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¡ Homework 1 due Thursday, 10/17
§ Late submissions accepted until end of day 

Monday, 10/21
¡ Project Proposal due Tuesday, 10/22
¡ Colab 2 due Thursday, 10/24
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¡ Move recitation time
We will host our recitations in the evenings from now on 
to accommodate remote students. Recordings are also 
available via Ed posts.

¡ Clarification on project feedbacks
After project proposal, you will be assigned a TA to 
mentor your project for detailed feedbacks.

¡ Lecture pace
We will slow down the pace.

¡ Individual questions around lecture content
Please come to OH for in-depth QA.
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¡ A thought experiment: What should a perfect 
GNN do?
§ A 𝑘-layer GNN embeds a node based on the 𝐾-hop 

neighborhood structure

§ A perfect GNN should build an injective function 
between neighborhood structure (regardless of 
hops) and node embeddings
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¡ For a perfect GNN (ignore node attributes for now):
§ Observation 1: If two nodes have the same neighborhood 

structure, they must have the same embedding

§ Observation 2: If two nodes have different neighborhood 
structure, they must have different embeddings
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𝑣! 𝑣"

𝑣#

ℎ!$ = ℎ!%

ℎ!$ ≠ ℎ!&𝑣!

(Considering that attributes 
of all nodes are the same)



¡ Observation 2 often cannot be satisfied:
§ The GNNs we have introduced so far are not perfect
§ In previous lecture, we discussed that their expressive 

power is upper bounded by the WL test
§ For example, message passing GNNs cannot count the 

cycle length:
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𝑣! 𝑣"

𝑣! resides in a cycle 
with length 3

𝑣" resides in a cycle 
with length 4

…

!!

The computational graphs 
for nodes 𝒗𝟏 and 𝒗𝟐 are 
always the same

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

(ignoring node attributes)

Identity-aware%20Graph%20Neural%20Networks


¡ Observation 1 could also have issues:
§ Even though two nodes may have the same neighborhood 

structure, we may want to assign different embeddings to them
§ Because these nodes appear in different positions in the graph
§ We call these tasks Position-aware tasks
§ Even a perfect GNN will fail for these tasks:
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𝑣"

𝑣#

𝑣"

𝑣#

A grid graph NYC road network

J. You, R. Ying, J. Leskovec. Postion-aware Graph Neural Networks, ICML 2019

https://arxiv.org/abs/1906.04817


We will resolve both issues by building more 
expressive GNNs
¡ Fix issues in Observation 2:
§ Build message passing GNNs that are more 

expressive than WL test
§ Example method: Structurally-aware GNNs

¡ Fix issues in Observation 1:
§ Create node embeddings based on their positions 

in the graph
§ Example method: Position-aware GNNs
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¡ GNNs exhibit three levels of failure cases in 
structure-aware tasks:
§ Node level
§ Edge level
§ Graph level
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for 𝑣! and 𝑣"
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Existing GNNs’ 
computational 
graphs

A B
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for each node

=
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Different Inputs but the same computational graph à GNN fails

For each node: For each node:



¡ The WL kernel colors inherit the graph symmetries.

¡ Symmetric colors are associated with limitations involving 
the spectral decomposition of the graph.
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¡ Recall the GIN update:

§ We can unroll the first MLP layer:

§     denotes all the MLP layers except the first. 
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¡ Recall the GIN update:

§ We can unroll the first MLP layer:

§ We can write the color update in a matrix form:

§  
§ Where 𝐴𝜖{0,1}"×" is the adjacency matrix of the graph, i.e., 𝐴 𝑢, 𝑣 = 1 

if (u,v) is an edge and 𝐴 𝑢, 𝑣 = 0 if (u,v) is not an edge.
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¡ Let's compute the eigenvalue decomposition of the graph 
adjacency matrix A. 

¡                           is the orthonormal matrix of eigenvectors
¡ I  is the diagonal matrix  of eigenvalues            

§ The eigenvalue (spectral) decomposition of the adjacency is a 
universal characterization of the graph.

§ Different graphs have different spectral decompositions
§ The number of cycles in a graph can be viewed as functions of 

eigenvalues and eigenvectors, e.g.,
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¡ We can interpret GIN layers as MLPs operating on the 
eigenvectors:

¡ If we replace A with the spectral decomposition

¡ The weights of the first MLP layer depend on the eigenvalues and the dot 
product between the eigenvectors and the colors at the previous level.
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¡ We can interpret GIN layers as MLPs operating on the 
eigenvectors:

¡ If we zoom in

¡ The new node colors only depend on the eigenvectors that are not 
orthogonal to 1.

¡ Graphs with symmetries admit eigenvectors orthogonal to 1.
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¡ The WL kernel cannot distinguish between some 
basic graph structures, e.g.,
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¡ The WL kernel cannot count basic graph 
structures:
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¡ Summary: The limitations of the WL kernel 
are limitations of the initial node color.
§ These limitations are well understood in the 

spectral domain.
§ Constant node colorings are orthogonal with adjacency 

eigenvectors and critical spectral components 
(eigenvalues and eigenvectors) are omitted. 

§ In a high level, colors generated by the WL kernel 
obey the same symmetries as graph structure.

§ These joint symmetries lock the message-passing 
operations to limited representations.
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¡ We use the following thinking:
§ Two different inputs (nodes, edges, graphs) are labeled differently
§ A “failed” model will always assign the same embedding to them
§ A “successful” model will assign different embeddings to them
§ Embeddings are determined by GNN computational graphs:
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!! !"A B

Two inputs: nodes 𝑣# and 𝑣$
Different labels: A and B
Goal: assign different embeddings to 𝑣# and 𝑣$



¡ A naïve solution: One-hot encoding
§ Encode each node with a different ID, then we can 

always differentiate different nodes/edges/graphs
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¡ A naïve solution: One-hot encoding
§ Encode each node with a different ID, then we can 

always differentiate different nodes/edges/graphs

§ Issues:
§ Not scalable: Need 𝑂(𝑁) feature dimensions (𝑁 is the 

number of nodes)
§ Not inductive: Cannot generalize to new nodes/graphs

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 32

!! !"A B
1000

0100

0001

1000 0100

0010 0001

Input graphs



¡ Feature augmentation: constant vs. one-hot
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Constant node feature One-hot node feature

Expressive power Medium. All the nodes are 
identical, but GNN can still learn 
from the graph structure

High. Each node has a unique ID, 
so node-specific information can 
be stored

Inductive learning
(Generalize to 
unseen nodes)

High. Simple to generalize to new 
nodes: we assign constant 
feature to them, then apply our 
GNN

Low. Cannot generalize to new 
nodes: new nodes introduce new 
IDs, GNN doesn’t know how to 
embed unseen IDs

Computational 
cost

Low. Only 1 dimensional feature High. High dimensional feature, 
cannot apply to large graphs

Use cases Any graph, inductive settings 
(generalize to new nodes)

Small graph, transductive settings 
(no new nodes)

1

4

2

3

6

5

1

1

1

1

1

1



Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Solution: 
§ We can use cycle count as augmented node features
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𝑣! 𝑣!

𝑣! resides in a cycle with length 3 𝑣! resides in a cycle with length 4

[0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0]
We start 
from cycle 
with length 0

Augmented node feature for 𝒗𝟏 Augmented node feature for 𝒗𝟏

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks


¡ Idea: Count cycles originating from a given node, use it as 
initial feature.
§ Include identity information as an augmented node feature
§ Use cycle counts in each layer as an augmented node 

feature. Also can be used together with any GNN
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length-3 cycles = 2 length-3 cycles = 0

1

0

2

2

𝑣!
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Cycle count 
at each level

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks


¡ We can also use the diagonals of the adjacency powers 
as augmented node features.

¡ They correspond to the closed loops each node is involved in.
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𝑣! 𝑣!

𝑣! resides in a cycle with length 3 𝑣! resides in a cycle with length 4

[1, 0, 2, 2, 6, 8] [1, 0, 2, 0, 8, 0]
Augmented node feature for 𝒗𝟏 Augmented node feature for 𝒗𝟏

C. Kanatsoulis, A. Ribeiro. Graph Neural Network Are More Powerful Than we Think, ICASSP 2024

https://ieeexplore.ieee.org/document/10447704


¡ Theorem: If two graphs have adjacency matrices with 
different eigenvalues, there exists a GNN with closed-
loop initial node features that can always tell them 
apart. 

¡ GNNs with structural initial node features can produce 
different representations for almost all real-world graphs.

¡ GIN with structural initial node features is strictly more 
powerful than the WL-kernel.
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Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Other commonly used augmented features:
§ Clustering coefficient
§ PageRank
§ Centrality
§ …

¡ Any feature we have introduced in 
Lecture 1 can be used!
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¡ Feature augmentation: constant vs. Structure
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Constant node feature Structure-aware node feature

Expressive power Medium. All the nodes are 
identical, but GNN can still learn 
from the graph structure

High. Each node has a structure-
aware ID, so node-specific 
information can be stored

Inductive learning
(Generalize to 
unseen nodes)

High. Simple to generalize to new 
nodes: we assign constant 
feature to them, then apply our 
GNN

High. Simple to generalize to new 
nodes: can count triangles or 
closed loops for any graph

Computational 
cost

Low. Only 1 dimensional feature Low/High. Depending on the 
structures we are counting

Use cases Any graph, inductive settings 
(generalize to new nodes)

Any graph, inductive settings 
(generalize new nodes)

1

4

2

3

6

5

1

1

1

1

1

1
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Can we count graph substructures with GNNs 
only?
¡ Assign unique IDs to nodes
§ These IDs are represented by random samples
§ Each node will be represented by a different set 

of random variables
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1

4

2

3

6

5

[0.2, 1.5, -2.3, -10.1]

Total number of random samples = 4

Random samples for node 3

C. Kanatsoulis, A. Ribeiro. Counting Graph Substructures with Graph Neural Networks, ICLR 2024

https://openreview.net/pdf?id=qaJxPhkYtD


¡ We design a simple GNN
§ With SUM Aggregations and Linear Message 

Functions.
§ We add a square pointwise nonlinearity               

in the last layer.
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1

4

2

3

6

5

Node 1 [3.3, -1.7, -1.2, -0.1]
Node 2 [-0.1, -5.4, 3.0, -9.8]
Node 3 [0.2, 1.5, -2.3, -10.1]
Node 4 [0.5, 1.9, -12.7, 11.1]
Node 5 [5.1, -0.7, -2.9, -13.5]
Node 6 [-1.2, 7.5, -0.3, -7.9]
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1
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3

6

5

Node 1 [3.3, -1.7, -1.2, -0.1]
Node 2 [-0.1, -5.4, 3.0, -9.8]
Node 3 [0.2, 1.5, -2.3, -10.1]
Node 4 [0.5, 1.9, -12.7, 11.1]
Node 5 [5.1, -0.7, -2.9, -13.5]
Node 6 [-1.2, 7.5, -0.3, -7.9]
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0.2
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5.1

GNN
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3.3
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-0.1

0.2

-1.2

5.1

GNN

-0.1

11.1

-9.8

-10.1

-7.9

-13.5

GNN

Node 1 [3.3, -1.7, -1.2, -0.1]
Node 2 [-0.1, -5.4, 3.0, -9.8]
Node 3 [0.2, 1.5, -2.3, -10.1]
Node 4 [0.5, 1.9, -12.7, 11.1]
Node 5 [5.1, -0.7, -2.9, -13.5]
Node 6 [-1.2, 7.5, -0.3, -7.9]



¡ To maintain inductive capability the final output:

§ Which in practice is computed as:

§ We can show that the previous procedure computes 
the closed loops of a graph:

§ And a GNN can break the limits of the WL kernel and 
count important substructures in the graph.
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¡ There are two types of tasks on graphs

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 50

Structure-aware task

Position-aware task
!" !#A

A

BA B

B

!"
!#

A

A

B
A

A

B

¡ Nodes are labeled by 
their structural roles in 
the graph

¡ Nodes are labeled by 
their positions in the 
graph

J. You, R. Ying, J. Leskovec. Postion-aware Graph Neural Networks, ICML 2019

https://arxiv.org/abs/1906.04817


¡ We showed how to design GNNs to work 
well for structure-aware tasks
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Structure-aware task

!"
!#

A

A

B
A

A

B
¡ GNNs work J 
¡ Can differentiate 𝑣% and 
𝑣& by using different 
computational graphs

!" !#

≠

… … … …

A B



¡ GNNs will always fail for position-aware 
tasks
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¡ GNNs fail L 
¡ 𝑣% and 𝑣& will always 

have the same 
computational graph, 
due to structure 
symmetry

¡ Can we define deep 
learning methods that 
are position-aware?

Position-aware task
!" !#A

A

BA B

B

!" !#

=

… … … …

A B



¡ Randomly pick a node 𝑠% as an anchor node
¡ Represent 𝑣% and 𝑣& via their relative distances w.r.t. 

the anchor 𝑠%, which are different
¡ An anchor node serves as a coordinate axis

§ Which can be used to locate nodes in the graph
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𝑣#
𝑠#

𝑣$A

A

BA B

BAnchor

𝑠#
𝑣# 1
𝑣$ 2

Relative 
Distances



¡ Pick more nodes 𝑠%, 𝑠& as anchor nodes
¡ Observation: More anchors can better characterize 

node position in different regions of the graph
¡ Many anchors –> Many coordinate axes
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𝑠# 𝑠$
𝑣# 1 2
𝑣$ 2 1

𝑣#
𝑠#

𝑣$
𝑠$

A

A

BA B

BAnchor Anchor

Relative 
Distances



¡ Generalize anchor from a single node to a set of nodes
§ We define distance to an anchor-set as the minimum distance 

to all the nodes in the ancho-set
¡ Observation: Large anchor-sets can sometimes provide 

more precise position estimate 
§ We can save the total number of anchors
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𝑠# 𝑠$ 𝑠%
𝑣# 1 2 1
𝑣% 1 2 0

Relative Distances
𝑣#

𝑣%

𝑠# 𝑠$

A

A

BA B

B
Size-2
Anchor-set

Anchor
𝑠%

Anchor 𝑠!, 𝑠" cannot differentiate 
node 𝑣!, 𝑣&, but anchor-set 𝑠& can



¡ Goal: Embed the metric space 𝑉, 𝑑  into the 
Euclidian space ℝ!  such that the original 
distance metric is preserved.
§ For every node pairs 𝑢, 𝑣 ∈ 𝑉, the Euclidian 

embedding distance 𝒛' − 𝒛( & is close to the 
original distance metric 𝑑 𝑢, 𝑣 .
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¡ Bourgain Theorem [Informal] [Bourgain 1985]

§ Consider the following embedding function of node 𝑣 ∈ 𝑉.
𝑓 𝑣 = 𝑑%&' 𝑣, 𝑆"," , 𝑑%&' 𝑣, 𝑆",# , … , 𝑑%&' 𝑣, 𝑆)*+	-,.)*+	- ∈ ℝ. )*+% -

§ where
§ 𝑐 is a constant.
§ 𝑆/,0 ⊂ 𝑉 is chosen by including each node in 𝑉 independently with 

probability "
#'

.

§ 𝑑%&' 𝑣, 𝑆/,0 ≡ min
1∈3',)

𝑑 𝑣, 𝑢 .

§ The embedding distance produced by 𝒇 is provably close to 
the original distance metric 𝑽, 𝒅 .
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P-GNN follows the theory of Bourgain theorem
§ First samples 𝑂(log& 𝑛) anchor sets 𝑆8,9.  
§ Embed each node 𝑣 via

𝑑%&' 𝑣, 𝑆"," , 𝑑%&' 𝑣, 𝑆",# , … , 𝑑%&' 𝑣, 𝑆)*+	-,.)*+	- ∈ ℝ. )*+% -.

P-GNN maintains the inductive capability
§ During training, new anchor sets are re-sampled 

every time.
§ P-GNN is learned to operate over the new anchor 

sets.
§ At test time, given a new unseen graph, new 

anchor sets are sampled.
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¡ Position encoding for graphs: Represent a node’s 
position by its distance to randomly selected anchor-sets
§ Each dimension of the position encoding is tied to an anchor-set
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𝑠# 𝑠$ 𝑠%
𝑣# 1 2 1
𝑣% 1 2 0

𝑣#

𝑣%

𝑠# 𝑠$

A

A

BA B

B
Size-2
Anchor-set

Anchor
𝑠%

𝑣!’s Position 
encoding

𝑣#’s Position 
encoding



¡ The simple way: Use position encoding as an 
augmented node feature (works well in 
practice)

§ Issue: Since each dimension of position encoding is 
tied to a random anchor set, dimensions of 
positional encoding can be randomly permuted, 
without changing its meaning

§ Imagine you permute the input dimensions of a 
normal NN, the output will surely change
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¡ The rigorous solution: Requires a special NN 
that can maintain the permutation invariant 
property of position encoding
§ Permuting the input feature dimension will only 

result in the permutation of the output dimension, 
the value in each dimension won’t change

§ Position-aware GNN paper has more details
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