
Natural Language Processing
with Deep Learning

CS224N/Ling284

Diyi Yang

Lecture 3: Neural net learning: Gradients by hand (matrix calculus)
and algorithmically (the backpropagation algorithm)

1. Introduction

2

Assignment 2 is all about making sure you really understand the math of neural networks
… then we’ll let the software do it! It also teaches us about dependency parsing

We’ll go through it all quickly today, but this is the one week of quarter to most work
through the readings!!!

This will be a tough week for some! → Make sure to get help if you need it:

Visit office hours! Read tutorial materials on the syllabus!

Thursday will be mainly linguistics! Some people find that tough too.

PyTorch tutorial: 1:30-2:20pm this Friday Gates B01

A great chance to get an intro to PyTorch, a key deep learning package!

Quick comparison of Word2vec and GloVe

4

Word2vec GloVe

Name Word 2 vector Global vector

Objective Learns by predicting the neighboring
words using the center word

Learns by factorizing the word co-occurrence
matrix

Data Local context
Sliding window of neighbor words

Global context
Co-occurrence info across corpus

Optimization Using neural nets
Optimize log likelihood

Doing matrix factorization
Optimize least square

4. How to evaluate word vectors?

• Related to general evaluation in NLP: Intrinsic vs. extrinsic

• Intrinsic:
• Evaluation on a specific/intermediate subtask

• Fast to compute

• Helps to understand that system

• Not clear if it’s helpful unless correlation to real task is established

• Extrinsic:
• Evaluation on a real task

• Can take a long time to compute accuracy

• Unclear if the subsystem is the problem or its interaction or other subsystems

• If replacing exactly one subsystem with another improves accuracy → Winning!

5

Intrinsic word vector evaluation

• Word Vector Analogies

• Evaluate word vectors by how well their cosine
distance after addition captures intuitive
semantic and syntactic analogy questions

• Discarding the input words from the search (!)

man:woman :: king:?

a:b :: c:?

king

man

woman

6

Meaning similarity: Another intrinsic word vector evaluation

• Word vector distances and their correlation with human judgments

• Example dataset: WordSim353
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

7

Word 1 Word 2 Human (mean)

tiger cat 7.35

tiger tiger 10

book paper 7.46

computer internet 7.58

plane car 5.77

professor doctor 6.62

stock phone 1.62

stock CD 1.31

stock jaguar 0.92

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Correlation evaluation

• Word vector distances and their correlation with human judgments

8

Extrinsic word vector evaluation

• One example where good word vectors should help directly: named entity
recognition: identifying references to a person, organization or location:
Chris Manning lives in Palo Alto.

9

5. Word senses and word sense ambiguity

• Most words have lots of meanings!

• Especially common words

• Especially words that have existed for a long time

• Example: pike

• Does one vector capture all these meanings or do we have a mess?

10

pike

• A sharp point or staff

• A type of elongated fish

• A railroad line or system

• A type of road

• The future (coming down the pike)

• A type of body position (as in diving)

• To kill or pierce with a pike

• To make one’s way (pike along)

• In Australian English, pike means to pull out from doing something: I reckon he could
have climbed that cliff, but he piked!

11

Improving Word Representations Via Global Context And
Multiple Word Prototypes (Huang et al. 2012)

• Idea: Cluster word windows around words, retrain with each word assigned to multiple
different clusters bank1, bank2, etc.

12

Linear Algebraic Structure of Word Senses, with Applications
to Polysemy (Arora, …, Ma, …, TACL 2018)

• Different senses of a word reside in a linear superposition (weighted sum) in standard word
embeddings like word2vec

• 𝑣pike = 𝛼1𝑣pike1
+ 𝛼2𝑣pike2

+ 𝛼3𝑣pike3

• Where 𝛼1 =
𝑓1

𝑓1+𝑓2+𝑓3
, etc., for frequency f

• Surprising result:

• Because of ideas from sparse coding you can actually separate out the senses (providing
they are relatively common)!

13

6. Deep Learning Classification: Named Entity Recognition (NER)

• The task: find and classify names in text, by labeling word tokens, for example:

Last night , Paris Hilton wowed in a sequin gown .

 PER PER

Samuel Quinn was arrested in the Hilton Hotel in Paris in April 1989 .

PER PER LOC LOC LOC DATE DATE

• Possible uses:

• Tracking mentions of particular entities in documents

• For question answering, answers are usually named entities

• Relating sentiment analysis to the entity under discussion

• Often followed by Entity Linking/Canonicalization into a Knowledge Base such as Wikidata

14

Simple NER: Window classification using binary logistic classifier

• Idea: classify each word in its context window of neighboring words

• Train logistic classifier on hand-labeled data to classify center word {yes/no} for each
class based on a concatenation of word vectors in a window

• Really, we usually use multi-class softmax, but we’re trying to keep it simple ☺

• Example: Classify “Paris” as +/– location in context of sentence with window length 2:

 the museums in Paris are amazing to see .

Xwindow = [xmuseums xin xParis xare xamazing]
T

• Resulting vector xwindow = x ∈ R5d

• To classify all words: run classifier for each class on the vector centered on each word
in the sentence

15

Classification review and notation

• Supervised learning: we have a training dataset consisting of samples

 {xi,yi}
N

i=1

• xi are inputs, e.g., words (indices or vectors!), sentences, documents, etc.

• Dimension d

• yi are labels (one of C classes) we try to predict, for example:

• classes: sentiment (+/–), named entities, buy/sell decision

• other words

• later: multi-word sequences

16

Neural classification

17

• Typical ML/stats softmax classifier:

• Learned parameters θ are just elements
of W (not input representation x, which has sparse symbolic features)

• Classifier gives linear decision boundary, which can be limiting

• A neural network classifier differs in that:

• We learn both W and (distributed!) representations for words

• The word vectors x re-represent one-hot vectors, moving them
around in an intermediate layer vector space, for easy classification
with a (linear) softmax classifier
• Conceptually, we have an embedding layer: x = Le

• We use deep networks—more layers—that let us re-represent and
compose our data multiple times, giving a non-linear classifier

But typically, it is linear
relative to the pre-final
layer representation

NER: Binary classification for center word being location

• We do supervised training and want high score if it’s a location

𝐽𝑡 𝜃 = 𝜎 𝑠 =
1

1 + 𝑒−𝑠

18

x = [xmuseums xin xParis xare xamazing]

predicted model
probability of class

f = Some element-
wise non-linear
function, e.g.,
logistic, tanh, ReLU

∈ R5d

Embedding of
1-hot words

tanh is just a rescaled and shifted sigmoid (2×as steep, [−1,1]):

Logistic and tanh are still used (e.g., logistic to get a probability)

However, now, for deep networks, the first thing to try is ReLU: it
trains quickly and performs well due to good gradient backflow.

ReLU has a negative “dead zone” that recent proposals mitigate

GELU is frequently used with Transformers (BERT, RoBERTa, etc.)

Non-linearities, old and new

logistic (“sigmoid”) tanh hard tanh ReLU

tanh(z) = 2logistic(2z)-1

1

0

1

−1

arXiv:1710.05941

Swish arXiv:1710.05941
swish 𝑥 = 𝑥 ∙ logistic(𝑥)

ReLU 𝑧 = max(𝑧, 0)

(Rectified Linear Unit) Leaky ReLU /
Parametric ReLU

0

0
0

arXiv:1606.08415

GELU arXiv:1606.08415

GELU 𝑥
 = 𝑥 ∙ 𝑃 𝑋 ≤ 𝑥 , 𝑋~𝑁(0,1)
 ≈ 𝑥 ∙ logistic(1.702𝑥)

https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1606.08415

Non-linearities (i.e., “f ” on previous slide): Why they’re needed

20

• Neural networks do function approximation,
e.g., regression or classification

• Without non-linearities, deep neural networks
can’t do anything more than a linear transform

• Extra layers could just be compiled down into a
single linear transform: W1 W2 x = Wx

• But, with more layers that include non-linearities,
they can approximate any complex function!

Training with “cross entropy loss” – you use this in PyTorch!

• Until now, our objective was stated as to maximize the probability of the correct class y
or equivalently we can minimize the negative log probability of that class

• Now restated in terms of cross entropy, a concept from information theory

• Let the true probability distribution be p; let our computed model probability be q

• The cross entropy is:

• Assuming a ground truth (or true or gold or target) probability distribution that is 1 at
the right class and 0 everywhere else, p = [0, …, 0, 1, 0, …, 0], then:

• Because of one-hot p, the only term left is the negative log probability of the true
class yi: − log 𝑝(𝑦𝑖|𝑥𝑖)

21

Cross entropy can be used in other ways with a more interesting p,
but for now just know that you’ll want to use it as the loss in PyTorch

Remember: Stochastic Gradient Descent

Update equation:

i.e., for each parameter: 𝜃𝑗
𝑛𝑒𝑤 = 𝜃𝑗

𝑜𝑙𝑑 − 𝛼
𝜕𝐽 𝜃

𝜕𝜃𝑗
𝑜𝑙𝑑

In deep learning, 𝜃 includes the data representation (e.g., word vectors) too!

How can we compute ∇𝜃𝐽(𝜃)?

1. By hand

2. Algorithmically: the backpropagation algorithm

𝛼 = step size or learning rate

22

Lecture Plan

Lecture 4: Gradients by hand and algorithmically

1. Introduction (10 mins)

2. Matrix calculus (35 mins)

3. Backpropagation (35 mins)

Key Learning: The mathematics and practical implementation of how neural networks are
trained by backpropagation

23

Computing Gradients by Hand

24

• Matrix calculus: Fully vectorized gradients

• “Multivariable calculus is just like single-variable calculus if you use matrices”

• Much faster and more useful than non-vectorized gradients

• But doing a non-vectorized gradient can be good for intuition; recall the first
lecture for an example

• Lecture notes and matrix calculus notes cover this material in more detail

• You might also review Math 51, which has an online textbook:
http://web.stanford.edu/class/math51/textbook.html

http://web.stanford.edu/class/math51/textbook.html

Gradients

25

• Given a function with 1 output and 1 input

 𝑓 𝑥 = 𝑥3

• It’s gradient (slope) is its derivative

𝑑𝑓

𝑑𝑥
= 3𝑥2

“How much will the output change if we change the input a bit?”
At x = 1 it changes about 3 times as much: 1.013 = 1.03

At x = 4 it changes about 48 times as much: 4.013 = 64.48

Gradients

• Given a function with 1 output and n inputs

• Its gradient is a vector of partial derivatives with
respect to each input

26

Jacobian Matrix: Generalization of the Gradient

• Given a function with m outputs and n inputs

• It’s Jacobian is an m x n matrix of partial derivatives

27

Chain Rule

• For composition of one-variable functions: multiply derivatives

• For multiple variables functions: multiply Jacobians

28

Example Jacobian: Elementwise activation Function

29

Example Jacobian: Elementwise activation Function

Function has n outputs and n inputs → n by n Jacobian

30

Example Jacobian: Elementwise activation Function

31

Example Jacobian: Elementwise activation Function

32

Example Jacobian: Elementwise activation Function

33

Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes

34

Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes

35

Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes

36

Fine print: This is the correct Jacobian.
Later we discuss the “shape convention”;
using it the answer would be h.

Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes

37

Back to our Neural Net!

x = [xmuseums xin xParis xare xamazing]

38

Back to our Neural Net!

• Let’s find

• Really, we care about the gradient of the loss J but we
will compute the gradient of the score for simplicity

39

x = [xmuseums xin xParis xare xamazing]

1. Break up equations into simple pieces

40

Carefully define your variables and keep track of their dimensionality!

2. Apply the chain rule

41

2. Apply the chain rule

42

2. Apply the chain rule

43

2. Apply the chain rule

44

3. Write out the Jacobians

Useful Jacobians from previous slide

45

3. Write out the Jacobians

46

𝒖𝑇

Useful Jacobians from previous slide

3. Write out the Jacobians

47

𝒖𝑇

Useful Jacobians from previous slide

3. Write out the Jacobians

48

𝒖𝑇

Useful Jacobians from previous slide

3. Write out the Jacobians

49

𝒖𝑇

𝒖𝑇

Useful Jacobians from previous slide
.

⊙ = Hadamard product =
element-wise multiplication
of 2 vectors to give vector

Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:

50

Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:

The same! Let’s avoid duplicated computation …

51

Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:

52

𝛿 is the upstream gradient (“error signal”)

𝒖𝑇

Derivative with respect to Matrix: Output shape

• What does look like?

• 1 output, nm inputs: 1 by nm Jacobian?

• Inconvenient to then do

53

Derivative with respect to Matrix: Output shape

• What does look like?

• 1 output, nm inputs: 1 by nm Jacobian?

• Inconvenient to then do

• Instead, we leave pure math and use the shape convention:
the shape of the gradient is the shape of the parameters!

• So is n by m:

54

Derivative with respect to Matrix

• What is

• is going to be in our answer

• The other term should be because

• Answer is:

55

𝛿 is upstream gradient (“error signal”) at 𝑧
𝑥 is local input signal

Why the Transposes?

56

• Hacky answer: this makes the dimensions work out!

• Useful trick for checking your work!

• Full explanation in the lecture notes

• Each input goes to each output – you want to get outer product

Deriving local input gradient in backprop

• For
𝜕𝒛

𝜕𝑾
 in our equation:

• Let’s consider the derivative of a single weight Wij

• Wij only contributes to zi

• For example: W23 is only
used to compute z2 not z1

57

x1 x2 x3 +1

f(z1)= h1 h2 =f(z2)

s u2

W23

b2

𝜕𝑠

𝜕𝑾
= 𝜹

𝜕𝒛

𝜕𝑾
= 𝜹

𝜕

𝜕𝑾
(𝑾𝒙 + 𝒃)

𝜕𝑧𝑖

𝜕𝑊𝑖𝑗
=

𝜕

𝜕𝑊𝑖𝑗
𝑾𝑖∙𝒙 + 𝑏𝑖

 =
𝜕

𝜕𝑊𝑖𝑗
 σ𝑘=1

𝑑 𝑊𝑖𝑘𝑥𝑘 = 𝑥𝑗

What shape should derivatives be?

• Similarly, is a row vector

• But shape convention says our gradient should be a column vector because b is
a column vector …

• Disagreement between Jacobian form (which makes the chain rule
easy) and the shape convention (which makes implementing SGD easy)

• We expect answers in the assignment to follow the shape convention

• But Jacobian form is useful for computing the answers

58

What shape should derivatives be?

Two options for working through specific problems:

1. Use Jacobian form as much as possible, reshape to
follow the shape convention at the end:

• What we just did. But at the end transpose to make the
derivative a column vector, resulting in

2. Always follow the shape convention

• Look at dimensions to figure out when to transpose and/or
reorder terms

• The error message 𝜹 that arrives at a hidden layer has the
same dimensionality as that hidden layer

59

3. Backpropagation

We’ve almost shown you backpropagation

It’s taking derivatives and using the (generalized, multivariate, or matrix)
chain rule

Other trick:

We re-use derivatives computed for higher layers in computing
derivatives for lower layers to minimize computation

60

Computation Graphs and Backpropagation

 +

• Software represents our neural
net equations as a graph

• Source nodes: inputs

• Interior nodes: operations

61

Computation Graphs and Backpropagation

 +

• Software represents our neural
net equations as a graph

• Source nodes: inputs

• Interior nodes: operations

• Edges pass along result of the
operation

62

Computation Graphs and Backpropagation

 +

• Software represents our neural
net equations as a graph

• Source nodes: inputs

• Interior nodes: operations

• Edges pass along result of the
operation

“Forward Propagation”

63

Backpropagation

 +

• Then go backwards along edges

• Pass along gradients

64

Backpropagation: Single Node

• Node receives an “upstream gradient”

• Goal is to pass on the correct
“downstream gradient”

Upstream
gradient 65

Downstream
gradient

Backpropagation: Single Node

Downstream
gradient

Upstream
gradient

• Each node has a local gradient

• The gradient of its output with
respect to its input

Local
gradient66

Backpropagation: Single Node

Downstream
gradient

Upstream
gradient

• Each node has a local gradient

• The gradient of its output with
respect to its input

Local
gradient67

Chain
rule!

Backpropagation: Single Node

Downstream
gradient

Upstream
gradient

• Each node has a local gradient

• The gradient of its output with
respect to its input

Local
gradient

[downstream gradient] = [upstream gradient] x [local gradient]

68

Backpropagation: Single Node

*

• What about nodes with multiple inputs?

69

Backpropagation: Single Node

Downstream
gradients

Upstream
gradient

Local
gradients

*

• Multiple inputs → multiple local gradients

70

An Example

71

An Example

+

*

max

72

Forward prop steps

An Example

+

*

max

73

Forward prop steps

6

3

2

1

2

2

0

An Example

+

*

max

74

Forward prop steps

6

3

2

1

2

2

0

Local gradients

An Example

+

*

max

75

Forward prop steps

6

3

2

1

2

2

0

Local gradients

An Example

+

*

max

76

Forward prop steps

6

3

2

1

2

2

0

Local gradients

An Example

+

*

max

77

Forward prop steps

6

3

2

1

2

2

0

Local gradients

An Example

+

*

max

78

Forward prop steps

6

3

2

1

2

2

0

Local gradients

upstream * local = downstream

1

1*3 = 3

1*2 = 2

An Example

+

*

max

79

Forward prop steps

6

3

2

1

2

2

0

Local gradients

upstream * local = downstream

1

3

2

3*1 = 3

3*0 = 0

An Example

+

*

max

80

Forward prop steps

6

3

2

1

2

2

0

Local gradients

upstream * local = downstream

1

3

2

3

0

2*1 = 2

2*1 = 2

An Example

+

*

max

81

Forward prop steps

6

3

2

1

2

2

0

Local gradients

1

3

2

3

0

2

2

Gradients sum at outward branches

82

+

Gradients sum at outward branches

83

+

Node Intuitions

+

*

max

84

6

3

2

1

2

2

0

1

2
2

2

• + “distributes” the upstream gradient to each summand

Node Intuitions

+

*

max

85

6

3

2

1

2

2

0

1

3
3

0

• + “distributes” the upstream gradient to each summand

• max “routes” the upstream gradient

Node Intuitions

+

*

max

86

6

3

2

1

2

2

0

1

3

2

• + “distributes” the upstream gradient

• max “routes” the upstream gradient

• * “switches” the upstream gradient

Efficiency: compute all gradients at once

* +

• Incorrect way of doing backprop:

• First compute

87

Efficiency: compute all gradients at once

* +

• Incorrect way of doing backprop:

• First compute

• Then independently compute

• Duplicated computation!

88

Efficiency: compute all gradients at once

* +

• Correct way:

• Compute all the gradients at once

• Analogous to using 𝜹 when we
computed gradients by hand

89

1. Fprop: visit nodes in topological sort order
- Compute value of node given predecessors

2. Bprop:
 - initialize output gradient = 1
 - visit nodes in reverse order:

 Compute gradient wrt each node using
 gradient wrt successors

Done correctly, big O() complexity of fprop and
bprop is the same

In general, our nets have regular layer-structure
and so we can use matrices and Jacobians…

Back-Prop in General Computation Graph

…

…

Inputs

 = successors of

Single scalar output

90

Automatic Differentiation

• The gradient computation can be
automatically inferred from the symbolic
expression of the fprop

• Each node type needs to know how to
compute its output and how to compute
the gradient wrt its inputs given the
gradient wrt its output

• Modern DL frameworks (Tensorflow,
PyTorch, etc.) do backpropagation for
you but mainly leave layer/node writer
to hand-calculate the local derivative

91

Backprop Implementations

92

Implementation: forward/backward API

93

Implementation: forward/backward API

94

Manual Gradient checking: Numeric Gradient

• For small h (≈ 1e-4),

• Easy to implement correctly

• But approximate and very slow:

• You have to recompute f for every parameter of our model

• Useful for checking your implementation

• In the old days, we hand-wrote everything, doing this everywhere was the key test

• Now much less needed; you can use it to check layers are correctly implemented

95

Summary

96

We’ve mastered the core technology of neural nets!

• Backpropagation: recursively (and hence efficiently) apply the chain rule
along computation graph

• [downstream gradient] = [upstream gradient] x [local gradient]

• Forward pass: compute results of operations and save intermediate
values

• Backward pass: apply chain rule to compute gradients

Why learn all these details about gradients?

97

• Modern deep learning frameworks compute gradients for you!

• Come to the PyTorch introduction this Friday!

• But why take a class on compilers or systems when they are implemented for you?

• Understanding what is going on under the hood is useful!

• Backpropagation doesn’t always work perfectly out of the box

• Understanding why is crucial for debugging and improving models

• See Karpathy article (in syllabus):
• https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

• Example in future lecture: exploding and vanishing gradients

	Slide 1: Natural Language Processing with Deep Learning CS224N/Ling284
	Slide 2: 1. Introduction
	Slide 4: Quick comparison of Word2vec and GloVe
	Slide 5: 4. How to evaluate word vectors?
	Slide 6: Intrinsic word vector evaluation
	Slide 7: Meaning similarity: Another intrinsic word vector evaluation
	Slide 8: Correlation evaluation
	Slide 9: Extrinsic word vector evaluation
	Slide 10: 5. Word senses and word sense ambiguity
	Slide 11: pike
	Slide 12: Improving Word Representations Via Global Context And Multiple Word Prototypes (Huang et al. 2012)
	Slide 13: Linear Algebraic Structure of Word Senses, with Applications to Polysemy (Arora, …, Ma, …, TACL 2018)
	Slide 14: 6. Deep Learning Classification: Named Entity Recognition (NER)
	Slide 15: Simple NER: Window classification using binary logistic classifier
	Slide 16: Classification review and notation
	Slide 17: Neural classification
	Slide 18: NER: Binary classification for center word being location
	Slide 19: Non-linearities, old and new
	Slide 20: Non-linearities (i.e., “f ” on previous slide): Why they’re needed
	Slide 21: Training with “cross entropy loss” – you use this in PyTorch!
	Slide 22: Remember: Stochastic Gradient Descent
	Slide 23: Lecture Plan
	Slide 24: Computing Gradients by Hand
	Slide 25: Gradients
	Slide 26: Gradients
	Slide 27: Jacobian Matrix: Generalization of the Gradient
	Slide 28: Chain Rule
	Slide 29: Example Jacobian: Elementwise activation Function
	Slide 30: Example Jacobian: Elementwise activation Function
	Slide 31: Example Jacobian: Elementwise activation Function
	Slide 32: Example Jacobian: Elementwise activation Function
	Slide 33: Example Jacobian: Elementwise activation Function
	Slide 34: Other Jacobians
	Slide 35: Other Jacobians
	Slide 36: Other Jacobians
	Slide 37: Other Jacobians
	Slide 38: Back to our Neural Net!
	Slide 39: Back to our Neural Net!
	Slide 40: 1. Break up equations into simple pieces
	Slide 41: 2. Apply the chain rule
	Slide 42: 2. Apply the chain rule
	Slide 43: 2. Apply the chain rule
	Slide 44: 2. Apply the chain rule
	Slide 45: 3. Write out the Jacobians
	Slide 46: 3. Write out the Jacobians
	Slide 47: 3. Write out the Jacobians
	Slide 48: 3. Write out the Jacobians
	Slide 49: 3. Write out the Jacobians
	Slide 50: Re-using Computation
	Slide 51: Re-using Computation
	Slide 52: Re-using Computation
	Slide 53: Derivative with respect to Matrix: Output shape
	Slide 54: Derivative with respect to Matrix: Output shape
	Slide 55: Derivative with respect to Matrix
	Slide 56: Why the Transposes?
	Slide 57: Deriving local input gradient in backprop
	Slide 58: What shape should derivatives be?
	Slide 59: What shape should derivatives be?
	Slide 60: 3. Backpropagation
	Slide 61: Computation Graphs and Backpropagation
	Slide 62: Computation Graphs and Backpropagation
	Slide 63: Computation Graphs and Backpropagation
	Slide 64: Backpropagation
	Slide 65: Backpropagation: Single Node
	Slide 66: Backpropagation: Single Node
	Slide 67: Backpropagation: Single Node
	Slide 68: Backpropagation: Single Node
	Slide 69: Backpropagation: Single Node
	Slide 70: Backpropagation: Single Node
	Slide 71: An Example
	Slide 72: An Example
	Slide 73: An Example
	Slide 74: An Example
	Slide 75: An Example
	Slide 76: An Example
	Slide 77: An Example
	Slide 78: An Example
	Slide 79: An Example
	Slide 80: An Example
	Slide 81: An Example
	Slide 82: Gradients sum at outward branches
	Slide 83: Gradients sum at outward branches
	Slide 84: Node Intuitions
	Slide 85: Node Intuitions
	Slide 86: Node Intuitions
	Slide 87: Efficiency: compute all gradients at once
	Slide 88: Efficiency: compute all gradients at once
	Slide 89: Efficiency: compute all gradients at once
	Slide 90: Back-Prop in General Computation Graph
	Slide 91: Automatic Differentiation
	Slide 92: Backprop Implementations
	Slide 93: Implementation: forward/backward API
	Slide 94: Implementation: forward/backward API
	Slide 95: Manual Gradient checking: Numeric Gradient
	Slide 96: Summary
	Slide 97: Why learn all these details about gradients?

