Note to other teachers and users of these slides: We would be delighted if you found our material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: <u>http://cs224w.Stanford.edu</u>

Stanford CS224W: GNN Theory 2, Breaking the Limits of the WL kernel

CS224W: Machine Learning with Graphs Charilaos Kanatsoulis and Jure Leskovec, Stanford University http://cs224w.stanford.edu

Announcements

Homework 1 due Thursday, 10/17

- Late submissions accepted until end of day Monday, 10/21
- Project Proposal due Tuesday, 10/22
- Colab 2 due Thursday, 10/24

Move recitation time

We will host our recitations in the evenings from now on to accommodate remote students. Recordings are also available via Ed posts.

Clarification on project feedbacks

After project proposal, you will be assigned a TA to mentor your project for detailed feedbacks.

Lecture pace

We will slow down the pace.

Individual questions around lecture content Please come to OH for in-depth QA.

Recap: GNN Training Pipeline

Today's lecture: Can we make GNN representation more expressive?

Stanford CS224W: Limitations of Graph Neural Networks

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

A "Perfect" GNN Model

- A thought experiment: What should a perfect GNN do?
 - A k-layer GNN embeds a node based on the K-hop neighborhood structure

 A perfect GNN should build an injective function between neighborhood structure (regardless of hops) and node embeddings

A "Perfect" GNN Model

- For a perfect GNN (ignore node attributes for now):
 - Observation 1: If two nodes have the same neighborhood structure, they must have the same embedding

 Observation 2: If two nodes have different neighborhood structure, they must have different embeddings

(Considering that attributes of all nodes are the same)

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Imperfections of Existing GNNs

Observation 2 often cannot be satisfied:

- The GNNs we have introduced so far are not perfect
- In previous lecture, we discussed that their expressive power is upper bounded by the WL test
- For example, message passing GNNs cannot count the cycle length:

10/15/24

 v_2 resides in a cycle with length 4

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

The computational graphs for nodes v_1 and v_2 are always the same (ignoring node attributes)

Imperfections of Existing GNNs

Observation 1 could also have issues:

- Even though two nodes may have the same neighborhood structure, we may want to assign different embeddings to them
- Because these nodes appear in different positions in the graph
- We call these tasks **Position-aware tasks**
- Even a perfect GNN will fail for these tasks:

NYC road network

Plan for the Lecture

We will resolve both issues by **building more** expressive GNNs

- Fix issues in Observation 2:
 - Build message passing GNNs that are more expressive than WL test
 - Example method: Structurally-aware GNNs
- Fix issues in Observation 1:
 - Create node embeddings based on their positions in the graph
 - Example method: Position-aware GNNs

Stanford CS224W: A Spectral Perspective of message-passing GNNs

CS224W: Machine Learning with Graphs Charilaos Kanatsoulis and Jure Leskovec, Stanford University http://cs224w.stanford.edu

More Failure Cases for GNNs

- GNNs exhibit three levels of failure cases in structure-aware tasks:
 - Node level
 - Edge level
 - Graph level

GNN Failure 1: Node-level Tasks

Different Inputs but the same computational graph \rightarrow GNN fails

Example input graphs

GNN Failure 2: Edge-level Tasks

Different Inputs but the same computational graph \rightarrow GNN fails

Example input graphs

Edge A and B share node v_0 We look at embeddings for v_1 and v_2

Existing GNNs' computational graphs

GNN Failure 3: Graph-level Tasks

Different Inputs but the same computational graph \rightarrow GNN fails

Example input graphs

We look at embeddings for each node

Existing GNNs' computational graphs For each node:

For each node:

Limitation of the WL kernel

- The WL kernel colors inherit the graph symmetries.
- Symmetric colors are associated with limitations involving the spectral decomposition of the graph.

Matrix representation of GIN

Recall the GIN update:

$$oldsymbol{c}_v^{(l+1)} = ext{MLP}\left(\left(1+\epsilon
ight)oldsymbol{c}_v^{(l)} + \sum_{u\in\mathcal{N}(v)}oldsymbol{c}_u^{(l)}
ight)$$

We can unroll the first MLP layer:

$$\boldsymbol{c}_{v}^{(l+1)} = \mathtt{MLP}_{-1} \left(\sigma \left(\boldsymbol{W}^{(l)} \left(1 + \epsilon \right) \boldsymbol{c}_{v}^{(l)} + \sum_{u \in \mathcal{N}(v)} \boldsymbol{W}^{(l)} \boldsymbol{c}_{u}^{(l)} \right) \right)$$

MLP₋₁ denotes all the MLP layers except the first.

Matrix representation of GIN

Recall the GIN update:

$$oldsymbol{c}_v^{(l+1)} = ext{MLP}\left(\left(1+\epsilon
ight)oldsymbol{c}_v^{(l)} + \sum_{u\in\mathcal{N}(v)}oldsymbol{c}_u^{(l)}
ight)$$

We can unroll the first MLP layer:

$$\boldsymbol{c}_{v}^{(l+1)} = \texttt{MLP}_{-1} \left(\sigma \left(\boldsymbol{W}_{0}^{(l)} \boldsymbol{c}_{v}^{(l)} + \sum_{u \in \mathcal{N}(v)} \boldsymbol{W}_{1}^{(l)} \boldsymbol{c}_{u}^{(l)} \right) \right)$$

MLP₋₁ denotes all the MLP layers except the first.

Matrix representation of GIN

Recall the GIN update:

$$oldsymbol{c}_v^{(l+1)} = ext{MLP}\left(\left(1+\epsilon
ight)oldsymbol{c}_v^{(l)} + \sum_{u\in\mathcal{N}(v)}oldsymbol{c}_u^{(l)}
ight)$$

We can unroll the first MLP layer:

$$\boldsymbol{c}_{v}^{(l+1)} = \texttt{MLP}_{-1} \left(\sigma \left(\boldsymbol{W}_{0}^{(l)} \boldsymbol{c}_{v}^{(l)} + \sum_{u \in \mathcal{N}(v)} \boldsymbol{W}_{1}^{(l)} \boldsymbol{c}_{u}^{(l)} \right) \right)$$

• We can write the color update in a matrix form:

$$\begin{split} \boldsymbol{C}^{(l+1)} &= \mathtt{MLP}_{-1} \left(\sigma \left(\boldsymbol{C}^{(l)} \boldsymbol{W}_{0}^{(l)} + \boldsymbol{A} \boldsymbol{C}^{(l)} \boldsymbol{W}_{1}^{(l)} \right) \right) = \mathtt{MLP}_{-1} \left(\sigma \left(\sum_{k=0}^{1} \boldsymbol{A}^{k} \boldsymbol{C}^{(l)} \boldsymbol{W}_{k}^{(l)} \right) \right) \\ \boldsymbol{C}^{(l)} &\in \mathbb{R}^{N \times d}, \quad \boldsymbol{C}^{(l)} \left[v, : \right] = \boldsymbol{c}_{v}^{(l)} \end{split}$$

 Where A∈{0,1}^{N×N} is the adjacency matrix of the graph, i.e., A[u, v] = 1 if (u,v) is an edge and A[u, v] = 0 if (u,v) is not an edge.

Spectral Graph Representation

 Let's compute the eigenvalue decomposition of the graph adjacency matrix A.

$$\boldsymbol{A} = \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^T$$

- $V = [v_1, \dots, v_n]$ is the orthonormal matrix of eigenvectors
- Λ is the diagonal matrix of eigenvalues $\{\lambda_n\}_{n=1}^N$
 - The eigenvalue (spectral) decomposition of the adjacency is a universal characterization of the graph.
 - Different graphs have different spectral decompositions
 - The number of cycles in a graph can be viewed as functions of eigenvalues and eigenvectors, e.g.,

$$\#$$
triangles = diag $\left(\boldsymbol{A}^{3} \right) = \sum_{n=1}^{N} \lambda_{n}^{3} \left| \boldsymbol{v}_{n} \right|^{2}$

. .

GNN as functions of eigenvectors

We can interpret GIN layers as MLPs operating on the eigenvectors:

$$\boldsymbol{C}^{(l+1)} = \mathtt{MLP}_{-1} \left(\sigma \left(\boldsymbol{C}^{(l)} \boldsymbol{W}_0^{(l)} + \boldsymbol{A} \boldsymbol{C}^{(l)} \boldsymbol{W}_1^{(l)} \right) \right) = \mathtt{MLP}_{-1} \left(\sigma \left(\sum_{k=0}^1 \boldsymbol{A}^k \boldsymbol{C}^{(l)} \boldsymbol{W}_k^{(l)} \right) \right)$$

If we replace A with the spectral decomposition $A = V \Lambda V^T$

$$oldsymbol{C}^{(l+1)} = extsf{MLP}(oldsymbol{V}) = extsf{MLP}_{-1}(\sigma(oldsymbol{V}oldsymbol{W}))$$

 $oldsymbol{W}[n,f] = \sum_{i=1}^{d} \sum_{k=0}^{1} \lambda_n^k oldsymbol{W}_k[i,f] \langle oldsymbol{v}_n, oldsymbol{C}^{(l)}[:,i]
angle$

 The weights of the first MLP layer depend on the eigenvalues and the dot product between the eigenvectors and the colors at the previous level.

GNN with uniform initial colors

We can interpret GIN layers as MLPs operating on the eigenvectors:

$$oldsymbol{\mathcal{C}}^{(1)} = ext{MLP}\left(oldsymbol{V}
ight) = ext{MLP}_{-1}\left(\sigma\left(oldsymbol{V}oldsymbol{W}
ight)
ight)
onumber \ oldsymbol{W}\left[n,f
ight] = \sum_{k=0}^{1} \lambda_n^k oldsymbol{W}_k[i,f] ig\langleoldsymbol{v}_n, oldsymbol{1}
ight
angle \qquad lpha_f(\lambda_n) = \sum_{k=0}^{1} \lambda_n^k oldsymbol{W}_k[i,f]
onumber \ oldsymbol{W}_k[i,f]
onumber \ oldsymbol{W}_k[i,f] = \sum_{k=0}^{1} \lambda_n^k oldsymbol{W}_k[i,f]
onumber \ oldsymbol{U}_k[i,f]
onumber \ oldsymbol{M}_k[i,f]
onumber \ oldsymbol{W}_k[i,f]
onumber \$$

If we zoom in

$$\left(oldsymbol{V}oldsymbol{W}
ight) \left[:,f
ight] = \sum_{n=1}^{N}oldsymbol{W}\left[n,f
ight]oldsymbol{v}_{n} = \sum_{n=1}^{N}lpha_{f}\left(\lambda_{n}
ight)\langleoldsymbol{v}_{n},oldsymbol{1}
ight
angleoldsymbol{v}_{n}$$

- The new node colors only depend on the eigenvectors that are not orthogonal to 1.
- Graphs with symmetries admit eigenvectors orthogonal to 1.

Spectral limitation of the WL kernel

The WL kernel cannot distinguish between some basic graph structures, e.g.,

Spectral limitation of the WL kernel

The WL kernel cannot distinguish between some basic graph structures, e.g.,

Spectral limitation of the WL kernel

The WL kernel cannot count basic graph structures:

$$\#$$
triangles = diag $\left(oldsymbol{A}^3
ight) = \sum_{n=1}^N \lambda_n^3 \left| oldsymbol{v}_n
ight|^2$

G	$egin{array}{c c} \lambda_n & 2.303 \ \langle oldsymbol{v}_n, oldsymbol{1} angle & 3.048 \end{array}$	1.618 0	1.303 0	1 -0.816	0.618 0	-2.303 0	-1.618 0	-0.618 0	-1 0	-1.303 -0.210
Ĝ	$\hat{\lambda}_n \ 2.303 \ \langle \hat{\boldsymbol{v}}_n, 1 angle \ 3.048$	$\begin{array}{c} 1.861 \\ 0 \end{array}$	1 -0.816	0.618 0	0.618 0	0.254	-1.303 -0.210	-1.618 0	-1.618 0	-2.115 0

Limitations of the WL kernel

- Summary: The limitations of the WL kernel are limitations of the initial node color.
 - These limitations are well understood in the spectral domain.
 - Constant node colorings are orthogonal with adjacency eigenvectors and critical spectral components (eigenvalues and eigenvectors) are omitted.
 - In a high level, colors generated by the WL kernel obey the same symmetries as graph structure.
 - These joint symmetries lock the message-passing operations to limited representations.

Stanford CS224W: Feature Augmentation: Structurally-Aware GNNs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Our Approach

We use the following thinking:

- Two different inputs (nodes, edges, graphs) are labeled differently
- A "failed" model will always assign the same embedding to them
- A "successful" model will assign different embeddings to them
- Embeddings are determined by GNN computational graphs:

Two inputs: nodes v_1 and v_2 **Different labels:** A and B **Goal:** assign different embeddings to v_1 and v_2

Naïve Solution is not Desirable

- A naïve solution: One-hot encoding
 - Encode each node with a different ID, then we can always differentiate different nodes/edges/graphs

Naïve Solution is not Desirable

- A naïve solution: One-hot encoding
 - Encode each node with a different ID, then we can always differentiate different nodes/edges/graphs

Issues:

- Not scalable: Need O(N) feature dimensions (N is the number of nodes)
- Not inductive: Cannot generalize to new nodes/graphs

Feature Augmentation on Graphs

Feature augmentation: constant vs. one-hot

	Constant node feature	One-hot node feature		
		4 D E 5 6		
Expressive power	Medium . All the nodes are identical, but GNN can still learn from the graph structure	High . Each node has a unique ID, so node-specific information can be stored		
Inductive learning (Generalize to unseen nodes)	High . Simple to generalize to new nodes: we assign constant feature to them, then apply our GNN	Low. Cannot generalize to new nodes: new nodes introduce new IDs, GNN doesn't know how to embed unseen IDs		
Computational cost	Low. Only 1 dimensional feature	High . High dimensional feature, cannot apply to large graphs		
Use cases	Any graph, inductive settings (generalize to new nodes)	Small graph, transductive settings (no new nodes)		

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Feature Augmentation on Graphs

Why do we need feature augmentation?

- (2) Certain structures are hard to learn by GNN
 Solution:
 - We can use cycle count as augmented node features

We start from cycle with length 0

Augmented node feature for v_1 [0, 0, 0, 0, 1, 0]

 v_1 resides in a cycle with length 4

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

ID-GNN-Fast

- Idea: Count cycles originating from a given node, use it as initial feature.
 - Include identity information as an augmented node feature
 - Use cycle counts in each layer as an augmented node feature. Also can be used together with any GNN

Closed loops as node features

- We can also use the diagonals of the adjacency powers as augmented node features.
- They correspond to the **closed loops** each node is involved in.

$$oldsymbol{C}^{(0)} = \left[ext{diag} \left(oldsymbol{A}^0
ight), ext{diag} \left(oldsymbol{A}^1
ight), ext{diag} \left(oldsymbol{A}^2
ight), ext{diag} \left(oldsymbol{A}^3
ight), \dots, ext{diag} \left(oldsymbol{A}^{D-1}
ight)
ight] \in \mathbb{N}_0^{N imes D}$$

Augmented node feature for v_1 [1, 0, 2, 0, 8, 0]

 v_1 resides in a cycle with length 4

Expressive Power

- Theorem: If two graphs have adjacency matrices with different eigenvalues, there exists a GNN with closedloop initial node features that can always tell them apart.
- GNNs with structural initial node features can produce different representations for almost all real-world graphs.
- GIN with structural initial node features is strictly more powerful than the WL-kernel.

Feature Augmentation on Graphs

Why do we need feature augmentation?

- (2) Certain structures are hard to learn by GNN
- Other commonly used augmented features:
 - Clustering coefficient
 - PageRank
 - Centrality
- Any feature we have introduced in Lecture 1 can be used!

Feature Augmentation on Graphs

Feature augmentation: constant vs. Structure

	Constant node feature	Structure-aware node feature		
		4 D B 5 INPUT GRAPH		
Expressive power	Medium. All the nodes are identical, but GNN can still learn from the graph structure	High . Each node has a structure- aware ID, so node-specific information can be stored		
Inductive learning (Generalize to unseen nodes)	High . Simple to generalize to new nodes: we assign constant feature to them, then apply our GNN	High . Simple to generalize to new nodes: can count triangles or closed loops for any graph		
Computational cost	Low. Only 1 dimensional feature	Low/High. Depending on the structures we are counting		
Use cases	Any graph, inductive settings (generalize to new nodes)	Any graph, inductive settings (generalize new nodes)		

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Stanford CS224W: Counting Graph Substructures with GNNs

CS224W: Machine Learning with Graphs Charilaos Kanatsoulis and Jure Leskovec, Stanford University http://cs224w.stanford.edu

Random samples as node ID's

Can we count graph substructures with GNNs only?

- Assign unique IDs to nodes
 - These IDs are represented by random samples
 - Each node will be represented by a different set of random variables

Designing a simple GNN

We design a simple GNN

- With SUM Aggregations and Linear Message Functions.
- We add a square pointwise nonlinearity $\sigma\left(\cdot\right) = \left(\cdot\right)^2$ in the last layer.

$$\boldsymbol{c}_v^{(l+1)} = \texttt{Linear}\left(\left(1 + \epsilon\right) \boldsymbol{c}_v^{(l)} + \sum_{u \in \mathcal{N}(v)} \boldsymbol{c}_u^{(l)} \right)$$

$$\boldsymbol{c}_{v}^{(L)} = \sigma \left(\text{Linear} \left(\left(1 + \epsilon \right) \boldsymbol{c}_{v}^{(L-1)} + \sum_{u \in \mathcal{N}(v)} \boldsymbol{c}_{u}^{(L-1)} \right) \right)$$

Independent Processing of samples

- Node 1 [3.3, -1.7, -1.2, -0.1]
- Node 2 [-0.1, -5.4, 3.0, -9.8]
- Node 3 [0.2, 1.5, -2.3, -10.1]
- Node 4 [0.5, 1.9, -12.7, 11.1]
- Node 5 [5.1, -0.7, -2.9, -13.5]
- Node 6 [-1.2, 7.5, -0.3, -7.9]

Independent Processing of samples

Node 1 [3.3, -1.7, -1.2, -0.1] Node 2 [-0.1, -5.4, 3.0, -9.8] Node 3 [0.2, 1.5, -2.3, -10.1] Node 4 [0.5, 1.9, -12.7, 11.1] Node 5 [5.1, -0.7, -2.9, -13.5] Node 6 [-1.2, 7.5, -0.3, -7.9]

Independent Processing of samples

C. Kanatsoulis, A. Ribeiro. Counting Graph Substructures with Graph Neural Networks, ICLR 2024

Counting Cycles with GNNs

To maintain inductive capability the final output:

$$oldsymbol{y} = \mathbb{E}\left[oldsymbol{y}^{(m)}
ight]$$

Which in practice is computed as:

$$oldsymbol{y} = rac{1}{M}\sum_{m=1}^Moldsymbol{y}^{(m)}$$

 We can show that the previous procedure computes the closed loops of a graph:

 $\boldsymbol{C}^{(0)} = \left[\text{diag}\left(\boldsymbol{A}^{0}\right), \text{diag}\left(\boldsymbol{A}^{1}\right), \text{diag}\left(\boldsymbol{A}^{2}\right), \text{diag}\left(\boldsymbol{A}^{3}\right), \dots, \text{diag}\left(\boldsymbol{A}^{D-1}\right) \right] \in \mathbb{N}_{0}^{N \times D}$

And a GNN can break the limits of the WL kernel and count important substructures in the graph.

Stanford CS224W: Position-aware Graph Neural Networks

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Two Types of Tasks on Graphs

There are two types of tasks on graphs

Structure-aware task

 Nodes are labeled by their structural roles in the graph

Position-aware task

 Nodes are labeled by their **positions** in the graph

Structure-aware Tasks

We showed how to design GNNs to work well for structure-aware tasks

Structure-aware task

 \neq

. .

- GNNs work 🙂
- Can differentiate v₁ and
 v₂ by using different
 computational graphs

Position-aware Tasks

GNNs will always fail for position-aware tasks

- 🛛 GNNs fail 😕
- v₁ and v₂ will always have the same
 computational graph,
 due to structure
 symmetry
- Can we define deep learning methods that are position-aware?

Power of "Anchor"

- Randomly pick a node s₁ as an anchor node
- Represent v₁ and v₂ via their relative distances w.r.t.
 the anchor s₁, which are different
- An anchor node serves as a coordinate axis
 - Which can be used to locate nodes in the graph

Power of "Anchors"

- Pick more nodes s₁, s₂ as anchor nodes
- Observation: More anchors can better characterize node position in different regions of the graph
- Many anchors –> Many coordinate axes

Power of "Anchor-sets"

- Generalize anchor from a single node to a set of nodes
 - We define distance to an anchor-set as the minimum distance to all the nodes in the ancho-set
- Observation: Large anchor-sets can sometimes provide more precise position estimate
 - We can save the total number of anchors

Relative Distances

Anchor s_1 , s_2 cannot differentiate node v_1 , v_3 , but anchor-set s_3 can

- - For every node pairs $u, v \in V$, the Euclidian embedding distance $||z_u - z_v||_2$ is close to the original distance metric d(u, v).

Anchor Set: Theory

- Bourgain Theorem [Informal] [Bourgain 1985]
 - Consider the following embedding function of node $v \in V$. $f(v) = (d_{\min}(v, S_{1,1}), d_{\min}(v, S_{1,2}), ..., d_{\min}(v, S_{\log n, c\log n})) \in \mathbb{R}^{c \log^2 n}$

where

- *c* is a constant.
- $S_{i,j} \subset V$ is chosen by including each node in V independently with probability $\frac{1}{2^{i}}$.

•
$$d_{\min}(v, S_{i,j}) \equiv \min_{u \in S_{i,j}} d(v, u).$$

The embedding distance produced by f is provably close to the original distance metric (V, d).

Anchor Set: Theory

P-GNN follows the theory of Bourgain theorem

- First samples $O(\log^2 n)$ anchor sets $S_{i,j}$.
- Embed each node v via

 $\left(d_{\min}(v, S_{1,1}), d_{\min}(v, S_{1,2}), \dots, d_{\min}(v, S_{\log n, c\log n})\right) \in \mathbb{R}^{c \log^2 n}.$

P-GNN maintains the inductive capability

- During training, new anchor sets are *re-sampled* every time.
- P-GNN is learned to operate over the new anchor sets.
- At test time, given a new unseen graph, new anchor sets are sampled.

Position Information: Summary

- Position encoding for graphs: Represent a node's position by its distance to randomly selected anchor-sets
 - Each dimension of the position encoding is tied to an anchor-set

How to Use Position Information

- The simple way: Use position encoding as an augmented node feature (works well in practice)
 - Issue: Since each dimension of position encoding is tied to a random anchor set, dimensions of positional encoding can be randomly permuted, without changing its meaning
 - Imagine you permute the input dimensions of a normal NN, the output will surely change

How to Use Position Information

- The rigorous solution: Requires a special NN that can maintain the permutation invariant property of position encoding
 - Permuting the input feature dimension will only result in the permutation of the output dimension, the value in each dimension won't change
 - Position-aware GNN paper has more details

