑥#

Transformer𝑥+
𝑥,

𝑥- Node features

INPUT

+ + + + + + + +

Positional encoding 
features

𝑥+

Row 𝑖
 



¡ Laplacian Eigenvector positional encodings can also be used 
with message-passing GNNs
§ This helps for same reasons as structural and relative-distance based positional 

encodings in previous lecture
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INPUT

(2) Positional 
encoding

Transformer

+ + + + +

¡ Laplacian Matrix L = Degrees – 
Adjacency

¡ f
¡  Positional encoding steps:

§ 1. compute 𝑘 eigenvectors     𝑣+, 𝑣,, 𝑣- 
§ 2. Stack into matrix:
§ 3. 𝑖th row is positional 
encoding for node 𝑖

𝐿𝑣	 = 	λ𝑣𝑣Eigenvector:        such that 

(𝑘 = 3)

𝑛
nodes

Row 𝑖
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¡ Task: given a graph, predict YES if it has a cycle, NO 
otherwise

¡ Recall, message-passing cannot solve this task!

¡ “PE” indicates using Laplacian Eigenvector Pos. Enc.



¡ Key components of Transformer
§ (1) tokenizing
§ (2) positional encoding
§ (3) self-attention

¡ A graph Transformer must take the 
following inputs:
§ (1) Node features?
§ (2) Adjacency information?
§ (3) Edge features?

¡ There are many ways to do this
¡ Different approaches correspond to different 

“matchings” between graph inputs (1), (2), 
(3) transformer components (1), (2), (3)
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S0 far



¡ Key components of Transformer
§ (1) tokenizing
§ (2) positional encoding
§ (3) self-attention

¡ A graph Transformer must take the 
following inputs:
§ (1) Node features?
§ (2) Adjacency information?
§ (3) Edge features?

¡ There are many ways to do this
¡ Different approaches correspond to different 

“matchings” between graph inputs (1), (2), 
(3) transformer components (1), (2), (3)
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Left to do
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¡ Not clear how to add edge features in the tokens or positional encoding

¡ How about in the attention?

¡                        is an n x n matrix. Entry       describes “how much” token    contributes 
to the update of token

Do Transformers Really Perform Bad for Graph Representation? Ying et al. NeurIPS 2021

𝑎+0 = 𝑄𝐾, 𝑎+0 𝑗
𝑖

𝐴𝑡𝑡 𝑋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾, 𝑉

https://arxiv.org/abs/2106.05234


¡ Not clear how to add edge features in the tokens or positional encoding

¡ How about in the attention?

¡                        is an n x n matrix. Entry       describes “how much” token    contributes 
to the update of token

¡  Idea: adjust 𝒂𝒊𝒋 based on edge features. Replace with 𝒂𝒊𝒋 + 𝒄𝒊𝒋 where 𝒄𝒊𝒋  
depends on the edge features
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𝐴𝑡𝑡 𝑋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾, 𝑉

Do Transformers Really Perform Bad for Graph Representation? Ying et al. NeurIPS 2021

𝑎+0 = 𝑄𝐾, 𝑎+0 𝑗
𝑖

https://arxiv.org/abs/2106.05234


¡ Not clear how to add edge features in the tokens or positional encoding

¡ How about in the attention?

¡                        is an n x n matrix. Entry       describes “how much” token    contributes 
to the update of token

¡  Idea: adjust 𝒂𝒊𝒋 based on edge features. Replace with 𝒂𝒊𝒋 + 𝒄𝒊𝒋 where 𝒄𝒊𝒋  
depends on the edge features

¡ Implementation: 

§ If there is an edge between     and    with features 𝒆𝒊𝒋,	 define 𝒄𝒊𝒋 = 𝒘𝟏
𝑻𝒆𝒊𝒋

§ If there is no edge, find shortest edge path between     and    
𝒆𝟏, 𝒆𝟐, … 𝒆𝑵 	and define 𝒄𝒊𝒋 = ∑𝒏𝒘𝒏

𝑻𝒆𝒏
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𝐴𝑡𝑡 𝑋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾, 𝑉

Do Transformers Really Perform Bad for Graph Representation? Ying et al. NeurIPS 2021

𝑎+0 = 𝑄𝐾, 𝑎+0 𝑗
𝑖

𝑖 𝑗
Learned parameters 𝒘𝟏 

𝑖 𝑗

Learned parameters 𝒘𝟏, … , 𝒘𝑵

https://arxiv.org/abs/2106.05234
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¡ (1) Tokenization
§ Usually node features
§ Other options, such as subgraphs, and node + 

edge features (not discussed today)
¡ (2) Positional Encoding

§ Relative distances, or Laplacian eigenvectors
§ Gives Transformer adjacency structure of graph

¡ (3) Modified Attention
§ Reweight attention using edge features 

(2) Positional 
encoding

Transformer

OUTPUT

+ + + + +

(1) Input tokens

(3) Modified 
Attention 
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INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation
(1) Message

GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(5) Learning objective

(3) Layer connectivity

GNN design space Graph Transformer design space

(2) Positional 
encoding

Transformer

+ + + + +

(1) Input tokens

(3) Modified 
Attention 



¡ Part 1: 
§ Introducing Transformers
§ Relation to message passing GNNs

¡ Part 2:
§ A new design landscape for graph 

Transformers
¡ Part 3:
§ Sign invariant Laplacian positional encodings 

for graph Transformers
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INPUT

(2) Positional 
encoding

Transformer

+ + + + +

¡ Laplacian Matrix L = Degrees – 
Adjacency

¡ f 𝐿𝑣	 = 	λ𝑣𝑣Eigenvector:        such that 

(𝑘 = 3)

𝑛
nodes

Row 𝑖
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¡ Laplacian Eigenvector positional encodings work!

¡ But is this the best we can do? 
§ Hint: no 

¡ Q: What is the problem with the current approach?
§ A1: Eigenvectors are not arbitrary vectors
§ A2: They have special structure that we have been 

ignoring!
¡ To use eigenvectors properly we must account 

for their structure in our models



10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 66

¡ Suppose 𝑣	is a Laplacian eigenvector
§ So 

¡ But this means:
§ Also

¡ So −𝑣	is also a Laplacian eigenvector

𝐿𝑣	 = 	λ𝑣

𝐿(−𝑣) 	= 	λ(−𝑣)

The choice of sign is arbitrary!



¡ Both 
¡ But when we use them as positional encodings 

we pick one arbitrarily
¡ Why does this matter for positional encodings?
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𝑣 and −𝑣 are eigenvectors 

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

𝑥! 𝑥" 𝑥#

Transformer

+ + + + + + + +
𝑥+

𝑣!, 𝑣", 𝑣# 



¡ Both 
¡ But when we use them as positional encodings 

we pick one arbitrarily
¡ Why does this matter for positional encodings?
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𝑣 and −𝑣 are eigenvectors 
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𝑥! 𝑥" 𝑥#

Transformer

+ + + + + + + +
𝑥+

𝑣!, 𝑣", 𝑣# 

¡ What if we 
picked the 
other sign? 



¡ What if we picked the other sign choice?
¡ Then the input PE changes
¡ => The models predictions will change!
¡  For 𝑘 eigenvectors there are 2! 	sign	choices

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 69Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

𝑥! 𝑥" 𝑥#

Transformer

+ + + + + + + +
𝑥+

−𝒗𝟏𝑣", 𝑣# § 2,  different 
predictions 
for the 
same input 
graph! 

𝑣!



¡ Simple Idea: randomly flip the signs of 
eigenvectors during training 
§ I.e., data augmentation
§ Model will learn to not use the sign information
§ Issue: exponentially	many	sign	choices	is	very	
difficult	to	learn

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 70Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



¡ Better Idea: build a neural network that is 
invariant to sign choices!
§ Since it is invariant, the predictions will no longer 

depend on the sign choice
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𝑥! 𝑥" 𝑥#

Transformer

+ + + + + + + +
𝑥+

−𝒗𝟏𝑣", 𝑣# 

𝑣!



¡ Goal: design a neural network 𝑓(𝑣", 𝑣#, … 𝑣!) 
such that:
§ 𝑓(𝑣-, 𝑣., … 𝑣,) = 𝑓(±𝑣-, ±𝑣., …±𝑣,) for all ± choices
§ 𝑓	is “expressive”: note that 𝑓(𝑣+, 𝑣., … 𝑣,) = 0 is sign 

invariant… but it’s a terrible neural network 
architecture 

¡ Warmup: one eigenvector 
§ What about 𝑓(𝑣-) such that 𝑓(𝑣+) = 𝑓(−𝑣-) ?
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¡ Warmup: one eigenvector 
¡ Goal: design a neural network 𝑓(𝑣-) such that  

   𝑓(𝑣") = 𝑓(−𝑣") 
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¡ Warmup: one eigenvector 
¡ Goal: design a neural network 𝑓(𝑣-) such that  

   𝑓(𝑣") = 𝑓(−𝑣") 
¡ Proposition: 𝑓 satisfies 𝑓(𝑣") = 𝑓(−𝑣")  if and 

only if there is a 𝜙 such that
    𝑓(𝑣") = 𝜙 𝑣" + 𝜙(−𝑣")
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¡ Warmup: one eigenvector 
¡ Goal: design a neural network 𝑓(𝑣-) such that  

   𝑓(𝑣") = 𝑓(−𝑣") 
¡ Proposition: 𝑓 satisfies 𝑓(𝑣") = 𝑓(−𝑣")  if and 

only if there is a 𝜙 such that
    𝑓(𝑣") = 𝜙 𝑣" + 𝜙(−𝑣")
Proof: 
<=: If  𝑓(𝑣") = 𝜙 𝑣" + 𝜙(−𝑣"), then 𝑓(−𝑣") =
𝜙 −𝑣" + 𝜙 𝑣" = 𝑓(𝑣"),
=>: If 𝑓(𝑣") = 𝑓(−𝑣"), define 𝜙(𝑣") = 𝑓(𝑣")/2.
Then 𝜙 𝑣" + 𝜙 −𝑣" = 𝑓(𝑣")/2+𝑓(−𝑣")/2=𝑓(𝑣")
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¡ Warmup: one eigenvector 
¡ Goal: design a sign invariant  neural network 
𝑓(𝑣", 𝑣#, … 𝑣!) in two steps:
§ Step 1: sign invariant 𝑓/(𝑣/)	for each 𝑖 
§ Step 2: COMBINE individual eigenvector embeddings 

into one:
𝑓(𝑣-, 𝑣., … 𝑣,) = 𝐴𝐺𝐺(𝑓-(𝑣-), … , 𝑓,(𝑣,))
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¡ Warmup: one eigenvector 
¡ Goal: design a sign invariant  neural network 
𝑓(𝑣", 𝑣#, … 𝑣!) in two steps:
§ Step 1: sign invariant 𝑓/(𝑣/)	for each 𝑖 
§ Step 2: COMBINE individual eigenvector embeddings 

into one:
𝑓(𝑣-, 𝑣., … 𝑣,) = 𝐴𝐺𝐺(𝑓-(𝑣-), … , 𝑓,(𝑣,))

 
𝑓(𝑣", 𝑣#, … 𝑣!)
= 𝐴𝐺𝐺(𝜙"(𝑣"), +𝜙"(−𝑣"), … , 𝜙!(𝑣!), +𝜙!(−𝑣!))
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Use model for  one eigenvector

Combine using another neural net 𝐴𝐺𝐺 = 𝜌  



¡ Overall model:
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𝑓(𝑣", 𝑣#, … 𝑣!)
= 𝜌(𝜙(𝑣"), +𝜙(−𝑣"), … , 𝜙(𝑣!), +𝜙(−𝑣!))

    SignNet𝜌, 𝜙 =	any neural network 
(MLP, GNN etc.)
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¡ Recall Goal: design a neural network 𝑓(𝑣!, 𝑣", … 𝑣#) 
such that:
§ 𝑓(𝑣#, 𝑣$, … 𝑣%) = 𝑓(±𝑣#, ±𝑣$, …±𝑣%) for all ± choices

§ SignNet is sign invariant.
§ 𝑓	is “expressive” 

§ Is SignNet expressive?

Theorem: if 𝑓	is sign invariant, then there 
exist functions 𝜌, 𝜙  such that
𝑓(𝑣-, 𝑣., … 𝑣,)
= 𝜌(𝜙(𝑣-), +𝜙(−𝑣-), … , 𝜙(𝑣,), +𝜙(−𝑣,))

SignNet can express all sign invariant functions!!
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Adjacency 
Matrix

Node 
Features

Laplacian 
Eigenvectors SignNet

Prediction 
Model 

(e.g. GNN,
Transformer) 

Compute
Eigvecs

Input Graph Model

¡ How to use SignNet in practice?
§ Step 1: Compute eigenvectors
§ Step 2: get eigenvector embeddings using SignNet
§ Step 3: concatenate SignNet embeddings with node features X
§ Step 4: pass through main GNN/Transformer as usual. 
§ Step 5: Backpropagate gradients to train SignNet + Prediction model jointly.
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¡ Task: given a small molecule, predict its solubility

𝑓( ) =	solubulity
50% reduction in test error 



¡ Part 1: 
§ Transformers to message passing on fully 

connected graph
¡ Part 2:
§ New design landscape for graph Transformers

§ Tokenization
§ Positional encoding
§ Modified self-attention

¡ Part 3:
§ Sign invariant Laplacian positional encodings 

for graph Transformers
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GNN Layer 1

GNN Layer 2

(4) Graph augmentation
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¡ New design space for graph Transformers
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(3) Modified 
Attention 


