Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site: hitp://cs224w.Stanford.edu

Stanford CS224W:
Graph Transformers

http://cs224w.stanford.edu/

Announcements

Homework 1 due today

Late submissions accepted until end of day
Monday, 10/21

Regrade request deadlines
Colab 1: Thursday, 10/24

Solutions and statistics released on Ed

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

J.You, R.Ying, J. Leskovec. , NeurlPS 2020c

Recap: A General GNN Framework

TARGET NODE

l

/

INPUT GRAPH

— Lo

(2) Aggregation

. GNN Layer 2

% & (1) Message

(3) Layer

connectlwty ‘ i | ...

GNN Layer1 _. »

(4) Graph augmentation

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

https://arxiv.org/pdf/2011.08843.pdf

J.You, R.Ying, J. Leskovec.

, NeurlPS 2020c

Recap: A General GNN Framework

We know a lot about the design space of GNNs
What does the corresponding design space for Graph

Transformers look like?

GNN design space

~

.
PPPPPPPPPPP

v ‘ “

GNN Layer 1

ﬂraph Transformer design spaA

(4) Graph augmentation

Qer connectivity

10/17/24

vec, Stanford CS224W: Machine Lear

ning with Graphs, http://cs224w.stanford.edu

o /

https://arxiv.org/pdf/2011.08843.pdf

Stanford CS224W:
Intro to Transformers

The Backbone of Generative Al

what is a transformer?

@ A Transformer is a type of deep learning model that has revolutionized the fields of natural
language processing (NLP) and beyond. It was introduced in the paper Attention is All You Need by

Vaswani et al. (2017). Here's a brief overview of its key components and concepts:
1. Self-Attention Mechanism:
¢ The core innovation of the Transformer is the self-attention mechanism, which allows the
model to weigh the importance of different parts of an input sequence when generating
representations. Unlike recurrent models (e.g., LSTMs), which process data sequentially,
the Transformer processes the entire input at once, using self-attention to capture
dependencies between distant parts of the sequence efficiently.

* In self-attention, each word (or token) in a sequence attends to all other words, learning

contextual representations that capture relationships regardless of position.
2. Encoder-Decoder Architecture:
* The original Transformer model has an encoder-decoder structure, though in practice,
models like BERT use just the encoder, and models like GPT use just the decoder.
« Encoder: Takes an input sequence and produces a contextualized representation.

« Decoder: Uses this representation, along with previously generated tokens, to

predict the next token in the output sequence.
3. Positional Encoding:
¢ Since Transformers don't inherently understand the order of tokens in a sequence (unlike
RNNs), positional encodings are added to input embeddings to provide information about

the position of each token in the sequence. These encodings allow the model to take into

account the order of words.
4. Multi-Head Attention:
+ Instead of calculating a single attention score, the Transformer uses multiple attention

"heads." Each head focuses on different aspects of the relationships between tokens, and

the results are combined, allowing the model to capture a wider range of interactions.
5. Feed-Forward Neural Networks:

« After the self-attention step, the Transformer applies feed-forward neural networks to the

output of the attention layers for further transformation.

Applications:

« Language Models: Transformers are the foundation for state-of-the-art models like BERT,
GPT, and T5.

« Vision: Vision Transformers (ViTs) apply similar mechanisms to image processing.
« Graphs: Transformers have also been adapted to graph representation learning, where they

model relationships between nodes.

Transformers have become one of the most important architectures in deep learning, particularly
for tasks that involve understanding or generating sequences of data.

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Goal: Bring Power of Transformers to Graphs

Small molecules

Communication networks

X

There is lots of multi-billon node/graph scale data to learn from

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 7

Plan for Today

Part 1:
Introducing Transformers

Relation to message passing GNNs
Part 2:

A new design landscape for graph
Transformers
Part 3 (time permitting):

Sign invariant Laplacian positional encodings
for graph Transformers

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 8

Stanford CS224W:
Transformers

Transformers Ingest Tokens

Transformers map 1D sequences of vectors to 1D sequences
of vectors

OUTPUT

(- h

Transformer

J

_

— — Tokens
=) &)) B 6D B
The cat sat on the mat and sang

PUT

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 10

Transformers Ingest Tokens

Transformers map 1D sequences of vectors to 1D sequences
of vectors known as tokens

Tokens describe a ”piece” of data — e.g., a word

What output sequence?

Option 1: next token => GPT
Next token

cat sat on the mat and sang

OUTPUT mmemmaea® C
4 N\

Transformer
_ Yy,

TEKEEZZE/TOkenS

The cat satI on the mat and sang

NPUT

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 11

Transformers Ingest Tokens

Transformers map 1D sequences of vectors to 1D sequences of vectors
known as tokens

Tokens describe a "piece” of data — e.g., a word

What output sequence?
Option 1: next token => GPT
Option 2: pool (e.g., sum-pool) to get sequence level-embedding (e.g., for

classification task) Sum pool

OUTPUT 7

Al

Transformer

p / Tokens
The cat sat on the mat and sang

INPUT

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 12

Transformer Blueprint

Output
? Probtat‘))itlljties
How are tokens processed?
Lots of components p \
. .
Normalization Food
Forward
Feed forward networks S
. . . /7 1 N Add & Norm
Positional encoding (more later)) | Mult-Head
eed Attention
o e Forward Nx
Multi-head self-attention R
Nx | —»(7Add & Norm } Adhj:;':gm
Multi-Head Multi-Head
° Attention Attention
- [}) A J)
What doss self-attention \ JA J
Positional siti
bIOCk do H Er(w)?ogn]wg @_(_;) @ Es:gglr;zl
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 13

Self-attention

Before “multi-head” self-attention, what is
“single head” self-attention?

C | |]
i i
LT T LT

See: lllustrated Transformer tutorial, https://jalammar.github.io/illustrated-transformer/
10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 14

https://jalammar.github.io/illustrated-transformer/

Self-attention

Step 1: compute “key, value, query” for each input

Step 1 Model
e parameters
Embedding CLTT] LITTT] ’
Queries [][j:] [:[:[]
Keys [:I:I:] [:I:I:]

Values [:I:I:] [:I:I:]

See: lllustrated Transformer tutorial, https://jalammar.github.io/illustrated-transformer/
10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 15

https://jalammar.github.io/illustrated-transformer/

Self-attention

Step 1: compute “key, value, query” for each input
Step 2 (just for x4): compute scores between pairs, turn into
probabilities (same for x5)

Step 1 Model Step 2
npu parameters ..
Embedding \:l:l:l:l D:l:l:l ’
Embedding [T T 1] CTT 1]
Queries [T [T Queries D:]:] D:]:]
Keys Djj Djj
Keys (1T [T 1] Values Djj Dj]
J' Score *ki= *Re=
Values (IT] [T Divide by 8 (/d.)
(num heads)
Softmax

See: lllustrated Transformer tutorial, https://jalammar.github.io/illustrated-transformer/
10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 16

https://jalammar.github.io/illustrated-transformer/

Self-attention

Step 1: compute “key, value, query” for each input
Step 2 (just for x;): compute scores between pairs, turn into

probabilities (same for x5)
Step 3: get new embedding z; by weighted sum of v, v,

Step1 Step 2
Input Input
Embedding 111 CTTT]
Embedding
Queries [T (1T Queries
Keys
Key [T LI Values
Score
val [T1] [T Divide by 8 (/d;)
Softmax
Softmax
Step 3 i
z;1 =0.88v; +0.12v, —

10/17/24

[T

[TT]

[T 1]

See: lllustrated Transformer tutorial, https://jalammar.github.io/illustrated-transformer/

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

17

https://jalammar.github.io/illustrated-transformer/

Self-attention

Same calculation in matrix form

Step1
Smm—
** (r f)
Step 2
softmax()
\. Vi y
\) Step 3 /
—/
Model
parameters

See: lllustrated Transformer tutorial, https://jalammar.github.io/illustrated-transformer/
10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 18

https://jalammar.github.io/illustrated-transformer/

Multi-head self-attention

Do many self-attentions in parallel, and combine
Different heads can learn different “similarities” between

inputs

S

* In all encoders other than #0,

we don't need embedding.

We start directly with the output
of the encoder right below this one

10/17/24 Jure Leskovec,

4)

fl

B\ Y

See: lllustrated Transformer tutorial, https://jalammar.github.io/illustrated-transformer/
Stanford CS224W: Machine Learning with Graphs 19

https://jalammar.github.io/illustrated-transformer/

Comparing Transformers and GNN

Similarity: GNNs also take in a sequence of vectors (in no
particular order) and output a sequence of embeddings
Difference: GNNs use message passing, Transformer

uses self-attention

BN
N

, OUTPUT

N -
"o
@ (-

GNN

.

Xy —
.@ X1 Z
e

X3

Ol

Node
embeddings

Node features

E—
=
N

INPUT

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

20

Comparing Transformers and GNN

Difference: GNNs use message passing, Transformer
uses self-attention
Are self-attention and message passing really different?

- Vs. :
Message Passing Self-attention
- [-6
|
Bl - HH
%v:& L T
. | . softmax(x)
L ARAR va
& Prunralit &

L mer o @
009

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 21

Stanford CS224W:
Self-attention vs.
message passing

Interpreting the Self-Attention Update

Recall Formula for attention update: Inputs stored row-wise

Att(X) = softmax(QKT)V Y — ‘ \
= Xi

OUTPUT
Z1 Zp Z3 Z4 Zs
~ N
Transformer
_ Y,
X1 Xy X3 X4 @ Xs

Input tokens

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 23

Interpreting the Self-Attention Update

Recall Formula for attention update: Inputs stored row-wise

Att(X) = softmax(QKT)V Y — ‘ \
= Xi

. . | OUTPUT
This formula gives the embedding for all 2 oz, 73 za 2
tokens simultaneously Y e (e o g
What if we simplify to just token X1? — = = = =
(-)
Transformer
\. J
X1 X2 X3 Xg4 Xs

Input tokens

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 24

Interpreting the Self-Attention Update

Recall Formula for attention update: Inputs stored row-wise

Att(X) = softmax(QKT)V Y — ‘ \
= Xi

. . . OUTPUT
This formula gives the embedding for all 2 7, 73 7. 1z
tokens simultaneously —
What if we simplify to just token x;? —_— et d e
4)
; Transf
Z1 = Z SOftmaxj(qlTkj)vj How to interpret this? ranstormer
j=1 L)
x1 xz X3 X4_ XS

Input tokens

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 25

Interpreting the Self-Attention Update

Inputs stored row-wise
Att(X) = softmax(QKT)V ¥ = []

Q =XWQeK=XWKvVv=xwv

This formula gives the embedding for all
tokens simultaneously
If we simplify to just tokenX1 what does

the update look like?
5

7, = Z softmax; (qlTkj)vj How to interpret this?
j=1
Steps for computing new embedding for token 1:
1. Compute message from j: (vj, kj) - Mgg(xj) = (WVx;, WKx))
2. Compute query for 1: g, = MSG(xy) = W%, o
3. Aggregate all messages: Agg(q,, {MSG(x;):j}) = Z softmax;(q1 k;)v;

Jj=1

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 26

Self-Attention as Message Passing

Takeaway: Self-attention can be written as message +
aggregation —i.e., it is a GNN!
But so far there is no graph — just tokens.
So what graph is this a GNN on?
Clearly tokens = nodes, but what are the edges?
Key observation:
Token 1 depends on (receives “messages” from) all other tokens

=» the graph is fully connected!
Alternatively: if you only sum over j € N(i) you get “GAT
5

Z, = Z softmax;(q1 k;)v;

j=1

Steps for computing new embedding for token 1:
1. Compute message from j: (v, k;) = MSG(x;) = (W"x;, W¥x;)
2. Compute query for 1: 1 = MSG(x1) = Wx; =
3. Aggregate all messages: Agg (a1 {MSG(x;):j}) = z softmax;(qi k;)v;

Jj=1

J

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 27

Self-Attention as Message Passing

Takeaway 1: Self-attention is a special case of
message passing

Takeaway 2: It is message passing on the fully
connected graph

Takeaway 3: Given a graph G, if you constrain the
self-attention softmax to only be over j adjacent
to i nodes, you get ~GAT!

Steps for computing new embedding for token 1:
1. Compute message from j: (v, k;) = MSG(x;) = (W"x;, W¥x;)
2. Compute query for 1: 1 = MSG(x1) = Wx; =
3. Aggregate all messages: Agg (a1 {MSG(x;):j}) = z softmax;(qi k;)v;

]_1 4

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

28

Plan for Today

Part 1:
Introducing Transformers

Relation to message passing GNNs
Part 2:

A new design landscape for graph
Transformers
Part 3 (Time-permitting):

Sign invariant Laplacian positional encodings
for graph Transformers

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 29

Stanford CS224W:
A New Design Landscape
for Graph Transformers

J.You, R.Ying, J. Leskovec.

, NeurlPS 2020c

Recap: A General GNN Framework

We know a lot about the design space of GNNs
What does the corresponding design space for Graph

Transformers look like?

GNN design space

~

.
PPPPPPPPPPP

v ‘ “

GNN Layer 1

ﬂraph Transformer design spaA

(4) Graph augmentation

Qer connectivity

10/17/24

vec, Stanford CS224W: Machine Lear

ning with Graphs, http://cs224w.stanford.edu

o /

31

https://arxiv.org/pdf/2011.08843.pdf

Processing Graphs with Transformers

We start with graph(s)
How to input a graph into a Transformer?

OUTPUT
START

- p .

H Transformer

= .'> Soo0o0

H X1 X2 X3 X4

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

J.You, R.Ying, J. Leskovec. , NeurlPS 2020c

Components of a Transformer

To understand how to process
graphs with Transformers we

must:

Understand the key components of OUTPUT

the Transformer. Seen already: — A
1) tokenizing, - ~
2) self-attention Transformer

Decide how to make suitable graph (2) Attention module

versions of each _ — _)

)) U "

X1 X2 X3 X4

(1) Input tokens

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

https://arxiv.org/pdf/2011.08843.pdf

A final key piece: token ordering

There is one other key missing piece we have not yet
discussed...

A final key piece: token ordering

There is one other key missing piece we have not yet
discussed ...

5
First recall update formula ; - Z softmax;(qTk;)v;

j=1

Key Observation: order of tokens does not matter!!!

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

A final key piece: token ordering

There is one other key missing piece we have not yet
discussed ...

5
First recall update formula ; - Z softmax;(qTk;)v;

j=1

Key Observation: order of tokens does not matter!!!

Outputs swap, but do not otherwise change

(2 (2] (z) (2] (=) (20 B () | (=) (&) (=) (2] (25 (o) () (2]
4 N)
Transformer Transformer
. J \. J
5 6 (B e 6D G |G) G () B k) b Be
The cat sat on the mat and sang cat The sat on the mat and sang

Swap tokens 1 and 2

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

A final key piece: Token ordering

This is a problem
Same predictions no matter what order the words are in!

(A “bag of words” prediction model)...

How to fix?

Identical outputs

Sum pool
/f.T\

2] (2z2) (2] [z zg) [z7]) (2]
4)
Transformer
. Yy
x1) [x2) (x3) [*a) (x5) F6) b7) (s
The cat sat on the mat and sang

10/17/24

Sum pool

T —

.

23] (2] (23] (2 (z5) (zd) (2] [z
(é

Transformer
YV,
(%5) [x1) [*3) (%4 (s) ke) b7) (s]
cat The sat on the mat and sang

Swap tokens 1 and 2

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

37

Positional Encodings

Transformer doesn’t
know order of inputs

ENCODER #1

4

A

Extra positional features C
needed so it knows that ;
Je=word 1,
suis = word 2 (

ENCODER #0

N AN

etc. \

For NLP, positional
encoding vectors are “WITH TIME

SIGNAL LT T 1]
learnable parameters -

POSITIONAL ‘ 1 ‘
ENCODING

EMBEDDINGS LT TT]

INPUT

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

38

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

Components of a Transformer

Key components of Transformer

fli tokenizing How to chose these
2) positional encoding
(3) self-attention for graph data?

Key question: What should these be for a graph input?

4)

Transformer
(3) self-attention

. J .
—) —J I JJ LI I LI encoding
+ + + + + + + +
) () G X (1) Tokens

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

https://arxiv.org/pdf/2011.08843.pdf

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

Processing Graphs with Transformers

A graph Transformer must take the

following inputs: Key components of Transformer
(1) Node features? (1) tokenizing
(2) Adjacency information?
(3) Edge features?

(2) positional encoding

=

(3) self-attention

i

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

https://arxiv.org/pdf/2011.08843.pdf

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

Processing Graphs with Transformers

A graph Transformer must take the
foIIowing inputs: Key components of Transformer

(1) Node features? (1) tokenizing
(2) Adjacency information?
(3) Edge features?

(2) positional encoding

=

(3) self-attention

=
There are many ways to do this
Different approaches correspond to different i
“matchings” between graph inputs (1), (2), H
(3) transformer components (1), (2), (3)

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

https://arxiv.org/pdf/2011.08843.pdf

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

Processing Graphs with Transformers

A graph Transformer must take the
foIIowing inputs: Key components of Transformer

(1) Node features?+ N g; tOlesz g
positional encoding
(2) Adjacency information? —

— " (3) self-attention

Today H

=
There are many ways to do this
Different approaches correspond to different i
“matchings” between graph inputs (1), (2), H
(3) transformer components (1), (2), (3)

(3) Edge features? «

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

https://arxiv.org/pdf/2011.08843.pdf

Nodes as Tokens

Q1: what should our tokens be?

Sensible Idea: node features = input tokens

This matches the setting for the “attention is message passing
on the fully connected graph” observation

OUTPUT
START Zy Zy Z3z Zy4 Zs
= —
H Transformer
P

4 — gggia’

(1) Input tokens = Node features

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

J.You, R.Ying, J. Leskovec.

, NeurlPS 2020c

Processing Graphs with Transformers

Problem? We completely lose adjacency info!
How to also inject adjacency information?

OUTPUT
START 2y 7 73 74

Zs

H 4)

H Transformer

?

4 — gggia’

(1) Input tokens = Node features

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

44

https://arxiv.org/pdf/2011.08843.pdf

How to Add Back Adjacency Info?

Idea: Encode adjacency info in the positional encoding for
each node

Positional encoding describes where a node is in the graph

z 7z 7 OUTPUT

Zy

Zq
7

~\

Transformer

H i H i i (2) Positional encoding
= BEEEE

1) Input tokens = Node features
= INPUT @IP

How to Add Back Adjacency Info?

Idea: Encode adjacency info in the positional encoding for
each node
Positional encoding describes where a node is in the graph

Q2: How to design
a good positional
encoding?

z 7z 7 OUTPUT

2

Al
e

~\

Transformer

= H rr i (2 Positional encodling
= gECEE

1) Input tokens = Node features
= INPUT () Inp

10/17/24 Jure Leskovec, Stanford CS224W: Machin ing with Graphs

Option 1: relative distances

Last lecture: positional encoding
based on relative distances

Similar methods based on
random walks

This is a good idea! It works well
In many cases

Anchor-set

Especially strong for tasks that

require counting cycles Relative Distances

51 | 52 | S3
Positional
encoding for H = V4 1
node v,
V3 0

Anchor s¢, s, cannot differentiate
node v4, V3, but anchor-set s5 can

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 47

Option 1: Relative distances

Last lecture: Relative
distances useful for
position-aware task

Anchor-set

But not suited to

Relative Distances
structure-aware tasks

51 | 52 | S3
Positional
encoding for H = U1 1
node v,
V3 0

Anchor s¢, s, cannot differentiate
node v4, V3, but anchor-set s5 can

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 48

Option 2: Laplacian Eigenvector Positional

Encodings

What other ways to make positional
encoding?

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 49

Laplacian Eigenvector Positional Encodings

What other ways to make positional encoding?

Draw on knowledge of Graph Theory (many useful and
powerful tools)

Key object: Laplacian Matrix L = Degrees - Adjacency
Each graph has its own Laplacian matrix
Laplacian encodes the graph structure

1 |0 |o |oO o1 |o |0
@ @ I-_0200 _ 1 (o |1 |o
- o (o |2 |o O |1 |o |12
O |o |o |1 o |o |1 |o
(v) (V4

Degree of each node Adjacency

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 50

Laplacian Eigenvector Positional Encodings

Laplacian matrix captures graph structure
Its eigenvectors inherit this structure

This is important because eigenvectors are vectors (!) and so
can be fed into a Transformer

Eigenvectors with small eigenvalue = global structure, large

eigenvalue = local symmetries
Visualize one eigenvector

Refresher “911 = 0.037 " 5 A, =01 l"’ Eigenvector ¢
o 0% °) Pe Y colormap
‘Eigenvector: Vsuchthat L = Av ‘ .f: | Lol P WP } e |
L:n XN matrix mﬁl-o SR ;ﬁo . 0
V. N dimensional vector g8 O S e -
'\ A \.‘ max

A: Scalar eigenvalue

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 51

Laplacian Eigenvector Positional Encodings

Positional encoding steps:

1. compute k eigenvectors vy, v,, U3

: . k=3
2. Stack into matrix: | ()
3. ith row is positional "
nodes \ | Row:
encoding for node i \
4 N
@ Transformer
x)
() I
))) U UL LX) L) L

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

— Positional encoding
—Jfeatures

Node features

52

Summary: Laplacian Eigenvector Positional Encodings

Laplacian Matrix L = Degrees — g h
Adjacency Transformer
‘Eigenvector: VU suchthat LV = AV . J

— . Positional
Positional encoding steps: frfcoﬁ'n;ona i H i i
1. compute k eigenvectors vq, V5, V3 (k = 3 A
| | Ar T /EHB RA
2. Stack into matrix:
3. ith row is positional INPUT

.] n Row i
encoding for node i nodes

'
Laplacian Eigenvector positional encodings can also be used
with message-passing GNNs

This helps for same reasons as structural and relative-distance based positional
encodings in previous lecture

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 53

Laplacian Eigenvectors in Practice

Task: given a graph, predict YES if it has a cycle, NO
otherwise
Recall, message-passing cannot solve this task!

“PE” indicates using Laplacian Eigenvector Pos. Enc.

Train samples — | 200 | 500 | 1000 | 5000
Model | L | #Param Test Accts.d.
GIN | 4 | 100774 | 70.585+0.636 | 74.995+1.226 | 78.083+1.083 | 86.1301.140
GIN-PE | 4 | 102864 | 86.720+3.376 | 95.960-+0.393 | 97.998+0.300 | 99.570-+0.089
GatedGCN | 4 | 103933 | 50.000+0.000 | 50.000£0.000 | 50.000+0.000 | 50.0000.000
GatedGCN-PE | 4 | 105263 | 95.082+0.346 | 96.700+0.381 | 98.230+0.473 | 99.725+0.027

10/17/24

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

54

Processing Graphs with Transformers

A graph Transformer must take the
foIIowing inputs: Key components of Transformer

(1) Node features?+ N :;; tOlesz g
positional encoding
(2) Adjacency information? —

(3) self-attention

3) Edge features?
(3) Edg So far H

There are many ways to do this
Different approaches correspond to different i
“matchings” between graph inputs (1), (2), H

(3) transformer components (1), (2), (3)

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 55

Processing Graphs with Transformers

A graph Transformer must take the

fol Iowing inputs: Key components of Transformer
— = (1) tokenizing

(1) Node features?+ - .
(2) positional encoding

(2) Adjacency information? 3) self-att@
(‘B’) Edge features? Left to do H

=
There are many ways to do this
Different approaches correspond to different i
“matchings” between graph inputs (1), (2), H
(3) transformer components (1), (2), (3)

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 56

Edge Features in Self-Attention

Not clear how to add edge features in the tokens or positional encoding
How about in the attention? Att(X) = softmax(QKT)V

[aij] = QK" s an n x n matrix. Entry a;; describes “how much” token j contributes
to the update of token i

Do Transformers Really Perform Bad for Graph Representation?Ying et al. NeurlPS 2021

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 57

https://arxiv.org/abs/2106.05234

Edge Features in Self-Attention

Not clear how to add edge features in the tokens or positional encoding
How about in the attention? Att(X) = softmax(QKT)V

[aij] = QK" s an n x n matrix. Entry a;; describes “how much” token j contributes
to the update of token i

Idea: adjust a;; based on edge features. Replace with a;; + c;; where c;;
depends on the edge features

Do Transformers Really Perform Bad for Graph Representation?Ying et al. NeurlPS 2021

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 58

https://arxiv.org/abs/2106.05234

Edge Features in Self-Attention

Not clear how to add edge features in the tokens or positional encoding
How about in the attention? Att(X) = softmax(QKT)V

[aij] = QK" s an n x n matrix. Entry a;; describes “how much” token j contributes
to the update of token i

Idea: adjust a;; based on edge features. Replace with a;; + c;; where c;;
depends on the edge features

Implementation: Learned parameters w;

If there is an edge between ; and j with features e;;, define ¢;; = w{eij

If there is no edge, find shortest edge path between i and j
(el, €%, ...e") and define ¢;; = X, wye”

Learned parameters wq, ..., Wy

Do Transformers Really Perform Bad for Graph Representation?Ying et al. NeurlPS 2021

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 59

https://arxiv.org/abs/2106.05234

Summary: Graph Transformer Design Space

(1) Tokenization
Usually node features

Other options, such as subgraphs, and node +
edge features (not discussed today) OUTPUT

(2) Positional Encoding

JU

Relative distances, or Laplacian eigenvectors -

Gives Transformer adjacency structure of graph Transformer
(3) Modified Attention (3) Modified
Attention

Reweight attention using edge features

. gmwmﬁﬂﬁﬂﬂ
- EEFE

(1) Input tokens

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 60

Summary: Graph Transformer Design Space

ﬂraph Transformer de5|gn spaA

(" B
Transformer
5 (3) Modified
: Attention
oo ‘ “ (Z)POSItlonal H i H i i
GNN Layérz L ' encoding

a) Layé}"cBHHEé't'u'\;H :c;‘ i H H i H

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

Plan for Today

Part 1:
Introducing Transformers

Relation to message passing GNNs
Part 2:

A new design landscape for graph
Transformers
Part 3:

Sign invariant Laplacian positional encodings
for graph Transformers

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 62

Stanford CS224W: Powerful
Positional Encodings for
Graph Transformers

Recall: Laplacian Eigenvector Positional Encodings

Laplacian Matrix L = Degrees —
Adjacency

‘Eigenvector: VU suchthat L = Av ‘

.

Transformer

(2) Positional

encoding

Row i

nodes

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Tl

S CEEIT

INPUT

64

Laplacian Eigenvector Positional Encodings

Laplacian Eigenvector positional encodings work!

But is this the best we can do?
Hint: no

Q: What is the problem with the current approach?
Al: Eigenvectors are not arbitrary vectors

A2: They have special structure that we have been
ignoring!
To use eigenvectors properly we must account
for their structure in our models

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 65

Eigenvector Sign Ambiguity

Suppose v is a Laplacian eigenvector 4
so Lv = Av
But this means: > >
Also L(—v) = A(—v)
—Vi.
So —v is also a Laplacian eigenvector .~ v

The choice of sign is arbitrary!

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 66

Sign Ambiguity is a Problem

Both v and —v are eigenvectors
But when we use them as positional encodings

we pick one arbitrarily
Why does this matter for positional encodings?

e e V1, Uy, U3

(________
Transformer

\————————

o+ o+ o+ o+ o+ o+ o+

L) kOO0 XEAC

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 67

Sign Ambiguity is a Problem

Both v and —v are eigenvectors

But when we use them as positional encodings
we pick one arbitrarily

Why does this matter for positional encodings?

C IV CYTC Y1y U1, V2, V3
What if we —JJ UJUuUJ U
picked the
other sign? Transformer

_ Y e W e N e N e N am 0 e

T+ o+ o+ o+

() (=) O EEOC

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 68

Sign Ambiguity is a Problem

What if we picked the other sign choice?
Then the input PE changes

=> The models predictions will change!

For k eigenvectors there are 2% sign choices

%1

2k different e D
predictions - - = = = =
for the

same input
graph! \

(

Transformer

+ +

() (2] (2

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 69

U

U+U
U-U

U-U
U-+U

&+U

How to fix sign ambiguity

Simple Idea: randomly flip the signs of
eigenvectors during training

l.e., data augmentation
Model will learn to not use the sign information

Issue: exponentially many sign choices is very
difficult to learn

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 70

How to fix sign ambiguity

Better Idea: build a neural network that is
invariant to sign choices!

Since it is invariant, the predictions will no longer
depend on the sign choice

%1
-
Transformer
_
v+ o+ o+ o+ o+ 44
EA JOOAC

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 71

Sign Invariant Neural Networks

Goal: design a neural network f (v, V5, ... V)
such that:
f(vq,v,,...0%) = f(FV1, £V,, ... £V}) for all & choices

[is “expressive”: note that f (v, V3, ... V) = 0 is sign
invariant... but it’s a terrible neural network
architecture

Warmup: one eigenvector
What about f (v;) such that f(v,) = f(—v;) ?

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 72

Sign Invariant Neural Networks

Warmup: one eigenvector
Goal: design a neural network f(v,) such that

f (1) =f(—v1)

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 73

Sign Invariant Neural Networks

Warmup: one eigenvector

Goal: design a neural network f(v;) such that
f(v) = f(=v;)

Proposition: f satisfies f(v;) = f (—v,) ifand

only if there is a ¢ such that

f(w) = dwy) + p(—vy)

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Sign Invariant Neural Networks

Warmup: one eigenvector
Goal: design a neural network f(v,) such that

fw)=f(=v)
Proposition: f satisfies f(v;) = f (—v,) ifand

only if there is a ¢ such that

f(w) = dwy) + p(—vy)

Proof:

<=:1f f(v1) = ¢(v1) + ¢(—vy), then f(—v,) =
d(—vy) + p(vy) = f(vy),

=>:1f f(v1) = f(—v,), define ¢ (v1) = f(v1)/2.
Then ¢p(v1) + ¢p(—vy) = f(v1)/2+f (—v1)/2=f (V1)

e Learning w

Sign Invariant Neural Networks

Warmup: one eigenvector
Goal: design a sign invariant neural network
f(vq,V,,...V;) in two steps:

Step 1: sign invariant f;(v;) for each i

[V, v, .. vx) = AGG(f1(V1), -, [(Vi)

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 76

Sign Invariant Neural Networks

Warmup: one eigenvector
Goal: design a sign invariant neural network
f(vq,V,,...V;) in two steps:

Step 1: sign invariant f;(v;) for each i

f (1, V2, . v) = AGG(f1 (V1)) -0 fire(Vk))

Use model for one eigenvector
f V1, V2, ... V)

= AGG(P1(V1), 1 (V1)) o) G (Vi) + i (—Vk))

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 77

Sign Invariant Neural Networks

Overall model:

f V1, V2, ... V)

= p(p 1), +P(—v1), ..., p(Wie), +P (— Vi)

p, ¢ = any neural network SignNet
(MLP, GNN etc.)

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Sign Invariant Neural Networks

Recall Goal: design a neural network [(v, v,, ... V)
such that:

f (v, Vs, ...%) = f(£Vq, XV,, ... £V}) for all & choices
SignNet is sign invariant.

f is “expressive”
Is SignNet expressive?

Theorem: if f is sign invariant, then there
exist functions p, ¢ such that

f V1, V2, .. V)

= p((1), +¢(—v1), .., D(Wi), +B(—Vi))

SignNet can express all sign invariant functions!!

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 81

SignNet in practice

How to use SignNet in practice?
Step 1: Compute eigenvectors
Step 2: get eigenvector embeddings using SignNet
Step 3: concatenate SignNet embeddings with node features X
Step 4: pass through main GNN/Transformer as usual.
Step 5: Backpropagate gradients to train SignNet + Prediction model jointly.

Input Graph Model
| |
N/ Adjacency A >
—_ ‘> / Matrix
- nn Prediction
Compute Node Model
Eigvecs Features X >
nxd (e.g. GNN,
Transformer)
\ l. Laplacian
— Eigenvectors 1/ F
Sk —» SignNet
\\./ p([¢(vi) + ¢(—vi)li=1,..k) GNN(4, [X, SignNet(V)])

10/17/24

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

83

Small molecule property prediction with SignNet

Task: given a small molecule, predict its solubility

f(~o) = solubulity

222222

50% reduction in test error
Sign invariant network 1 M

Laplacian positional encoding

No positional encoding

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

Mean Absolute Error

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 84

Plan for Today

Part 1:

Transformers to message passing on fully
connected graph
Part 2:

New design landscape for graph Transformers

Tokenization
Positional encoding

Modified self-attention
Part 3:

Sign invariant Laplacian positional encodings
for graph Transformers

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 85

Summary: Graph Transformer Design Space

New design space for graph Transformers

ﬂraph Transformer de5|gn spaA

(" B
Transformer
5 (3) Modified
: Attention
oo ‘ “ (2) Positional H i H i i
GNN Layer 2 ' encoding

a) Layé}"cBHHEé't'u'\;H :c;‘ i H H i H

10/17/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 86

