
CS224W: Machine Learning with Graphs
Charilaos Kanatsoulis and Jure Leskovec, Stanford
University

http://cs224w.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site: http://cs224w.Stanford.edu

http://cs224w.stanford.edu/

¡ Homework 1 due today
§ Late submissions accepted until end of day

Monday, 10/21
¡ Regrade request deadlines
§ Colab 1: Thursday, 10/24

§ Solutions and statistics released on Ed

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 2

GNN Layer 1

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020c

https://arxiv.org/pdf/2011.08843.pdf

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020c

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 2

GNN Layer 1

(4) Graph augmentation

(5) Learning objective

(3) Layer connectivity

GNN design space Graph Transformer design space

¡ We know a lot about the design space of GNNs
¡ What does the corresponding design space for Graph

Transformers look like?

?

https://arxiv.org/pdf/2011.08843.pdf

CS224W: Machine Learning with Graphs
Charilaos Kanatsoulis and Jure Leskovec, Stanford
University

http://cs224w.stanford.edu

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 6

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 7

¡ There is lots of multi-billon node/graph scale data to learn from

¡ Part 1:
§ Introducing Transformers
§ Relation to message passing GNNs

¡ Part 2:
§ A new design landscape for graph

Transformers
¡ Part 3 (time permitting):
§ Sign invariant Laplacian positional encodings

for graph Transformers

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 8

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 10

¡ Transformers map 1D sequences of vectors to 1D sequences
of vectors

Tokens𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

Transformer

INPUT

OUTPUT

The cat sat on the mat and sang

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 11

𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

Transformer

𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

¡ Transformers map 1D sequences of vectors to 1D sequences
of vectors known as tokens
§ Tokens describe a ”piece” of data – e.g., a word

¡ What output sequence?
§ Option 1: next token => GPT

Next token

OUTPUT

Tokens

INPUT
The cat sat on the mat and sang

cat sat on the mat and sang

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 12

¡ Transformers map 1D sequences of vectors to 1D sequences of vectors
known as tokens
§ Tokens describe a ”piece” of data – e.g., a word

¡ What output sequence?
§ Option 1: next token => GPT
§ Option 2: pool (e.g., sum-pool) to get sequence level-embedding (e.g., for

classification task)

Transformer

Sum pool

OUTPUT

Tokens𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(

INPUT
The cat sat on the mat and sang

Predict: kids story

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 13

¡ How are tokens processed?

¡ Lots of components
§ Normalization
§ Feed forward networks
§ Positional encoding (more later)

§ Multi-head self-attention

¡ What does self-attention
block do?

¡ Before “multi-head” self-attention, what is
“single head” self-attention?

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 14
See: Illustrated Transformer tutorial, https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 15
See: Illustrated Transformer tutorial, https://jalammar.github.io/illustrated-transformer/

Step 1 Model
parameters

¡ Step 1: compute “key, value, query” for each input

https://jalammar.github.io/illustrated-transformer/

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 16
See: Illustrated Transformer tutorial, https://jalammar.github.io/illustrated-transformer/

Step 1 Step 2

(num heads)

Model
parameters

¡ Step 1: compute “key, value, query” for each input
¡ Step 2 (just for 𝒙𝟏): compute scores between pairs, turn into

probabilities (same for 𝒙𝟐)

https://jalammar.github.io/illustrated-transformer/

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 17
See: Illustrated Transformer tutorial, https://jalammar.github.io/illustrated-transformer/

Step 1 Step 2

𝒛𝟏 = 𝟎. 𝟖𝟖𝒗𝟏 + 𝟎. 𝟏𝟐𝒗𝟐
Step 3

¡ Step 1: compute “key, value, query” for each input
¡ Step 2 (just for 𝒙𝟏): compute scores between pairs, turn into

probabilities (same for 𝒙𝟐)
¡ Step 3: get new embedding 𝑧+by weighted sum of 𝑣+, 𝑣,

https://jalammar.github.io/illustrated-transformer/

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 18
See: Illustrated Transformer tutorial, https://jalammar.github.io/illustrated-transformer/

¡ Same calculation in matrix form

Step 1

Step 2

Step 3

Model
parameters

https://jalammar.github.io/illustrated-transformer/

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 19
See: Illustrated Transformer tutorial, https://jalammar.github.io/illustrated-transformer/

¡ Do many self-attentions in parallel, and combine
¡ Different heads can learn different “similarities” between

inputs
¡ Each has own set of parameters

https://jalammar.github.io/illustrated-transformer/

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 20

𝑥! 𝑥" 𝑥#

GNN

Node features

Node
embeddings

INPUT

OUTPUT𝑧+
𝑧,

𝑧-

𝑧! 𝑧" 𝑧#

𝑥+
𝑥,

𝑥-

¡ Similarity: GNNs also take in a sequence of vectors (in no
particular order) and output a sequence of embeddings

¡ Difference: GNNs use message passing, Transformer
uses self-attention

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 21

¡ Difference: GNNs use message passing, Transformer
uses self-attention

¡ Are self-attention and message passing really different?

Message Passing Vs. Self-attention

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 23

𝑧!

𝑥! 𝑥" 𝑥#

Transformer

Input tokens

OUTPUT

𝑥%𝑥$

𝑧" 𝑧# 𝑧%𝑧$

𝑋 = 𝑥+[]
Inputs stored row-wise¡ Recall Formula for attention update:

𝐴𝑡𝑡 𝑋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾, 𝑉

𝑄 = 𝑋𝑊- , 𝐾 = 𝑋𝑊., V = 𝑋𝑊/

¡ Recall Formula for attention update:

¡ This formula gives the embedding for all
tokens simultaneously

¡ What if we simplify to just token ?

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 24

𝐴𝑡𝑡 𝑋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾, 𝑉 𝑋 = 𝑥+[]
Inputs stored row-wise

𝑥!

𝑧!

𝑥! 𝑥" 𝑥#

Transformer

Input tokens

OUTPUT

𝑥%𝑥$

𝑧" 𝑧# 𝑧%𝑧$

𝑄 = 𝑋𝑊- , 𝐾 = 𝑋𝑊., V = 𝑋𝑊/

¡ This formula gives the embedding for all
tokens simultaneously

¡ What if we simplify to just token ?

z! =>
01!

%

𝑠𝑜𝑓𝑡𝑚𝑎𝑥0 𝑞!,𝑘0 𝑣0

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 25

𝑥!

𝑋 = 𝑥+[]
Inputs stored row-wise

How to interpret this?

𝑧!

𝑥! 𝑥" 𝑥#

Transformer

Input tokens

OUTPUT

𝑥%𝑥$

𝑧" 𝑧# 𝑧%𝑧$

¡ Recall Formula for attention update:

𝐴𝑡𝑡 𝑋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾, 𝑉

𝑄 = 𝑋𝑊- , 𝐾 = 𝑋𝑊., V = 𝑋𝑊/

¡ Steps for computing new embedding for token 1:
§ 1. Compute message from j:
§ 2. Compute query for 1:
§ 3. Aggregate all messages:

¡ This formula gives the embedding for all
tokens simultaneously

¡ If we simplify to just token what does
the update look like?

z! =>
01!

%

𝑠𝑜𝑓𝑡𝑚𝑎𝑥0 𝑞!,𝑘0 𝑣0

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 26

𝑥!

𝑋 = 𝑥+[]
Inputs stored row-wise

𝐴𝑔𝑔 𝑞!, 𝑀𝑆𝐺 𝑥0 : 𝑗 = >
01!

2

𝑠𝑜𝑓𝑡𝑚𝑎𝑥0 𝑞!,𝑘0 𝑣0
	

𝑞! = 𝑀𝑆𝐺 𝑥! = 𝑊-𝑥!
𝑣0 , 𝑘0 = 𝑀𝑆𝐺 𝑥0 = (𝑊/𝑥0 ,𝑊.𝑥0)

How to interpret this?

𝐴𝑡𝑡 𝑋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾, 𝑉

𝑄 = 𝑋𝑊- , 𝐾 = 𝑋𝑊., V = 𝑋𝑊/

¡ Steps for computing new embedding for token 1:
§ 1. Compute message from j:
§ 2. Compute query for 1:
§ 3. Aggregate all messages:

¡ Takeaway: Self-attention can be written as message +
aggregation – i.e., it is a GNN!

¡ But so far there is no graph – just tokens.
§ So what graph is this a GNN on?

¡ Clearly tokens = nodes, but what are the edges?
¡ Key observation:

§ Token 1 depends on (receives “messages” from) all other tokens
§ è the graph is fully connected!

¡ Alternatively: if you only sum over you get ~GAT

z! =>
01!

%

𝑠𝑜𝑓𝑡𝑚𝑎𝑥0 𝑞!,𝑘0 𝑣0

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 27

𝐴𝑔𝑔 𝑞!, 𝑀𝑆𝐺 𝑥0 : 𝑗 = >
01!

2

𝑠𝑜𝑓𝑡𝑚𝑎𝑥0 𝑞!,𝑘0 𝑣0
	

𝑗 ∈ 𝑁(𝑖)

𝑞! = 𝑀𝑆𝐺 𝑥! = 𝑊-𝑥!
𝑣0 , 𝑘0 = 𝑀𝑆𝐺 𝑥0 = (𝑊/𝑥0 ,𝑊.𝑥0)

¡ Steps for computing new embedding for token 1:
§ 1. Compute message from j:
§ 2. Compute query for 1:
§ 3. Aggregate all messages:

¡ Takeaway 1: Self-attention is a special case of
message passing

¡ Takeaway 2: It is message passing on the fully
connected graph

¡ Takeaway 3: Given a graph 𝐺, if you constrain the
self-attention softmax to only be over 𝒋	adjacent
to 𝒊 nodes, you get ~GAT!

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 28

𝐴𝑔𝑔 𝑞!, 𝑀𝑆𝐺 𝑥0 : 𝑗 = >
01!

2

𝑠𝑜𝑓𝑡𝑚𝑎𝑥0 𝑞!,𝑘0 𝑣0
	

𝑞! = 𝑀𝑆𝐺 𝑥! = 𝑊-𝑥!
𝑣0 , 𝑘0 = 𝑀𝑆𝐺 𝑥0 = (𝑊/𝑥0 ,𝑊.𝑥0)

¡ Part 1:
§ Introducing Transformers
§ Relation to message passing GNNs

¡ Part 2:
§ A new design landscape for graph

Transformers
¡ Part 3 (Time-permitting):
§ Sign invariant Laplacian positional encodings

for graph Transformers

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 29

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020c

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 2

GNN Layer 1

(4) Graph augmentation

(5) Learning objective

(3) Layer connectivity

GNN design space Graph Transformer design space

¡ We know a lot about the design space of GNNs
¡ What does the corresponding design space for Graph

Transformers look like?

?

https://arxiv.org/pdf/2011.08843.pdf

¡ We start with graph(s)
¡ How to input a graph into a Transformer?

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

START

?
𝑥! 𝑥" 𝑥#

Transformer

OUTPUT

𝑥%𝑥$

¡ To understand how to process
graphs with Transformers we
must:
§ Understand the key components of

the Transformer. Seen already:
§1) tokenizing,
§2) self-attention

§ Decide how to make suitable graph
versions of each

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020c

𝑥! 𝑥" 𝑥#

Transformer

(1) Input tokens

OUTPUT

𝑥%𝑥$

(2) Attention module

https://arxiv.org/pdf/2011.08843.pdf

¡ There is one other key missing piece we have not yet
discussed…

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

¡ There is one other key missing piece we have not yet
discussed …

¡ First recall update formula

¡ Key Observation: order of tokens does not matter!!!

z! =>
01!

%

𝑠𝑜𝑓𝑡𝑚𝑎𝑥0 𝑞!,𝑘0 𝑣0

Outputs swap, but do not otherwise change

Transformer

𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(
The cat sat on the mat and sang

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

Transformer

𝑥" 𝑥! 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(
cat The sat on the mat and sang

¡ There is one other key missing piece we have not yet
discussed …

¡ First recall update formula

¡ Key Observation: order of tokens does not matter!!!

z! =>
01!

%

𝑠𝑜𝑓𝑡𝑚𝑎𝑥0 𝑞!,𝑘0 𝑣0

𝑧! 𝑧" 𝑧# 𝑧$ 𝑧% 𝑧& 𝑧' 𝑧(𝑧" 𝑧! 𝑧# 𝑧$ 𝑧% 𝑧& 𝑧' 𝑧(

Swap tokens 1 and 2

¡ This is a problem
¡ Same predictions no matter what order the words are in!

(A “bag of words” prediction model)…
§ How to fix?

Transformer

𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(
The cat sat on the mat and sang

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

Transformer

𝑥" 𝑥! 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(
cat The sat on the mat and sang

𝑧! 𝑧" 𝑧# 𝑧$ 𝑧% 𝑧& 𝑧' 𝑧(𝑧" 𝑧! 𝑧# 𝑧$ 𝑧% 𝑧& 𝑧' 𝑧(

Swap tokens 1 and 2

Sum pool Sum poolIdentical outputs

¡ Transformer doesn’t
know order of inputs

¡ Extra positional features
needed so it knows that
§ Je = word 1,
§ suis = word 2
§ etc.

¡ For NLP, positional
encoding vectors are
learnable parameters

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 38

¡ Key components of Transformer
§ (1) tokenizing
§ (2) positional encoding
§ (3) self-attention

¡ Key question: What should these be for a graph input?

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

𝑥! 𝑥" 𝑥#

Transformer

+ + + + + + + +

(2) Positional
encoding

𝑥+ (1) Tokens

(3) self-attention

How to chose these
for graph data?

https://arxiv.org/pdf/2011.08843.pdf

¡ A graph Transformer must take the
following inputs:
§ (1) Node features?
§ (2) Adjacency information?
§ (3) Edge features?

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

¡ Key components of Transformer
§ (1) tokenizing
§ (2) positional encoding
§ (3) self-attention

https://arxiv.org/pdf/2011.08843.pdf

¡ A graph Transformer must take the
following inputs:
§ (1) Node features?
§ (2) Adjacency information?
§ (3) Edge features?

¡ There are many ways to do this
¡ Different approaches correspond to different

“matchings” between graph inputs (1), (2),
(3) transformer components (1), (2), (3)

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

¡ Key components of Transformer
§ (1) tokenizing
§ (2) positional encoding
§ (3) self-attention

https://arxiv.org/pdf/2011.08843.pdf

¡ Key components of Transformer
§ (1) tokenizing
§ (2) positional encoding
§ (3) self-attention

¡ A graph Transformer must take the
following inputs:
§ (1) Node features?
§ (2) Adjacency information?
§ (3) Edge features?

¡ There are many ways to do this
¡ Different approaches correspond to different

“matchings” between graph inputs (1), (2),
(3) transformer components (1), (2), (3)

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Today

https://arxiv.org/pdf/2011.08843.pdf

¡ Q1: what should our tokens be?
¡ Sensible Idea: node features = input tokens
¡ This matches the setting for the “attention is message passing

on the fully connected graph” observation

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

𝑧!

𝑥! 𝑥" 𝑥#

Transformer

OUTPUT

𝑥%𝑥$

𝑧" 𝑧# 𝑧%𝑧$START

?
(1) Input tokens = Node features

¡ Problem? We completely lose adjacency info!
¡ How to also inject adjacency information?

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020c

𝑧!

𝑥! 𝑥" 𝑥#

Transformer

(1) Input tokens = Node features

OUTPUT

𝑥%𝑥$

𝑧" 𝑧# 𝑧%𝑧$START

?

https://arxiv.org/pdf/2011.08843.pdf

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 45

¡ Idea: Encode adjacency info in the positional encoding for
each node

¡ Positional encoding describes where a node is in the graph

INPUT

(2) Positional encoding

𝑧!

Transformer

OUTPUT𝑧" 𝑧# 𝑧%𝑧$

+ + + + +

(1) Input tokens = Node features

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 46

INPUT

(2) Positional encoding

Q2: How to design
a good positional
encoding?

𝑧!

Transformer

OUTPUT𝑧" 𝑧# 𝑧%𝑧$

+ + + + +

(1) Input tokens = Node features

¡ Idea: Encode adjacency info in the positional encoding for
each node

¡ Positional encoding describes where a node is in the graph

¡ Last lecture: positional encoding
based on relative distances

¡ Similar methods based on
random walks

¡ This is a good idea! It works well
in many cases

¡ Especially strong for tasks that
require counting cycles

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 47

𝑠+ 𝑠, 𝑠-
𝑣+ 1 2 1
𝑣- 1 2 0

Relative Distances

𝑣+

𝑣-

𝑠+ 𝑠,

A

A

BA
B

BSize-2
Anchor-set

Anchor
𝑠-

Anchor 𝑠!, 𝑠" cannot differentiate
node 𝑣!, 𝑣#, but anchor-set 𝑠# can

=
Positional
encoding for
node 𝑣!

¡ Last lecture: Relative
distances useful for
position-aware task

¡ But not suited to
structure-aware tasks

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 48

𝑠+ 𝑠, 𝑠-
𝑣+ 1 2 1
𝑣- 1 2 0

Relative Distances

𝑣+

𝑣-

𝑠+ 𝑠,

A

A

BA
B

BSize-2
Anchor-set

Anchor
𝑠-

Anchor 𝑠!, 𝑠" cannot differentiate
node 𝑣!, 𝑣#, but anchor-set 𝑠# can

=
Positional
encoding for
node 𝑣!

!"
!#

A

A

B
A

A

B

!" !#A

A

BA B

B

¡ What other ways to make positional
encoding?

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 49

¡ What other ways to make positional encoding?

¡ Draw on knowledge of Graph Theory (many useful and
powerful tools)

¡ Key object: Laplacian Matrix L = Degrees - Adjacency
§ Each graph has its own Laplacian matrix
§ Laplacian encodes the graph structure
§ Several Laplacian variants that add degree information

differently

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 50

𝑣!

𝑣!

𝑣#

𝑣$

L =

1 0 0 0

0 2 0 0

0 0 2 0

0 0 0 1

0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

Degree of each node Adjacency

-

¡ Laplacian matrix captures graph structure

¡ Its eigenvectors inherit this structure

¡ This is important because eigenvectors are vectors (!) and so
can be fed into a Transformer

¡ Eigenvectors with small eigenvalue = global structure, large
eigenvalue = local symmetries

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 51

𝐿𝑣	 = 	λ𝑣𝑣
𝐿: 𝑛	×𝑛	

Eigenvector: such that

Refresher

𝑣: 𝑛
𝜆:

matrix

dimensional vector

Scalar eigenvalue

Visualize one eigenvector

¡ Positional encoding steps:
§ 1. compute 𝑘 eigenvectors 𝑣+, 𝑣,, 𝑣-
§ 2. Stack into matrix:
§ 3. 𝑖th row is positional
encoding for node 𝑖

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 52

(𝑘 = 3)

𝑛
nodes

𝑥! 𝑥" 𝑥#

Transformer𝑥+
𝑥,

𝑥- Node features

INPUT

+ + + + + + + +

Positional encoding
features

𝑥+

Row 𝑖

¡ Laplacian Eigenvector positional encodings can also be used
with message-passing GNNs
§ This helps for same reasons as structural and relative-distance based positional

encodings in previous lecture
10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 53

INPUT

(2) Positional
encoding

Transformer

+ + + + +

¡ Laplacian Matrix L = Degrees –
Adjacency

¡ f
¡ Positional encoding steps:

§ 1. compute 𝑘 eigenvectors 𝑣+, 𝑣,, 𝑣-
§ 2. Stack into matrix:
§ 3. 𝑖th row is positional
encoding for node 𝑖

𝐿𝑣	 = 	λ𝑣𝑣Eigenvector: such that

(𝑘 = 3)

𝑛
nodes

Row 𝑖

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 54

¡ Task: given a graph, predict YES if it has a cycle, NO
otherwise

¡ Recall, message-passing cannot solve this task!

¡ “PE” indicates using Laplacian Eigenvector Pos. Enc.

¡ Key components of Transformer
§ (1) tokenizing
§ (2) positional encoding
§ (3) self-attention

¡ A graph Transformer must take the
following inputs:
§ (1) Node features?
§ (2) Adjacency information?
§ (3) Edge features?

¡ There are many ways to do this
¡ Different approaches correspond to different

“matchings” between graph inputs (1), (2),
(3) transformer components (1), (2), (3)

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 55

S0 far

¡ Key components of Transformer
§ (1) tokenizing
§ (2) positional encoding
§ (3) self-attention

¡ A graph Transformer must take the
following inputs:
§ (1) Node features?
§ (2) Adjacency information?
§ (3) Edge features?

¡ There are many ways to do this
¡ Different approaches correspond to different

“matchings” between graph inputs (1), (2),
(3) transformer components (1), (2), (3)

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 56

Left to do

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 57

¡ Not clear how to add edge features in the tokens or positional encoding

¡ How about in the attention?

¡ is an n x n matrix. Entry describes “how much” token contributes
to the update of token

Do Transformers Really Perform Bad for Graph Representation? Ying et al. NeurIPS 2021

𝑎+0 = 𝑄𝐾, 𝑎+0 𝑗
𝑖

𝐴𝑡𝑡 𝑋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾, 𝑉

https://arxiv.org/abs/2106.05234

¡ Not clear how to add edge features in the tokens or positional encoding

¡ How about in the attention?

¡ is an n x n matrix. Entry describes “how much” token contributes
to the update of token

¡ Idea: adjust 𝒂𝒊𝒋 based on edge features. Replace with 𝒂𝒊𝒋 + 𝒄𝒊𝒋 where 𝒄𝒊𝒋
depends on the edge features

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 58

𝐴𝑡𝑡 𝑋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾, 𝑉

Do Transformers Really Perform Bad for Graph Representation? Ying et al. NeurIPS 2021

𝑎+0 = 𝑄𝐾, 𝑎+0 𝑗
𝑖

https://arxiv.org/abs/2106.05234

¡ Not clear how to add edge features in the tokens or positional encoding

¡ How about in the attention?

¡ is an n x n matrix. Entry describes “how much” token contributes
to the update of token

¡ Idea: adjust 𝒂𝒊𝒋 based on edge features. Replace with 𝒂𝒊𝒋 + 𝒄𝒊𝒋 where 𝒄𝒊𝒋
depends on the edge features

¡ Implementation:

§ If there is an edge between and with features 𝒆𝒊𝒋,	 define 𝒄𝒊𝒋 = 𝒘𝟏
𝑻𝒆𝒊𝒋

§ If there is no edge, find shortest edge path between and
𝒆𝟏, 𝒆𝟐, … 𝒆𝑵 	and define 𝒄𝒊𝒋 = ∑𝒏𝒘𝒏

𝑻𝒆𝒏

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 59

𝐴𝑡𝑡 𝑋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾, 𝑉

Do Transformers Really Perform Bad for Graph Representation? Ying et al. NeurIPS 2021

𝑎+0 = 𝑄𝐾, 𝑎+0 𝑗
𝑖

𝑖 𝑗
Learned parameters 𝒘𝟏

𝑖 𝑗

Learned parameters 𝒘𝟏, … , 𝒘𝑵

https://arxiv.org/abs/2106.05234

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 60

¡ (1) Tokenization
§ Usually node features
§ Other options, such as subgraphs, and node +

edge features (not discussed today)
¡ (2) Positional Encoding

§ Relative distances, or Laplacian eigenvectors
§ Gives Transformer adjacency structure of graph

¡ (3) Modified Attention
§ Reweight attention using edge features

(2) Positional
encoding

Transformer

OUTPUT

+ + + + +

(1) Input tokens

(3) Modified
Attention

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation
(1) Message

GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(5) Learning objective

(3) Layer connectivity

GNN design space Graph Transformer design space

(2) Positional
encoding

Transformer

+ + + + +

(1) Input tokens

(3) Modified
Attention

¡ Part 1:
§ Introducing Transformers
§ Relation to message passing GNNs

¡ Part 2:
§ A new design landscape for graph

Transformers
¡ Part 3:
§ Sign invariant Laplacian positional encodings

for graph Transformers

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 62

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 64

INPUT

(2) Positional
encoding

Transformer

+ + + + +

¡ Laplacian Matrix L = Degrees –
Adjacency

¡ f 𝐿𝑣	 = 	λ𝑣𝑣Eigenvector: such that

(𝑘 = 3)

𝑛
nodes

Row 𝑖

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 65

¡ Laplacian Eigenvector positional encodings work!

¡ But is this the best we can do?
§ Hint: no

¡ Q: What is the problem with the current approach?
§ A1: Eigenvectors are not arbitrary vectors
§ A2: They have special structure that we have been

ignoring!
¡ To use eigenvectors properly we must account

for their structure in our models

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 66

¡ Suppose 𝑣	is a Laplacian eigenvector
§ So

¡ But this means:
§ Also

¡ So −𝑣	is also a Laplacian eigenvector

𝐿𝑣	 = 	λ𝑣

𝐿(−𝑣) 	= 	λ(−𝑣)

The choice of sign is arbitrary!

¡ Both
¡ But when we use them as positional encodings

we pick one arbitrarily
¡ Why does this matter for positional encodings?

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 67

𝑣 and −𝑣 are eigenvectors

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

𝑥! 𝑥" 𝑥#

Transformer

+ + + + + + + +
𝑥+

𝑣!, 𝑣", 𝑣#

¡ Both
¡ But when we use them as positional encodings

we pick one arbitrarily
¡ Why does this matter for positional encodings?

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 68

𝑣 and −𝑣 are eigenvectors

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

𝑥! 𝑥" 𝑥#

Transformer

+ + + + + + + +
𝑥+

𝑣!, 𝑣", 𝑣#

¡ What if we
picked the
other sign?

¡ What if we picked the other sign choice?
¡ Then the input PE changes
¡ => The models predictions will change!
¡ For 𝑘 eigenvectors there are 2! 	sign	choices

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 69Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

𝑥! 𝑥" 𝑥#

Transformer

+ + + + + + + +
𝑥+

−𝒗𝟏𝑣", 𝑣# § 2, different
predictions
for the
same input
graph!

𝑣!

¡ Simple Idea: randomly flip the signs of
eigenvectors during training
§ I.e., data augmentation
§ Model will learn to not use the sign information
§ Issue: exponentially	many	sign	choices	is	very	
difficult	to	learn

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 70Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

¡ Better Idea: build a neural network that is
invariant to sign choices!
§ Since it is invariant, the predictions will no longer

depend on the sign choice

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 71Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

𝑥! 𝑥" 𝑥#

Transformer

+ + + + + + + +
𝑥+

−𝒗𝟏𝑣", 𝑣#

𝑣!

¡ Goal: design a neural network 𝑓(𝑣", 𝑣#, … 𝑣!)
such that:
§ 𝑓(𝑣-, 𝑣., … 𝑣,) = 𝑓(±𝑣-, ±𝑣., …±𝑣,) for all ± choices
§ 𝑓	is “expressive”: note that 𝑓(𝑣+, 𝑣., … 𝑣,) = 0 is sign

invariant… but it’s a terrible neural network
architecture

¡ Warmup: one eigenvector
§ What about 𝑓(𝑣-) such that 𝑓(𝑣+) = 𝑓(−𝑣-) ?

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 72Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

¡ Warmup: one eigenvector
¡ Goal: design a neural network 𝑓(𝑣-) such that

 𝑓(𝑣") = 𝑓(−𝑣")

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 73Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

¡ Warmup: one eigenvector
¡ Goal: design a neural network 𝑓(𝑣-) such that

 𝑓(𝑣") = 𝑓(−𝑣")
¡ Proposition: 𝑓 satisfies 𝑓(𝑣") = 𝑓(−𝑣") if and

only if there is a 𝜙 such that
 𝑓(𝑣") = 𝜙 𝑣" + 𝜙(−𝑣")

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 74Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

¡ Warmup: one eigenvector
¡ Goal: design a neural network 𝑓(𝑣-) such that

 𝑓(𝑣") = 𝑓(−𝑣")
¡ Proposition: 𝑓 satisfies 𝑓(𝑣") = 𝑓(−𝑣") if and

only if there is a 𝜙 such that
 𝑓(𝑣") = 𝜙 𝑣" + 𝜙(−𝑣")
Proof:
<=: If 𝑓(𝑣") = 𝜙 𝑣" + 𝜙(−𝑣"), then 𝑓(−𝑣") =
𝜙 −𝑣" + 𝜙 𝑣" = 𝑓(𝑣"),
=>: If 𝑓(𝑣") = 𝑓(−𝑣"), define 𝜙(𝑣") = 𝑓(𝑣")/2.
Then 𝜙 𝑣" + 𝜙 −𝑣" = 𝑓(𝑣")/2+𝑓(−𝑣")/2=𝑓(𝑣")

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 75Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

¡ Warmup: one eigenvector
¡ Goal: design a sign invariant neural network
𝑓(𝑣", 𝑣#, … 𝑣!) in two steps:
§ Step 1: sign invariant 𝑓/(𝑣/)	for each 𝑖
§ Step 2: COMBINE individual eigenvector embeddings

into one:
𝑓(𝑣-, 𝑣., … 𝑣,) = 𝐴𝐺𝐺(𝑓-(𝑣-), … , 𝑓,(𝑣,))

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 76Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

¡ Warmup: one eigenvector
¡ Goal: design a sign invariant neural network
𝑓(𝑣", 𝑣#, … 𝑣!) in two steps:
§ Step 1: sign invariant 𝑓/(𝑣/)	for each 𝑖
§ Step 2: COMBINE individual eigenvector embeddings

into one:
𝑓(𝑣-, 𝑣., … 𝑣,) = 𝐴𝐺𝐺(𝑓-(𝑣-), … , 𝑓,(𝑣,))

𝑓(𝑣", 𝑣#, … 𝑣!)
= 𝐴𝐺𝐺(𝜙"(𝑣"), +𝜙"(−𝑣"), … , 𝜙!(𝑣!), +𝜙!(−𝑣!))

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 77Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Use model for one eigenvector

Combine using another neural net 𝐴𝐺𝐺 = 𝜌

¡ Overall model:

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 79Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

𝑓(𝑣", 𝑣#, … 𝑣!)
= 𝜌(𝜙(𝑣"), +𝜙(−𝑣"), … , 𝜙(𝑣!), +𝜙(−𝑣!))

 SignNet𝜌, 𝜙 =	any neural network
(MLP, GNN etc.)

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 81Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

¡ Recall Goal: design a neural network 𝑓(𝑣!, 𝑣", … 𝑣#)
such that:
§ 𝑓(𝑣#, 𝑣$, … 𝑣%) = 𝑓(±𝑣#, ±𝑣$, …±𝑣%) for all ± choices

§ SignNet is sign invariant.
§ 𝑓	is “expressive”

§ Is SignNet expressive?

Theorem: if 𝑓	is sign invariant, then there
exist functions 𝜌, 𝜙 such that
𝑓(𝑣-, 𝑣., … 𝑣,)
= 𝜌(𝜙(𝑣-), +𝜙(−𝑣-), … , 𝜙(𝑣,), +𝜙(−𝑣,))

SignNet can express all sign invariant functions!!

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 83Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Adjacency
Matrix

Node
Features

Laplacian
Eigenvectors SignNet

Prediction
Model

(e.g. GNN,
Transformer)

Compute
Eigvecs

Input Graph Model

¡ How to use SignNet in practice?
§ Step 1: Compute eigenvectors
§ Step 2: get eigenvector embeddings using SignNet
§ Step 3: concatenate SignNet embeddings with node features X
§ Step 4: pass through main GNN/Transformer as usual.
§ Step 5: Backpropagate gradients to train SignNet + Prediction model jointly.

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 84Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

¡ Task: given a small molecule, predict its solubility

𝑓() =	solubulity
50% reduction in test error

¡ Part 1:
§ Transformers to message passing on fully

connected graph
¡ Part 2:
§ New design landscape for graph Transformers

§ Tokenization
§ Positional encoding
§ Modified self-attention

¡ Part 3:
§ Sign invariant Laplacian positional encodings

for graph Transformers
10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 85

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 86

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation
(1) Message

GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(5) Learning objective

(3) Layer connectivity

GNN design space Graph Transformer design space

¡ New design space for graph Transformers

(2) Positional
encoding

Transformer

+ + + + +

(1) Input tokens

(3) Modified
Attention

