
CS224W Homework 1

October 1, 2024

1 GNN Expressiveness (28 points)

For Q1.1, write down number of layers needed. For Q1.2, write down
the transition matrix M and the limiting distribution r. For Q1.3
and 1.4, write down the transition matrix w.r.t A and D. For Q1.5,
write down your proof in a few sentences (equations if necessary). For
Q1.6, describe the message function, aggregate function, and update
rule in a few sentences or equations.

Graph Neural Networks (GNNs) are a class of neural network architectures
used for deep learning on graph-structured data. Broadly, GNNs aim to generate
high-quality embeddings of nodes by iteratively aggregating feature information
from local graph neighborhoods using neural networks; embeddings can then be
used for recommendations, classification, link prediction, or other downstream
tasks. Two important types of GNNs are GCNs (graph convolutional networks)
and GraphSAGE (graph sampling and aggregation).

Let G = (V,E) denote a graph with node feature vectors Xu for u ∈ V . To
generate the embedding for a node u, we use the neighborhood of the node as
the computation graph. At every layer l, for each pair of nodes u ∈ V and its
neighbor v ∈ V , we compute a message function via neural networks, and apply
a convolutional operation that aggregates the messages from the node’s local
graph neighborhood (Figure 1.1), and updates the node’s representation at the
next layer. By repeating this process through K GNN layers, we capture feature
and structural information from a node’s local K-hop neighborhood. For each
of the message computation, aggregation, and update functions, the learnable
parameters are shared across all nodes in the same layer.

We initialize the feature vector for node Xu based on its individual node
attributes. If we already have outside information about the nodes, we can
embed that as a feature vector. Otherwise, we can use a constant feature (vector
of 1) or the degree of the node as the feature vector.

These are the key steps in each layer of a GNN:

• Message computation: We use a neural network to learn a message
function between nodes. For each pair of nodes u and its neighbor v, the
neural network message function can be expressed as M(hk

u, h
k
v , eu,v). In

GCN and GraphSAGE, this can simply be σ(Whv + b), where W and b

1

Figure 1.1: GNN architecture

are the weights and bias of a neural network linear layer. Here hk
u refers to

the hidden representation of node u at layer k, and eu,v denotes available
information about the edge (u, v), like the edge weight or other features.
For GCN and GraphSAGE, the neighbors of u are simply defined as nodes
that are connected to u. However, many other variants of GNNs have
different definitions of neighborhood.

• Aggregation: At each layer, we apply a function to aggregate information
from all of the neighbors of each node. The aggregation function is usually
permutation invariant, to reflect the fact that nodes’ neighbors have no
canonical ordering. In a GCN, the aggregation is done by a weighted
sum, where the weight for aggregating from v to u corresponds to the
(u, v) entry of the normalized adjacency matrix D−1/2AD−1/2.

• Update: We update the representation of a node based on the aggregated
representation of the neighborhood. For example, in GCNs, a multi-layer
perceptron (MLP) is used; Graph-SAGE combines a skip layer with the
MLP.

• Pooling: The representation of an entire graph can be obtained by adding
a pooling layer at the end. The simplest pooling methods are just taking
the mean, max, or sum of all of the individual node representations. This
is usually done for the purposes of graph classification.

We can formulate the Message computation, Aggregation, and Update steps
for a GCN as a layer-wise propagation rule given by:

hk+1 = σ(D−1/2AD−1/2hkW k) (1)

where hk represents the matrix of activations in the k-th layer, D−1/2AD−1/2

is the normalized adjacency of graph G, Wk is a layer-specific learnable matrix,
and σ is a non-linearity function. Dropout and other forms of regularization
can also be used.

We provide the pseudo-code for GraphSAGE embedding generation below.
This will also be relevant to the questions below.

2

In this question, we investigate the effect of the number of message passing
layers on the expressive power of Graph Convolutional Networks. In neural
networks, expressiveness refers to the set of functions (usually the loss function
for classification or regression tasks) a neural network is able to compute, which
depends on the structural properties of a neural network architecture.

.

1.1 Effect of Depth on Expressiveness (4 points)

Consider the following 2 graphs in figure 1.2, where all nodes have 1-dimensional
initial feature vector x = [1]. We use a simplified version of GNN, with no non-
linearity, no learned linear transformation, and sum aggregation. Specifically,
at every layer, the embedding of node v is updated as the sum over the embed-
dings of its neighbors (Nv) and its current embedding ht

v to get ht+1
v . We run

the GNN to compute node embeddings for the 2 red nodes respectively. Note
that the 2 red nodes have different 5-hop neighborhood structure (note this is
not the minimum number of hops for which the neighborhood structure of the
2 nodes differs). How many layers of message passing are needed so that these
2 nodes can be distinguished (i.e., have different GNN embeddings)? Explain
your answer in a few sentences.

.

3

Figure 1.2: Figure for Question 1.1

⋆ Solution ⋆

1.2 Random Walk Matrix (4 points)

Consider the graph shown below (figure 1.3).

1. Assume that the current distribution over nodes is r = [0, 0, 1, 0], and
after the random walk, the distribution is M ·r. What is the random walk
transition matrix M , where each row of M corresponds with the node ID
in the graph?

2. What is the limiting distribution r, namely the eigenvector of M that
has an eigenvalue of 1 (r = Mr)? Write your answer in fraction form
or round it to the nearest thousandth place and in the following form,
e.g. [1.200, 0.111, 0.462, 0.000]. Note that before reporting you should
normalize r. Hint: r is a probability distribution representing the
random walk probabilities for each node after a large number of
timesteps.

⋆ Solution ⋆

1.3 Relation to Random Walk (i) (4 points)

Let’s explore the similarity between message passing and random walks. Let

h
(l)
i be the embedding of node i at layer l. Suppose that we are using a mean

aggregator for message passing, and omit the learned linear transformation and

non-linearity: h
(l+1)
i = 1

|Ni|
∑

j∈Ni
h
(l)
j . If we start at a node u and take a

uniform random walk for 1 step, the expectation over the layer-l embeddings

of nodes we can end up with is h
(l+1)
u , exactly the embedding of u in the next

GNN layer. What is the transition matrix of the random walk? Describe the

4

Figure 1.3: Figure for Question 1.2

transition matrix using the adjacency matrix A, and degree matrixD, a diagonal
matrix where Di,i is the degree of node i.

⋆ Solution ⋆

1.4 Relation to Random Walk (ii) (4 points)

Suppose that we add a skip connection to the aggregation from Question 1.3:

h
(l+1)
i =

1

2
h
(l)
i +

1

2

1

|Ni|
∑
j∈Ni

h
(l)
j

What is the new corresponding transition matrix?

⋆ Solution ⋆

1.5 Over-Smoothing Effect (5 points)

In Question 1.1 we see that increasing depth could give more expressive power.
On the other hand, however, a very large depth also gives rise to the undesirable
effect of over smoothing. Assume we are still using the aggregation function from

Question 1.3: h
(l+1)
i = 1

|Ni|
∑

j∈Ni
h
(l)
j . Show that the node embedding h(l) will

converge as l → ∞. Here we assume that the graph is connected and has no
bipartite components. We also assume that the graph is undirected.

Over-smoothing thus refers to the problem of node embedding convergence.
Namely, if all node embeddings converge to the same value then we can no
longer distinguish them and our node embeddings become useless for down-
stream tasks. However, in practice, learnable weights, non-linearity, and other
architecture choices can alleviate the over-smoothing effect.

Hint: Here are some properties that might be helpful:

• A Markov Chain is irreducible if every state can be reached from
every other state.

5

• A state i of a Markov Chain is periodic if, for a certain t > 1, it
is only possible to travel from i to i in multiples of t timesteps.
A Markov Chain is aperiodic if it has no periodic states.

• If a Markov Chain is irreducible and aperiodic, it will converge to
a unique stationary distribution regardless of the starting state.

You don’t need to be super rigorous with your proof.

⋆ Solution ⋆

1.6 Learning BFS with GNN (7 points)

Next, we investigate the expressive power of GNN for learning simple graph
algorithms. Consider breadth-first search (BFS), where at every step, nodes
that are connected to already visited nodes become visited. Suppose that we
use GNN to learn to execute the BFS algorithm. Suppose that the embeddings
are 1-dimensional. Initially, all nodes have input feature 0, except a source
node which has input feature 1. At every step, nodes reached by BFS have
embedding 1, and nodes not reached by BFS have embedding 0. Describe a
message function, an aggregation function, and an update rule for the GNN
such that it learns the task perfectly.

⋆ Solution ⋆

2 Node Embedding and its Relation to Matrix
Factorization (24 points)

What to submit: For Q2.1, one or more sentences/equations describ-
ing the decoder. For Q2.2, write down the objective function. For
Q2.3, describe the characteristics of W in one or more sentences. For
Q2.4, write down the objective function. For Q2.5, characterize the
embeddings, whether you think it will reflect structural similarity,
and your justification. For Q2.6, one or more sentences for node2vec
and struct2vec respectively. For Q2.7, one or more sentences of expla-
nation. For Q2.8, one or more sentences characterizing embeddings
from struct2vec.

Recall that matrix factorization and the encoder-decoder view of node em-
beddings are closely related. For the embeddings, when properly formulating
the encoder-decoder and the objective function, we can find equivalent matrix
factorization formulation approaches.

Note that in matrix factorization we are optimizing for L2 distance; in encoder-
decoder examples such as DeepWalk and node2vec, we often use log-likelihood
as in lecture slides. The goal to approximate A with ZTZ is the same, but for
this question, stick with the L2 objective function.

6

2.1 Simple matrix factorization (3 points)

In the simple matrix factorization, the objective is to approximate adjacency
matrix A by the product of embedding matrix with its transpose. The opti-
mization objective is minZ ||A− ZTZ||2.

In the encoder-decoder perspective of node embeddings, what is the decoder?
(Please provide a mathematical expression for the decoder)

⋆ Solution ⋆

2.2 Alternate matrix factorization (3 points)

In linear algebra, we define bilinear form as zTi Wzj , where W is a matrix.
Suppose that we define the decoder as the bilinear form, what would be the
objective function for the corresponding matrix factorization? (Assume that
the W matrix is fixed)

⋆ Solution ⋆

2.3 BONUS: Relation to eigen-decomposition (3 points)

Recall eigen-decomposition of a matrix (link). What would be the condition of
W, such that the matrix factorization in the previous question (2.2) is equivalent
to learning the eigen-decomposition of matrix A?

⋆ Solution ⋆

2.4 Multi-hop node similarity (3 points)

Define node similarity with the multi-hop definition: 2 nodes are similar if they
are connected by at least one path of length at most k, where k is a parameter
(e.g. k = 2). Suppose that we use the same encoder (embedding lookup) and
decoder (inner product) as before. What would be the corresponding matrix
factorization problem we want to solve?

⋆ Solution ⋆

2.5 node2vec & struct2vec (i) (3 points)

Finally, we’ll explore some limitations of node2vec that are introduced in the
lecture, and look at algorithms that try to overcome them.

As mentioned in the lecture, due to the way random walk works, it’s hard
for node2vec to learn structural embedding from the graph. Think about how a

7

https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

new algorithm called struct2vec works. For this question, we define a clique
to be a fully connected graph, where any two nodes are connected.

Given a graph G(V,E), it defines K functions gk(u, v), k = 1, 2, ..,K, which
measure the structural similarity between nodes. The parameter k means that
only the local structures within distance k of the node are taken into account.
With all the nodes in G, regardless of the existing edges, it forms a new clique
graph where any two nodes are connected by an edge whose weight is equal to
the structural similarity between them. Since struct2vec defines K structural
similarity functions, each edge has a set of possible weights corresponding to
g1, g2, ..., gK .

The random walks are then performed on the clique. During each step, weights
are assigned according to different gk’s selected by some rule (omitted here for
simplification). Then, the algorithm chooses the next node with probability
proportional to the edge weights.

Characterize the vector representations (i.e. the embedding space) of the 10-
node cliques after running the node2vec algorithm on the graph in figure 2.1.
Assume through the random walk, nodes that are close to each other have sim-
ilar embeddings. Do you think the node embeddings will reflect the structural
similarity? Justify your answer.

Figure 2.1: Two 10-node cliques

.

2.6 node2vec & struct2vec (ii) (3 points)

In the above figure 2.1, suppose you arrive at node w. What are the nodes that
you can reach after taking one step further with the node2vec algorithm? What
about with the struct2vec algorithm (suppose that for this graph, gk(u, v) > 0

8

for any u,v,k)?

⋆ Solution ⋆

2.7 node2vec & struct2vec (iii) (3 points)

Why is it necessary to consider different gk’s during the random walk? (Please
provide a more general answer, without limiting it to the specific example given)

⋆ Solution ⋆

2.8 node2vec & struct2vec (iv) (3 points)

Characterize the vector representations (i.e. the embedding space) of the two
10-node cliques after running the struct2vec algorithm on the graph in the above
figure (Figure 2.1).

⋆ Solution ⋆

3 GCN (11 points)

Consider a graph G = (V,E), with node features x(v) for each v ∈ V . For each

node v ∈ V , let h
(0)
v = x(v) be the node’s initial embedding. At each iteration

k, the embeddings are updated as

h
(k)
N (v) = AGGREGATE

({
h(k−1)
u ,∀u ∈ N (v)

})
h(k)
v = COMBINE

(
h(k−1)
v , h

(k)
N (v)

)
,

for some functions AGGREGATE(·) and COMBINE(·). Note that the argument

to the AGGREGATE(·) function, h
(k−1)
u ,∀u ∈ N (v), is a multi-set. That is,

since multiple nodes can have the same embedding, the same element can occur

in h
(k−1)
u ,∀u ∈ N (v) multiple times. Finally, a graph itself may be embedded

by computing some function applied to the multi-set of all the node embeddings
at some final iteration K, which we notate as

READOUT
({

h(K)
v ,∀v ∈ V

})
We want to use the graph embeddings above to test whether two graphs

G1 = (V1, E1) and G2 = (V2, E2) are isomorphic. Recall that this is true if and
only if there is some bijection ϕ : V1 → V2 between nodes of G1 and nodes of
G2 such that for any u, v ∈ V1,

(u, v) ∈ E1 ⇔ (ϕ(u), ϕ(v)) ∈ E2

9

The way we use the model above to test isomorphism is the following. For
the two graphs, if their readout functions differ, that is

READOUT
({

h(K)
v ,∀v ∈ V1

})
̸= READOUT

({
h(K)
v ,∀v ∈ V2

})
,

we conclude the graphs are not isomorphic. Otherwise, we conclude the
graphs are isomorphic. Note that this algorithm is not perfect: graph isomor-
phism is thought to be hard! Below, we will explore the expressiveness of these
graph embeddings.

3.1 Isomorphism Check (2 points)

Are the following two graphs isomorphic? If so, demonstrate an isomorphism
between the sets of vertices. To demonstrate an isomorphism between two
graphs, you need to find a 1-to-1 correspondence between their nodes and edges.
If these two graphs are not isomorphic, prove it by finding a structure (node
and/or edge) in one graph which is not present in the other.

⋆ Solution ⋆

3.2 Aggregation Choice (3 points)

The choice of the AGGREGATE(·) is important for the expressiveness of the
model above. Three common choices are:

AGGREGATEmax

({
h(k−1)
u ,∀u ∈ N (v)

})
i
= max

u∈N (v)

(
h(k−1)
u

)
i
(element-wise max)

AGGREGATEmean

({
h(k−1)
u ,∀u ∈ N (v)

})
=

1

|N (v)|
∑

u∈N (v)

(
h(k−1)
u

)
AGGREGATEsum

({
h(k−1)
u ,∀u ∈ N (v)

})
=

∑
u∈N (v)

(
h(k−1)
u

)
Give an example of two graphs G1 = (V1, E1) and G2 = (V2, E2) and their initial
node features, such that for some node v1 ∈ V1 and some node v2 ∈ V2 with the

same initial features h
(0)
v1 = h

(0)
v2 , the updated features h

(1)
v1 and h

(1)
v2 are equal if

10

we use mean and max aggregation, but different if we use sum aggregation.
Hint: Your node features can be scalars rather than vectors, i.e. one dimen-
sional node features instead of n-dimensional. Also, You are free to arbitrarily
choose the number of nodes (e.g. 3 nodes), their connections (i.e. edges between
nodes) in your example.

⋆ Solution ⋆

3.3 Weisfeiler-Lehman Test (6 points)

Our isomorphism-test algorithm is known to be at most as powerful as the well-
known Weisfeiler-Lehman test (WL test). At each iteration, this algorithm
updates the representation of each node to be the set containing its previous
representation and the previous representations of all its neighbors. The full
algorithm is below.

Prove that our neural model is at most as powerful as the WL test. More
precisely, let G1 and G2 be non-isomorphic, and suppose that their node em-
beddings are updated over K iterations with the same AGGREGATE(·) and
COMBINE(·) functions. Show that if

READOUT
({

h(K)
v ,∀v ∈ V1

})
̸= READOUT

({
h(K)
v ,∀v ∈ V2

})
,

then the WL test also decides the graphs are not isomorphic.

Note: The proof has to be generic to any AGGREGATE, COMBINE,
READOUT functions. Namely, it’s not sufficient to show this for a specific
instance of the GNN model.

Hint: You can use proof by contradiction by first assuming that Weisfeiler-
Lehman test cannot decide whetherG1 andG2 are isomorphic at the end ofK’th

11

iteration. Additionally, you may assume that we can choose a hash function that
will not have any collisions.

⋆ Solution ⋆

12

	GNN Expressiveness (28 points)
	Effect of Depth on Expressiveness (4 points)
	Random Walk Matrix (4 points)
	Relation to Random Walk (i) (4 points)
	Relation to Random Walk (ii) (4 points)
	Over-Smoothing Effect (5 points)
	Learning BFS with GNN (7 points)

	Node Embedding and its Relation to Matrix Factorization (24 points)
	Simple matrix factorization (3 points)
	Alternate matrix factorization (3 points)
	BONUS: Relation to eigen-decomposition (3 points)
	Multi-hop node similarity (3 points)
	node2vec & struct2vec (i) (3 points)
	 node2vec & struct2vec (ii) (3 points)
	node2vec & struct2vec (iii) (3 points)
	node2vec & struct2vec (iv) (3 points)

	GCN (11 points)
	Isomorphism Check (2 points)
	Aggregation Choice (3 points)
	Weisfeiler-Lehman Test (6 points)

