
CS224W: Machine Learning with Graphs
Charilaos Kanatsoulis and Jure Leskovec, Stanford
University

http://cs224w.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify
them to fit your own needs. If you make use of a significant portion of these slides in your own
lecture, please include this message, or a link to our web site: http://cs224w.Stanford.edu

http://cs224w.stanford.edu/

¡ Homework 1 due Thursday, 10/17
§ Late submissions accepted until end of day

Monday, 10/21
¡ Project Proposal due Tuesday, 10/22
¡ Colab 2 due Thursday, 10/24

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

¡ Move recitation time
We will host our recitations in the evenings from now on
to accommodate remote students. Recordings are also
available via Ed posts.

¡ Clarification on project feedbacks
After project proposal, you will be assigned a TA to
mentor your project for detailed feedbacks.

¡ Lecture pace
We will slow down the pace.

¡ Individual questions around lecture content
Please come to OH for in-depth QA.

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 3

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

Dataset split

Today’s lecture: Can we make GNN
representation more expressive?

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ A thought experiment: What should a perfect
GNN do?
§ A 𝑘-layer GNN embeds a node based on the 𝐾-hop

neighborhood structure

§ A perfect GNN should build an injective function
between neighborhood structure (regardless of
hops) and node embeddings

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 7

¡ For a perfect GNN (ignore node attributes for now):
§ Observation 1: If two nodes have the same neighborhood

structure, they must have the same embedding

§ Observation 2: If two nodes have different neighborhood
structure, they must have different embeddings

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 8

𝑣! 𝑣"

𝑣#

ℎ!$ = ℎ!%

ℎ!$ ≠ ℎ!&𝑣!

(Considering that attributes
of all nodes are the same)

¡ Observation 2 often cannot be satisfied:
§ The GNNs we have introduced so far are not perfect
§ In previous lecture, we discussed that their expressive

power is upper bounded by the WL test
§ For example, message passing GNNs cannot count the

cycle length:

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 9

𝑣! 𝑣"

𝑣! resides in a cycle
with length 3

𝑣" resides in a cycle
with length 4

…

!!

The computational graphs
for nodes 𝒗𝟏 and 𝒗𝟐 are
always the same

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

(ignoring node attributes)

Identity-aware%20Graph%20Neural%20Networks

¡ Observation 1 could also have issues:
§ Even though two nodes may have the same neighborhood

structure, we may want to assign different embeddings to them
§ Because these nodes appear in different positions in the graph
§ We call these tasks Position-aware tasks
§ Even a perfect GNN will fail for these tasks:

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 10

𝑣"

𝑣#

𝑣"

𝑣#

A grid graph NYC road network

J. You, R. Ying, J. Leskovec. Postion-aware Graph Neural Networks, ICML 2019

https://arxiv.org/abs/1906.04817

We will resolve both issues by building more
expressive GNNs
¡ Fix issues in Observation 2:
§ Build message passing GNNs that are more

expressive than WL test
§ Example method: Structurally-aware GNNs

¡ Fix issues in Observation 1:
§ Create node embeddings based on their positions

in the graph
§ Example method: Position-aware GNNs

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 11

CS224W: Machine Learning with Graphs
Charilaos Kanatsoulis and Jure Leskovec, Stanford
University

http://cs224w.stanford.edu

¡ GNNs exhibit three levels of failure cases in
structure-aware tasks:
§ Node level
§ Edge level
§ Graph level

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 13

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 14

Existing GNNs’
computational
graphs

𝑣! 𝑣"A B

=

…

𝑣!

…

𝑣"A B

Example input
graphs

Different Inputs but the same computational graph à GNN fails

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 15

B

𝑣$

𝑣" 𝑣#

…

𝑣" A B

…

𝑣#

A

=

Different Inputs but the same computational graph à GNN fails

Existing GNNs’
computational
graphs

Example input
graphs

Edge A and B share
node 𝑣%
We look at embeddings
for 𝑣! and 𝑣"

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 16

Existing GNNs’
computational
graphs

A B

We look at embeddings
for each node

=

A B

Example input
graphs

Different Inputs but the same computational graph à GNN fails

For each node: For each node:

¡ The WL kernel colors inherit the graph symmetries.

¡ Symmetric colors are associated with limitations involving
the spectral decomposition of the graph.

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

¡ Recall the GIN update:

§ We can unroll the first MLP layer:

§ denotes all the MLP layers except the first.

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 18

¡ Recall the GIN update:

§ We can unroll the first MLP layer:

§ denotes all the MLP layers except the first.

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 19

¡ Recall the GIN update:

§ We can unroll the first MLP layer:

§ We can write the color update in a matrix form:

§
§ Where 𝐴𝜖{0,1}"×" is the adjacency matrix of the graph, i.e., 𝐴 𝑢, 𝑣 = 1

if (u,v) is an edge and 𝐴 𝑢, 𝑣 = 0 if (u,v) is not an edge.
10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 20

¡ Let's compute the eigenvalue decomposition of the graph
adjacency matrix A.

¡ is the orthonormal matrix of eigenvectors
¡ I is the diagonal matrix of eigenvalues

§ The eigenvalue (spectral) decomposition of the adjacency is a
universal characterization of the graph.

§ Different graphs have different spectral decompositions
§ The number of cycles in a graph can be viewed as functions of

eigenvalues and eigenvectors, e.g.,

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 21

¡ We can interpret GIN layers as MLPs operating on the
eigenvectors:

¡ If we replace A with the spectral decomposition

¡ The weights of the first MLP layer depend on the eigenvalues and the dot
product between the eigenvectors and the colors at the previous level.

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 22

¡ We can interpret GIN layers as MLPs operating on the
eigenvectors:

¡ If we zoom in

¡ The new node colors only depend on the eigenvectors that are not
orthogonal to 1.

¡ Graphs with symmetries admit eigenvectors orthogonal to 1.

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 23

¡ The WL kernel cannot distinguish between some
basic graph structures, e.g.,

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 24

¡ The WL kernel cannot distinguish between some
basic graph structures, e.g.,

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

¡ The WL kernel cannot count basic graph
structures:

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

¡ Summary: The limitations of the WL kernel
are limitations of the initial node color.
§ These limitations are well understood in the

spectral domain.
§ Constant node colorings are orthogonal with adjacency

eigenvectors and critical spectral components
(eigenvalues and eigenvectors) are omitted.

§ In a high level, colors generated by the WL kernel
obey the same symmetries as graph structure.

§ These joint symmetries lock the message-passing
operations to limited representations.

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 27

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ We use the following thinking:
§ Two different inputs (nodes, edges, graphs) are labeled differently
§ A “failed” model will always assign the same embedding to them
§ A “successful” model will assign different embeddings to them
§ Embeddings are determined by GNN computational graphs:

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 29

!! !"A B

Two inputs: nodes 𝑣# and 𝑣$
Different labels: A and B
Goal: assign different embeddings to 𝑣# and 𝑣$

¡ A naïve solution: One-hot encoding
§ Encode each node with a different ID, then we can

always differentiate different nodes/edges/graphs

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 31

!! !"A B
1000

0100

0001

1000 0100

0010 0001

…

!!0100 0001

…

!!0010 0100

Input graphs

Computational
graphs

Computational
graphs are clearly
different if each
node has a
different ID

𝑣!

¡ A naïve solution: One-hot encoding
§ Encode each node with a different ID, then we can

always differentiate different nodes/edges/graphs

§ Issues:
§ Not scalable: Need 𝑂(𝑁) feature dimensions (𝑁 is the

number of nodes)
§ Not inductive: Cannot generalize to new nodes/graphs

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 32

!! !"A B
1000

0100

0001

1000 0100

0010 0001

Input graphs

¡ Feature augmentation: constant vs. one-hot

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

Constant node feature One-hot node feature

Expressive power Medium. All the nodes are
identical, but GNN can still learn
from the graph structure

High. Each node has a unique ID,
so node-specific information can
be stored

Inductive learning
(Generalize to
unseen nodes)

High. Simple to generalize to new
nodes: we assign constant
feature to them, then apply our
GNN

Low. Cannot generalize to new
nodes: new nodes introduce new
IDs, GNN doesn’t know how to
embed unseen IDs

Computational
cost

Low. Only 1 dimensional feature High. High dimensional feature,
cannot apply to large graphs

Use cases Any graph, inductive settings
(generalize to new nodes)

Small graph, transductive settings
(no new nodes)

1

4

2

3

6

5

1

1

1

1

1

1

Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Solution:
§ We can use cycle count as augmented node features

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

𝑣! 𝑣!

𝑣! resides in a cycle with length 3 𝑣! resides in a cycle with length 4

[0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0]
We start
from cycle
with length 0

Augmented node feature for 𝒗𝟏 Augmented node feature for 𝒗𝟏

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks

¡ Idea: Count cycles originating from a given node, use it as
initial feature.
§ Include identity information as an augmented node feature
§ Use cycle counts in each layer as an augmented node

feature. Also can be used together with any GNN
10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 37

!! !"A B

GNN computational graph

=

…

!!

…

!"

!! !"A B

ID-GNN rooted subtrees

≠

…

!!

…

!"A B A B

Goal: classify !! and !"

length-3 cycles = 2 length-3 cycles = 0

1

0

2

2

𝑣!

1

0

2

0

𝑣"

Cycle count
at each level

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks

¡ We can also use the diagonals of the adjacency powers
as augmented node features.

¡ They correspond to the closed loops each node is involved in.

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38

𝑣! 𝑣!

𝑣! resides in a cycle with length 3 𝑣! resides in a cycle with length 4

[1, 0, 2, 2, 6, 8] [1, 0, 2, 0, 8, 0]
Augmented node feature for 𝒗𝟏 Augmented node feature for 𝒗𝟏

C. Kanatsoulis, A. Ribeiro. Graph Neural Network Are More Powerful Than we Think, ICASSP 2024

https://ieeexplore.ieee.org/document/10447704

¡ Theorem: If two graphs have adjacency matrices with
different eigenvalues, there exists a GNN with closed-
loop initial node features that can always tell them
apart.

¡ GNNs with structural initial node features can produce
different representations for almost all real-world graphs.

¡ GIN with structural initial node features is strictly more
powerful than the WL-kernel.

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

C. Kanatsoulis, A. Ribeiro. Graph Neural Network Are More Powerful Than we Think, ICASSP 2024

https://ieeexplore.ieee.org/document/10447704

Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Other commonly used augmented features:
§ Clustering coefficient
§ PageRank
§ Centrality
§ …

¡ Any feature we have introduced in
Lecture 1 can be used!

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

¡ Feature augmentation: constant vs. Structure

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

Constant node feature Structure-aware node feature

Expressive power Medium. All the nodes are
identical, but GNN can still learn
from the graph structure

High. Each node has a structure-
aware ID, so node-specific
information can be stored

Inductive learning
(Generalize to
unseen nodes)

High. Simple to generalize to new
nodes: we assign constant
feature to them, then apply our
GNN

High. Simple to generalize to new
nodes: can count triangles or
closed loops for any graph

Computational
cost

Low. Only 1 dimensional feature Low/High. Depending on the
structures we are counting

Use cases Any graph, inductive settings
(generalize to new nodes)

Any graph, inductive settings
(generalize new nodes)

1

4

2

3

6

5

1

1

1

1

1

1

CS224W: Machine Learning with Graphs
Charilaos Kanatsoulis and Jure Leskovec, Stanford
University

http://cs224w.stanford.edu

Can we count graph substructures with GNNs
only?
¡ Assign unique IDs to nodes
§ These IDs are represented by random samples
§ Each node will be represented by a different set

of random variables

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

1

4

2

3

6

5

[0.2, 1.5, -2.3, -10.1]

Total number of random samples = 4

Random samples for node 3

C. Kanatsoulis, A. Ribeiro. Counting Graph Substructures with Graph Neural Networks, ICLR 2024

https://openreview.net/pdf?id=qaJxPhkYtD

¡ We design a simple GNN
§ With SUM Aggregations and Linear Message

Functions.
§ We add a square pointwise nonlinearity

in the last layer.

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

C. Kanatsoulis, A. Ribeiro. Counting Graph Substructures with Graph Neural Networks, ICLR 2024

https://openreview.net/pdf?id=qaJxPhkYtD

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

1

4

2

3

6

5

Node 1 [3.3, -1.7, -1.2, -0.1]
Node 2 [-0.1, -5.4, 3.0, -9.8]
Node 3 [0.2, 1.5, -2.3, -10.1]
Node 4 [0.5, 1.9, -12.7, 11.1]
Node 5 [5.1, -0.7, -2.9, -13.5]
Node 6 [-1.2, 7.5, -0.3, -7.9]

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

1

4

2

3

6

5

Node 1 [3.3, -1.7, -1.2, -0.1]
Node 2 [-0.1, -5.4, 3.0, -9.8]
Node 3 [0.2, 1.5, -2.3, -10.1]
Node 4 [0.5, 1.9, -12.7, 11.1]
Node 5 [5.1, -0.7, -2.9, -13.5]
Node 6 [-1.2, 7.5, -0.3, -7.9]

3.3

0.5

-0.1

0.2

-1.2

5.1

GNN

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

3.3

0.5

-0.1

0.2

-1.2

5.1

GNN

-0.1

11.1

-9.8

-10.1

-7.9

-13.5

GNN

Node 1 [3.3, -1.7, -1.2, -0.1]
Node 2 [-0.1, -5.4, 3.0, -9.8]
Node 3 [0.2, 1.5, -2.3, -10.1]
Node 4 [0.5, 1.9, -12.7, 11.1]
Node 5 [5.1, -0.7, -2.9, -13.5]
Node 6 [-1.2, 7.5, -0.3, -7.9]

¡ To maintain inductive capability the final output:

§ Which in practice is computed as:

§ We can show that the previous procedure computes
the closed loops of a graph:

§ And a GNN can break the limits of the WL kernel and
count important substructures in the graph.

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

C. Kanatsoulis, A. Ribeiro. Counting Graph Substructures with Graph Neural Networks, ICLR 2024

https://openreview.net/pdf?id=qaJxPhkYtD

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ There are two types of tasks on graphs

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 50

Structure-aware task

Position-aware task
!" !#A

A

BA B

B

!"
!#

A

A

B
A

A

B

¡ Nodes are labeled by
their structural roles in
the graph

¡ Nodes are labeled by
their positions in the
graph

J. You, R. Ying, J. Leskovec. Postion-aware Graph Neural Networks, ICML 2019

https://arxiv.org/abs/1906.04817

¡ We showed how to design GNNs to work
well for structure-aware tasks

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 51

Structure-aware task

!"
!#

A

A

B
A

A

B
¡ GNNs work J
¡ Can differentiate 𝑣% and
𝑣& by using different
computational graphs

!" !#

≠

… … … …

A B

¡ GNNs will always fail for position-aware
tasks

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 52

¡ GNNs fail L
¡ 𝑣% and 𝑣& will always

have the same
computational graph,
due to structure
symmetry

¡ Can we define deep
learning methods that
are position-aware?

Position-aware task
!" !#A

A

BA B

B

!" !#

=

… … … …

A B

¡ Randomly pick a node 𝑠% as an anchor node
¡ Represent 𝑣% and 𝑣& via their relative distances w.r.t.

the anchor 𝑠%, which are different
¡ An anchor node serves as a coordinate axis

§ Which can be used to locate nodes in the graph

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 53

𝑣#
𝑠#

𝑣$A

A

BA B

BAnchor

𝑠#
𝑣# 1
𝑣$ 2

Relative
Distances

¡ Pick more nodes 𝑠%, 𝑠& as anchor nodes
¡ Observation: More anchors can better characterize

node position in different regions of the graph
¡ Many anchors –> Many coordinate axes

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 54

𝑠# 𝑠$
𝑣# 1 2
𝑣$ 2 1

𝑣#
𝑠#

𝑣$
𝑠$

A

A

BA B

BAnchor Anchor

Relative
Distances

¡ Generalize anchor from a single node to a set of nodes
§ We define distance to an anchor-set as the minimum distance

to all the nodes in the ancho-set
¡ Observation: Large anchor-sets can sometimes provide

more precise position estimate
§ We can save the total number of anchors

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 55

𝑠# 𝑠$ 𝑠%
𝑣# 1 2 1
𝑣% 1 2 0

Relative Distances
𝑣#

𝑣%

𝑠# 𝑠$

A

A

BA B

B
Size-2
Anchor-set

Anchor
𝑠%

Anchor 𝑠!, 𝑠" cannot differentiate
node 𝑣!, 𝑣&, but anchor-set 𝑠& can

¡ Goal: Embed the metric space 𝑉, 𝑑 into the
Euclidian space ℝ! such that the original
distance metric is preserved.
§ For every node pairs 𝑢, 𝑣 ∈ 𝑉, the Euclidian

embedding distance 𝒛' − 𝒛(& is close to the
original distance metric 𝑑 𝑢, 𝑣 .

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 56

¡ Bourgain Theorem [Informal] [Bourgain 1985]

§ Consider the following embedding function of node 𝑣 ∈ 𝑉.
𝑓 𝑣 = 𝑑%&' 𝑣, 𝑆"," , 𝑑%&' 𝑣, 𝑆",# , … , 𝑑%&' 𝑣, 𝑆)*+	-,.)*+	- ∈ ℝ.)*+% -

§ where
§ 𝑐 is a constant.
§ 𝑆/,0 ⊂ 𝑉 is chosen by including each node in 𝑉 independently with

probability "
#'

.

§ 𝑑%&' 𝑣, 𝑆/,0 ≡ min
1∈3',)

𝑑 𝑣, 𝑢 .

§ The embedding distance produced by 𝒇 is provably close to
the original distance metric 𝑽, 𝒅 .

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 57

P-GNN follows the theory of Bourgain theorem
§ First samples 𝑂(log& 𝑛) anchor sets 𝑆8,9.
§ Embed each node 𝑣 via

𝑑%&' 𝑣, 𝑆"," , 𝑑%&' 𝑣, 𝑆",# , … , 𝑑%&' 𝑣, 𝑆)*+	-,.)*+	- ∈ ℝ.)*+% -.

P-GNN maintains the inductive capability
§ During training, new anchor sets are re-sampled

every time.
§ P-GNN is learned to operate over the new anchor

sets.
§ At test time, given a new unseen graph, new

anchor sets are sampled.
10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 58

¡ Position encoding for graphs: Represent a node’s
position by its distance to randomly selected anchor-sets
§ Each dimension of the position encoding is tied to an anchor-set

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 59

𝑠# 𝑠$ 𝑠%
𝑣# 1 2 1
𝑣% 1 2 0

𝑣#

𝑣%

𝑠# 𝑠$

A

A

BA B

B
Size-2
Anchor-set

Anchor
𝑠%

𝑣!’s Position
encoding

𝑣#’s Position
encoding

¡ The simple way: Use position encoding as an
augmented node feature (works well in
practice)

§ Issue: Since each dimension of position encoding is
tied to a random anchor set, dimensions of
positional encoding can be randomly permuted,
without changing its meaning

§ Imagine you permute the input dimensions of a
normal NN, the output will surely change

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 60

¡ The rigorous solution: Requires a special NN
that can maintain the permutation invariant
property of position encoding
§ Permuting the input feature dimension will only

result in the permutation of the output dimension,
the value in each dimension won’t change

§ Position-aware GNN paper has more details

10/15/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 61

