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Lecture Plan

Finish backpropagation (10 mins)

Syntactic Structure and Dependency parsing

1. Syntactic Structure: Consistency and Dependency (20 mins)

2. Dependency Grammar and Treebanks (15 mins)

3. Transition-based dependency parsing (15 mins)

4. Neural dependency parsing (20 mins)

Key Learnings: Explicit linguistic structure and how a neural net can decide it

Reminders/comments: 

• In Assignment 2, you build a neural dependency parser using PyTorch! 

• Come to the PyTorch tutorial, Friday, 1:30pm Gates B01

• Final project discussions – come meet with us; focus of Tuesday class in week 4
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1. Fprop: visit nodes in topological sort order 
- Compute value of node given predecessors

2. Bprop:
 - initialize output gradient = 1 
 - visit nodes in reverse order:

 Compute gradient wrt each node using 
      gradient wrt successors

Done correctly, big O() complexity of fprop and 
bprop is the same

In general, our nets have regular layer-structure 
and so we can use matrices and Jacobians…

Back-Prop in General Computation Graph

…

…

Inputs

                             = successors of 

Single scalar output
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Automatic Differentiation

• The gradient computation can be 
automatically inferred from the symbolic 
expression of the fprop

• Each node type needs to know how to 
compute its output and how to compute 
the gradient wrt its inputs given the 
gradient wrt its output

• Modern DL frameworks (Tensorflow, 
PyTorch, etc.) do backpropagation for 
you but mainly leave layer/node writer 
to hand-calculate the local derivative
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Backprop Implementations
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Implementation: forward/backward API
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Implementation: forward/backward API
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Manual Gradient checking: Numeric Gradient

• For small h (≈ 1e-4),

• Easy to implement correctly

• But approximate and very slow:

• You have to recompute f for every parameter of our model 

• Useful for checking your implementation

• In the old days, we hand-wrote everything, doing this everywhere was the key test

• Now much less needed; you can use it to check layers are correctly implemented

8



Summary
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We’ve mastered the core technology of neural nets!    

• Backpropagation: recursively (and hence efficiently) apply the chain rule 
along computation graph

• [downstream gradient] = [upstream gradient] x [local gradient]

• Forward pass: compute results of operations and save intermediate 
values

• Backward pass: apply chain rule to compute gradients



Why learn all these details about gradients?
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• Modern deep learning frameworks compute gradients for you!

• Come to the PyTorch introduction this Friday!

• But why take a class on compilers or systems when they are implemented for you?

• Understanding what is going on under the hood is useful!

• Backpropagation doesn’t always work perfectly out of the box

• Understanding why is crucial for debugging and improving models

• See Karpathy article (in syllabus):
• https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

• Example in future lecture: exploding and vanishing gradients



Lecture Plan

✓ Finish backpropagation (10 mins)

Syntactic Structure and Dependency parsing

1. Syntactic Structure: Consistency and Dependency (20 mins)

2. Dependency Grammar and Treebanks (15 mins)

3. Transition-based dependency parsing (15 mins)

4. Neural dependency parsing (20 mins)

Key Learnings: Explicit linguistic structure and how a neural net can decide it

Reminders/comments: 

• In Assignment 2, you build a neural dependency parser using PyTorch! 

• Come to the PyTorch tutorial, Friday, 1:30pm Gates B01

• Final project discussions – come meet with us; focus of Tuesday class in week 4
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1. The linguistic structure of sentences – two views: Constituency 
= phrase structure grammar = context-free grammars (CFGs)

Phrase structure organizes words into nested constituents

Starting unit: words 

 the,   cat,   cuddly,   by,   door

Words combine into phrases

 the cuddly cat,       by the door

Phrases can combine into bigger phrases

 the cuddly cat by the door
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The linguistic structure of sentences – two views: Constituency = 
phrase structure grammar = context-free grammars (CFGs)

Phrase structure organizes words into nested constituents.

                         the            cat

                         a                dog

                                 large                 in a crate

                                 barking            on the table

                                 cuddly              by the door

  large           barking

talk to

walked behind
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Two views of linguistic structure: Dependency structure

• Dependency structure shows which words depend on (modify, attach to, or are 
arguments of) which other words.

Look  in  the  large  crate  in the kitchen by  the  door
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Why do we need sentence structure?

Humans communicate complex ideas by composing words together 
into bigger units to convey complex meanings

Human listeners need to work out what modifies [attaches to] what

A model needs to understand sentence structure in order to be able 
to interpret language correctly
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Prepositional phrase attachment ambiguity
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Prepositional phrase attachment ambiguity

Scientists count whales from space

Scientists count whales from space

✓
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PP attachment ambiguities multiply

• A key parsing decision is how we ‘attach’ various constituents

• PPs, adverbial or participial phrases, infinitives, coordinations, etc.

• Catalan numbers: C
n
 = (2n)!/[(n+1)!n!]

• An exponentially growing series, which arises in many tree-like contexts:

• E.g., the number of possible triangulations of a polygon with n+2 sides

• Turns up in triangulation of probabilistic graphical models (CS228)….21



Coordination scope ambiguity

Shuttle veteran and longtime NASA executive Fred Gregory appointed to board

Shuttle veteran and longtime NASA executive Fred Gregory appointed to board
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Coordination scope ambiguity
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Adjectival/Adverbial Modifier Ambiguity

25



Verb Phrase (VP) attachment ambiguity
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Dependency paths help extract semantic interpretation – 
simple practical example: extracting protein-protein interaction

KaiC nsubj  interacts  nmod:with ➔ SasA

KaiC nsubj  interacts nmod:with ➔ SasA  conj:and➔ KaiA

KaiC nsubj  interacts nmod:with ➔ SasA  conj:and➔ KaiB

 [Erkan et al. EMNLP 07, Fundel et al. 2007, etc.]

demonstrated

results

KaiC

interacts

rythmically

nsubj

The

mark

det

ccomp

that
nsubj 

KaiBKaiA

SasA

conj:and

conj:and

advmod

nmod:with

with and

cc

case

27



2. Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between 
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

submitted

Bills were

Senatorby

immigration

Brownback

andon

ports

Republican

of

Kansas
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Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between 
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

The arrows are 
commonly typed 
with the name of 
grammatical 
relations (subject, 
prepositional object, 
apposition, etc.)

submitted

Bills were

Senatorby

nsubj:pass aux obl

case

immigration

conj

Brownback

cc

andon

case

nmod

ports
flat

Republican

of

case

nmod

Kansas

appos
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Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between 
lexical items, normally binary asymmetric relations (“arrows”) called dependencies

An arrow connects a head 
with a dependent

Usually, dependencies 
form a tree (a connected, 
acyclic, single-root graph)

submitted

Bills were

Senatorby

nsubj:pass aux obl

case

immigration

conj

Brownback

cc

andon

case

nmod

ports
flat

Republican

of

case

nmod

Kansas

appos
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Pāṇini’s grammar (c. 5th century BCE)

Gallery: http://wellcomeimages.org/indexplus/image/L0032691.html
CC BY 4.0 File:Birch bark MS from Kashmir of the Rupavatra Wellcome L0032691.jpg
But this comes from much later – originally the grammar was oral
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Dependency Grammar/Parsing History

• The idea of dependency structure goes back a long way

• To Pāṇini’s grammar (c. 5th century BCE)

• Basic approach of 1st millennium Arabic grammarians

• Constituency/context-free grammar is a new-fangled invention

• 20th century invention (R.S. Wells, 1947; then Chomsky 1953, etc.)

• Modern dependency work is often sourced to Lucien Tesnière (1959)

• Was dominant approach in “East” in 20th Century (Russia, China, …)
• Good for free-er word order, inflected languages like Russian (or Latin!)

• Used in some of the earliest parsers in NLP, even in the US:

• David Hays, one of the founders of U.S. computational linguistics, built early (first?) 
dependency parser (Hays 1962) and published on dependency grammar in Language
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ROOT Discussion of the outstanding issues was completed  .

• Some people draw the arrows one way; some the other way! 

• Tesnière had them point from head to dependent – we follow that convention

• We usually add a fake ROOT so every word is a dependent of precisely 1 other node

Dependency Grammar and Dependency Structure
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The rise of annotated data & Universal Dependencies treebanks

Brown corpus (1967; PoS tagged 1979); Lancaster-IBM Treebank (starting late 1980s); 
Marcus et al. 1993, The Penn Treebank, Computational Linguistics;
Universal Dependencies: http://universaldependencies.org/

34
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The rise of annotated data

Starting off, building a treebank seems a lot slower and less useful than writing a grammar 
(by hand)

But a treebank gives us many things

• Reusability of the labor
• Many parsers, part-of-speech taggers, etc. can be built on it

• Valuable resource for linguistics

• Broad coverage, not just a few intuitions

• Frequencies and distributional information

• A way to evaluate NLP systems
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What are the straightforward sources of information for dependency parsing?

1. Bilexical affinities    The dependency [discussion → issues] is plausible

2. Dependency distance   Most dependencies are between nearby words

3. Intervening material     Dependencies rarely span intervening verbs or punctuation

4. Valency of heads   How many dependents on which side are usual for a head?

ROOT Discussion of the outstanding issues was completed  .

Dependency Conditioning Preferences
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Dependency Parsing

• A sentence is parsed by choosing for each word what other word (including ROOT) it is 
a dependent of

• Usually some constraints:

• Only one word is a dependent of ROOT

• Don’t want cycles A → B, B → A

• This makes the dependencies a tree

• Final issue is whether arrows can cross (be non-projective) or not

I give a on neuraltalk tomorrowROOT ’ll networks
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• Definition of a projective parse: There are no crossing dependency arcs when the 
words are laid out in their linear order, with all arcs above the words

• Dependencies corresponding to a CFG tree must be projective

• I.e., by forming dependencies by taking 1 child of each category as head

• Most syntactic structure is projective like this, but dependency theory normally does 
allow non-projective structures to account for displaced constituents

• You can’t easily get the semantics of certain constructions right without these 
nonprojective dependencies

Who  did  Bill  buy  the  coffee  from  yesterday  ?

Projectivity
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3. Methods of Dependency Parsing

1. Dynamic programming

Eisner (1996) gives a clever algorithm with complexity O(n3), by producing parse items 
with heads at the ends rather than in the middle

2. Graph algorithms

You create a Minimum Spanning Tree for a sentence

McDonald et al.’s (2005) O(n2) MSTParser scores dependencies independently using an 
ML classifier (he uses MIRA, for online learning, but it can be something else)

Neural graph-based parser: Dozat and Manning (2017) et seq. – very successful!

3. Constraint Satisfaction 

Edges are eliminated that don’t satisfy hard constraints. Karlsson (1990), etc.

4. “Transition-based parsing” or “deterministic dependency parsing”

Greedy choice of attachments guided by good machine learning classifiers

E.g., MaltParser (Nivre et al. 2008). Has proven highly effective. And fast.
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Greedy transition-based parsing [Nivre 2003]

• A simple form of a greedy discriminative dependency parser

• The parser does a sequence of bottom-up actions

• Roughly like “shift” or “reduce” in a shift-reduce parser – CS143, anyone?? – but the 
“reduce” actions are specialized to create dependencies with head on left or right

• The parser has:

• a stack σ, written with top to the right
• which starts with the ROOT symbol

• a buffer β, written with top to the left
• which starts with the input sentence

• a set of dependency arcs A
• which starts off empty

• a set of actions

40



Basic transition-based dependency parser

Start: σ = [ROOT], β = w1, …, wn , A = ∅ 

1. Shift              σ, wi|β, A ➔ σ|wi, β, A

2. Left-Arcr      σ|wi|wj, β, A ➔ σ|wj, β, A∪{r(wj,wi)} 

3. Right-Arcr    σ|wi|wj, β, A ➔ σ|wi, β, A∪{r(wi,wj)}

Finish: σ = [w], β = ∅
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Arc-standard transition-based parser
(there are other transition schemes …)
Analysis of “I ate fish”

ate fish[root]

Start

I

[root]

Shift

I ate fish

ate[root] fish

Shift

I

Start: σ = [ROOT], β = w1, …, wn , A = ∅ 

1. Shift              σ, wi|β, A ➔ σ|wi, β, A
2. Left-Arcr      σ|wi|wj, β, A ➔ 
                                 σ|wj, β, A∪{r(wj,wi)} 
3. Right-Arcr    σ|wi|wj, β, A ➔ 
                                 σ|wi, β, A∪{r(wi,wj)}
Finish: σ = [w], β = ∅ 
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Arc-standard transition-based parser
Analysis of “I ate fish”

ate[root] ate[root]

Left Arc

I
A +=
nsubj(ate → I)

ate fish[root] ate fish[root]

Shift

ate[root] [root]

Right Arc
A +=
obj(ate → fish)fish ate

ate[root] [root]

Right Arc
A +=
root([root] → ate)
Finish

43

A = { nsubj(ate → I),
          obj(ate → fish)
          root([root] → ate) } 

Nota bene:
In this example 
I’ve at each step 
made the 
“correct” next 
transition.
But a parser has 
to work this out – 
by exploring or 
inferring!



MaltParser [Nivre and Hall 2005]

• We have left to explain how we choose the next action 

• Answer: Stand back, I know machine learning!

• Each action is predicted by a discriminative classifier (e.g., softmax classifier) over each 
legal move

• Max of 3 untyped choices (max of |R| × 2 + 1 when typed)

• Features: top of stack word, POS; first in buffer word, POS; etc.

• There is NO search (in the simplest form)

• But you can profitably do a beam search if you wish (slower but better): 
• You keep k good parse prefixes at each time step

• The model’s accuracy is fractionally below the state of the art in dependency parsing, 
but

• It provides very fast linear time parsing, with high accuracy – great for parsing the web
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Conventional Feature Representation

Feature templates: usually a combination of 1–3 
elements from the configuration

Indicator features

0 0 0 1 0 0 1 0 0 0 1 0
binary, sparse
dim =106 –107

…
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Evaluation of Dependency Parsing: (labeled) dependency accuracy

                  ROOT   She  saw   the   video   lecture 

                       0         1      2       3         4            5

Gold

1   2  She   nsubj

2   0  saw   root 

3   5  the   det

4   5  video  nn

5   2    lecture obj

Parsed

1   2  She   nsubj

2   0  saw   root 

3   4  the   det

4   5  video  nsubj

5   2    lecture ccomp 

Acc  =   # correct deps
     # of deps

UAS =  4 / 5  =  80%
LAS  =  2 / 5  =  40%
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4. Why do we gain from a neural dependency parser?
Indicator Features Revisited

• Problem #1:  sparse

• Problem #2:  incomplete

• Problem #3: expensive to compute

More than 95% of parsing time is 
consumed by feature computation

Neural Approach:

learn a dense and compact feature representation

0.1
dense
dim = ~1000

0.9 -0.2 0.3 -0.1 -0.5…

48

Categorical features are:



A neural dependency parser [Chen and Manning 2014]

• Results on English parsing to Stanford Dependencies:

• Unlabeled attachment score (UAS) = head

• Labeled attachment score (LAS) = head and label

Parser UAS LAS sent. / s

MaltParser 89.8 87.2 469

MSTParser 91.4 88.1 10

TurboParser 92.3 89.6 8

C & M 2014 92.0 89.7 654
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First win: Distributed Representations

• We represent each word as a d-dimensional dense vector (i.e., word embedding)

• Similar words are expected to have close vectors.

• Meanwhile, part-of-speech tags (POS) and dependency labels are also represented as 
d-dimensional vectors.

• The smaller discrete sets also exhibit many semantical similarities.

come

go

werewas

is
good

NNS (plural noun) should be close to NN (singular noun).

nummod (numerical modifier) should be close to amod (adjective modifier).
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Extracting Tokens & vector representations from configuration

• We extract a set of tokens based on the stack / buffer positions:

s1

s2

b1

lc(s1)
rc(s1)

lc(s2)
rc(s2)

good
has
control

∅
∅
He
∅

JJ
VBZ
NN

∅
∅
PRP
∅

∅
∅
∅

∅
∅
nsubj
∅

+ +

word POS dep.

}
A concatenation 
of the vector 
representation of 
all these is the 
neural 
representation of 
a configuration
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Second win: Deep Learning classifiers are non-linear classifiers

• A softmax classifier assigns classes 𝑦 ∈ 𝐶 based on inputs 𝑥 ∈ ℝ𝑑  via the probability:

• Traditional ML classifiers (including Naïve Bayes, SVMs, logistic regression and softmax 
classifier) are not very powerful classifiers: they only give linear decision boundaries

• But neural networks can use multiple layers to learn much more complex nonlinear 
decision boundaries
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Neural Dependency Parser Model Architecture
(A simple feed-forward neural network multi-class classifier)

Input layer x
lookup + concat

Hidden layer h
h = ReLU(Wx + b1)

Output layer y
y = softmax(Uh + b2)

Softmax probabilities

53

{ Shift , Left-Arcr , Right-Arcr }

Log loss (cross-entropy error) will be back-
propagated to the embeddings

The hidden layer re-represents the input —
it moves inputs around in an intermediate 
layer vector space—so it can be easily 
classified with a (linear) softmax

Wins:
Distributed representations!
Non-linear classifier!



Dependency parsing for sentence structure
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Chen & Manning (2014) showed that neural networks can accurately 
determine the structure of sentences, supporting meaning interpretation

This paper was the first simple and successful neural dependency parser

The dense representations (and non-linear classifier) let it outperform other 
greedy parsers in both accuracy and speed



Further developments in transition-based neural dependency parsing
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This work was further developed and improved by others, including in particular at Google

• Bigger, deeper networks with better tuned hyperparameters

• Beam search

• Global, conditional random field (CRF)-style inference over the decision sequence

Leading to SyntaxNet and the Parsey McParseFace model (2016):

“The World’s Most Accurate Parser”

https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html 

Method UAS LAS (PTB WSJ SD 3.3)

Chen & Manning 2014 92.0 89.7

Weiss et al. 2015 93.99 92.05

Andor et al. 2016 94.61 92.79

https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html


Graph-based dependency parsers

56

• Compute a score for every possible dependency for each word

• Doing this well requires good “contextual” representations of each word token, 
which we will develop in coming lectures 

  ROOT          The            big            cat          sat

0.5

0.3

0.8

2.0

e.g., picking the head for “big”



Graph-based dependency parsers

57

• Compute a score for every possible dependency (choice of head) for each word

• Doing this well requires more than just knowing the two words 

• We need good “contextual” representations of each word token, which we will 
develop in the coming lectures 

• Repeat the same process for each other word; find the best parse (MST algorithm)

  ROOT          The            big            cat          sat

0.5

0.3

0.8

2.0

e.g., picking the head for “big”



A Neural graph-based dependency parser
[Dozat and Manning 2017; Dozat, Qi, and Manning 2017]
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• This paper revived interest in graph-based dependency parsing in a neural world

• Designed a biaffine scoring model for neural dependency parsing

• Also crucially uses a neural sequence model, something we discuss later

• Really great results!

• But slower than the simple neural transition-based parsers
• There are n2 possible dependencies in a sentence of length n

Method UAS LAS (PTB WSJ SD 3.3)

Chen & Manning 2014 92.0 89.7

Weiss et al. 2015 93.99 92.05

Andor et al. 2016 94.61 92.79

Dozat & Manning 2017 95.74 94.08
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