
CS224W Homework 3

Due: November 14, 2024

1 GNNs as MLP of eigenvectors [20 points]

1.1 Batch Node Update [2 points]

Consider the update for Graph Isomorphism Network:

x(l+1)
v = MLP

(1 + ϵ)x(l)
v +

∑
u∈N (v)

x(l)
u

 , (1)

where x
(l)
v ∈ Rdl is the embedding of node v at layer l. Let X(l) ∈ RN×dl be a

matrix containing the embeddings of all the nodes in the graph, i.e., X(l) [:, v] =

x
(l)
v . Also, let A ∈ {0, 1}N×N represent the adjacency matrix of the graph.

Write down the update of X(l+1) as a function of X(l) and A.

⋆ Solution ⋆

1.2 Single Layer MLP [2 points]

Assume that MLP () represents a single layer MLP with no bias term. Write down
the update of X(l+1) as a function of X(l) and A, and the trainable parameters
W(l) of layer l.

⋆ Solution ⋆

1.3 Eigenvector Extension [4 points]

Let {λn,vn}Nn=1 represent the eigenvalues and eigenvectors of the graph ad-
jacency. Then we can write A = VΛVT , where V ∈ RN×N is the matrix
of eigenvectors with V[:, n] = vn and Λ ∈ RN×N is the diagonal matrix of
eigenvalues with Λ[n, n] = λn. Show that

X(l+1) = σ
(
VŴ(l)

)
, Ŵ(l) [n, j] = (λn + 1 + ϵ)

dl∑
i=1

W(l)[i, j]⟨vn,X
(l) [:, i]⟩,

1

where ⟨·⟩ denotes the dot product. Hint: Use the fact that the eigenvectors
are orthonormal. Next, show that each feature across all nodes, X(l+1)[:, i], can
be expressed as a linear combination of eigenvectors, followed by a pointwise
nonlinearity.

⋆ Solution ⋆

1.4 GraphSAGE [4 points]

Perform the same analysis for the GraphSAGE update when the aggregation
function is sum pooling. Recall that the GraphSAGE update function is

x(l+1)
v = σ

(
W(l) · CONCAT

(
x(l)
v ,x

(l)
N(v)

))
= σ

(
W

(l)
1 x(l)

v +W
(l)
2 AGG

(
x(l)
u ,∀u ∈ N(v))

))
⋆ Solution ⋆

1.5 Eigendecomposition Analysis [8 points]

For graphs G and Ĝ instantiate the graph adjacencies in Numpy, PyTorch,
or PyG, and compute their eigenvalue decompositions. What do you observe?

⋆ Solution ⋆

Consider a GIN where all nodes start with the same initial color, i.e., x
(0)
v = 1

for all nodes v ∈ V. This setup is equivalent to havingX(0) = 1, where 1 denotes
the all-one vector. This is the initialization of the WL test. Using the equations
in 1.3, derive the expression for X(1).

⋆ Solution ⋆

Observe that each column X(1)[:, j] is a linear combination of eigenvectors,
followed by a pointwise nonlinearity. What is the weight associated with each
eigenvector? What factors determine this weight?

⋆ Solution ⋆

2

Compute the dot product ⟨vn,X
(0)⟩, for each eigenvector across both graphs.

What do you observe?

⋆ Solution ⋆

What does the previous result suggest about X(1) for the graphs G and Ĝ?
⋆ Solution ⋆

2 LightGCN [25 points]

We learned in class about LightGCN, a GNN model for recommender systems.
Given a bipartite user-item graph G = (V,E), let A ∈ R|V |×|V | be its unnor-
malized adjacency matrix, D ∈ R|V |×|V | be its degree matrix and E(k) ∈ R|V |×d

be its node embedding matrix at layer k where d is the embedding dimension.
Let Ã = D−1/2AD−1/2 be the normalized adjacency matrix.

The original GCN updates node embeddings across layers according to E(k+1) =
ReLU(ÃE(k)W(k)), while LightGCN removes the non-linearity and uses the
equation for each layer k ∈ {0, 1, ...,K − 1}:

E(k+1) = ÃE(k) (2)

Moreover, LightGCN adopts multi-scale diffusion to compute the final node
embeddings for link prediction, averaging across layers:

E =

K∑
i=0

αiE
(i), (3)

where we have uniform coefficients αi =
1

K+1 .

2.1 Advantages of Average Embeddings [4 points]

Why does LightGCN average over layer embeddings? What benefits does it
bring, in a recommendation systems setting?

What to submit? 1-3 sentences of explanation on the reasons and benefits
of averaging across layers.

⋆ Solution ⋆

2.2 Self-connection [4 points]

We denote the embedding of an item i at layer-k e
(k)
i and that of a user u

e
(k)
u . The graph convolution operation (a.k.a., propagation rule) in LightGCN

is defined as:

e(k+1)
u =

∑
i∈Nu

1√
|Nu|

√
|Ni|

e
(k)
i

3

e
(k+1)
i =

∑
u∈Ni

1√
|Ni|

√
|Nu|

e(k)u

The symmetric normalization term 1√
|Nu|

√
|Ni|

follows the design of standard

GCN, which can avoid the scale of embeddings increasing with graph convo-
lution operations.

However, from the equations above, we can find that in LGCN, we only ag-
gregate the connected neighbors and do not integrate the target node itself
(i.e., there is no self-connection). This is different from most existing graph
convolution operations that typically aggregate extended neighbors and also
specifically handle self-connection.

Does LightGCN contain implicit self-connection? If your answer is yes, which
operation captures the same effect as self-connection? If no, what do you think
is the reason why LightGCN doesn’t need self-connection or similar effects?

What to submit? Yes or no and 1-2 sentences of justification.

⋆ Solution ⋆

2.3 Relation with APPNP [5 points]

There is a work that connects GCN with Personalized PageRank, where the
authors propose a GCN variant named APPNP that can propagate long range
without the risk of oversmoothing. Inspired by the teleport design in Personal-
ized PageRank, APPNP complements each propagation layer with the starting
features (i.e., the 0-th layer embeddings), which can balance the need of pre-
serving locality (i.e., staying close to the root node to alleviate oversmoothing)
and leveraging the information from a large neighborhood. The propagation
layer in APPNP is defined as:

E(k+1) = βE(0) + (1− β)ÃE(k)

where β is called the “teleport probability” to control the retention of starting
features in the propagation, and Ã denotes the normalized adjacency matrix.

Aligning with Equation (3), we can see that by setting αk accordingly, Light-
GCN can fully recover the prediction embedding used by APPNP. As such,
LightGCN shares the strength of APPNP in combating oversmoothing — by
setting the α properly, LightGCN allows using a large K for long-range model-
ing with controllable oversmoothing.
Express the layer-K embeddings E(K) of APPNP as a function of the initial
embeddings E(0) and the normalized adjacency matrix Ã. Show all work.

What to submit? Multi-line mathematical derivation of the relationship
between E(K) and E(0)

⋆ Solution ⋆

4

3 Relational Deep Learning [15 points]

Assume we have the relational database as seen above, which consists of three
tables. These tables contain information about products, customers, and trans-
actions in which customers purchase products. Each table contains a unique
identifier, known as a primary key, potentially along with other attributes. For-
eign keys in a table create connections between tables by referencing primary
keys in other tables. In the three tables shown above, “ProductID”, “Trans-
actionID”, and “CustomerID” are the primary keys, while “ProductID” and
“CustomerID” are also foreign keys for the “Transactions” table.

3.1 Schema Graphs [1 point]

A key component of a relational deep learning framework is the schema graph,
which illustrates the relationships between tables in a database. In a schema
graph, each table is represented as a node, and an edge is drawn between two
nodes if a primary key from one table appears as a foreign key in another. This
graph helps visualize how data is linked across the database.

Describe or draw what the schema graph of this database would look like
(hint: it’s very simple).

⋆ Solution ⋆

5

3.2 Relational Entity Graphs [4 points]

Table 1: Products
ProductID Description Image Size

1 Smartphone [] Small
2 Laptop [] Medium
3 TV [] Large
4 Headphones [] Small

Table 2: Customers
CustomerID Name

101 Alice
102 Bob
103 Carol

Table 3: Transactions
TransactionID ProductID Timestamp CustomerID Price ($)

1001 1 2024-10-15 101 600
1002 3 2024-10-20 102 500
1003 2 2024-10-26 103 1,300
1004 4 2024-11-01 101 100
1005 1 2024-11-02 101 600
1006 2 2024-11-12 103 1,300

Another component of this framework is the relational entity graph. The nodes
of this graph are all the individual entities rather than tables. Links are again
made by primary-foreign key connections - that is, two entities are linked if they
appear together in the same entry of any table in the database. Given the list of
transactions above, produce a relational entity graph describing this database.

⋆ Solution ⋆

3.3 Computation Graphs [6 points]

The computational graphs used for training are dependent on the specific timestep
used for prediction. For example, let’s assume our training table (which defines
the information we seek to predict) contains the following information:

a. Target: How much total money a customer spends in the next 30 days

b. ID: Customer ID

6

c. Timestep: The time at which the 30 day period starts

When predicting, we can only use the information in the database that takes
place before our prediction period. That means the computational graphs (the
specific set of nodes and connections we send messages over) we use for predic-
tions are directly dependent on the timestep in our training table. Let’s say we
want to make predictions for customer 101. Using the tables from the previous
part, draw out the computation graphs if we wanted to make predictions at
2024-10-20, 2024-11-01, 2024-11-12.

⋆ Solution ⋆

3.4 Message Passing [4 points]

A relational database will produce a heterogeneous graph. What are example
message passing and update rules that can be used to make predictions like the
one mentioned above?

⋆ Solution ⋆

4 Honor Code [0 points]

(X) I have read and understood Stanford Honor Code before I submitted my
work.

**Collaboration: Write down the names & SUNetIDs of students you col-
laborated with on Homework 3 (None if you didn’t).**

Note: Read our website on our policy about collaboration!

7

	GNNs as MLP of eigenvectors [20 points]
	Batch Node Update [2 points]
	Single Layer MLP [2 points]
	Eigenvector Extension [4 points]
	GraphSAGE [4 points]
	Eigendecomposition Analysis [8 points]

	LightGCN [25 points]
	Advantages of Average Embeddings [4 points]
	Self-connection [4 points]
	Relation with APPNP [5 points]

	Relational Deep Learning [15 points]
	Schema Graphs [1 point]
	Relational Entity Graphs [4 points]
	Computation Graphs [6 points]
	Message Passing [4 points]

	Honor Code [0 points]

