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Lecture 3: Neural net learning: Gradients by hand (matrix calculus) 
and algorithmically (the backpropagation algorithm)



1. Introduction

2

Assignment 2 is all about making sure you really understand the math of neural networks 
… then we’ll let the software do it! It also teaches us about dependency parsing

We’ll go through it all quickly today, but this is the one week of quarter to most work 
through the readings!!!

This will be a tough week for some! → Make sure to get help if you need it: 

Visit office hours! Read tutorial materials on the syllabus! 

Thursday will be mainly linguistics! Some people find that tough too. 

PyTorch tutorial: 1:30-2:20pm this Friday Gates B01

A great chance to get an intro to PyTorch, a key deep learning package!



Quick comparison of Word2vec and GloVe
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Word2vec GloVe

Name Word 2 vector Global vector 

Objective Learns by predicting the neighboring 
words using the center word

Learns by factorizing the word co-occurrence 
matrix

Data Local context
Sliding window of neighbor words

Global context
Co-occurrence info across corpus

Optimization Using neural nets
Optimize log likelihood 

Doing matrix factorization
Optimize least square 



4. How to evaluate word vectors?

• Related to general evaluation in NLP: Intrinsic vs. extrinsic

• Intrinsic:
• Evaluation on a specific/intermediate subtask

• Fast to compute

• Helps to understand that system

• Not clear if it’s helpful unless correlation to real task is established

• Extrinsic:
• Evaluation on a real task

• Can take a long time to compute accuracy

• Unclear if the subsystem is the problem or its interaction or other subsystems

• If replacing exactly one subsystem with another improves accuracy → Winning!
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Intrinsic word vector evaluation

• Word Vector Analogies

• Evaluate word vectors by how well their cosine 
distance after addition captures intuitive 
semantic and syntactic analogy questions

• Discarding the input words from the search (!)

man:woman :: king:?

a:b :: c:?

king

man

woman
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Meaning similarity: Another intrinsic word vector evaluation

• Word vector distances and their correlation with human judgments

• Example dataset: WordSim353 
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
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Word 1 Word 2 Human (mean)

tiger cat 7.35

tiger tiger 10

book paper 7.46

computer internet 7.58

plane car 5.77

professor doctor 6.62

stock phone 1.62

stock CD 1.31

stock jaguar 0.92

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/


Correlation evaluation

• Word vector distances and their correlation with human judgments
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Extrinsic word vector evaluation

• One example where good word vectors should help directly: named entity 
recognition: identifying references to a person, organization or location:  
Chris Manning lives in Palo Alto.
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5. Word senses and word sense ambiguity

• Most words have lots of meanings! 

• Especially common words

• Especially words that have existed for a long time

• Example: pike

• Does one vector capture all these meanings or do we have a mess?
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pike

• A sharp point or staff 

• A type of elongated fish 

• A railroad line or system 

• A type of road 

• The future (coming down the pike) 

• A type of body position (as in diving) 

• To kill or pierce with a pike 

• To make one’s way (pike along)

• In Australian English, pike means to pull out from doing something: I reckon he could 
have climbed that cliff, but he piked!
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Improving Word Representations Via Global Context And 
Multiple Word Prototypes (Huang et al. 2012)

• Idea: Cluster word windows around words, retrain with each word assigned to multiple 
different clusters bank1, bank2, etc.
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Linear Algebraic Structure of Word Senses, with Applications 
to Polysemy (Arora, …, Ma, …, TACL 2018)

• Different senses of a word reside in a linear superposition (weighted sum) in standard word 
embeddings like word2vec

• 𝑣pike = 𝛼1𝑣pike1
+ 𝛼2𝑣pike2

+ 𝛼3𝑣pike3
 

• Where 𝛼1 =
𝑓1

𝑓1+𝑓2+𝑓3
, etc., for frequency f

• Surprising result:

• Because of ideas from sparse coding you can actually separate out the senses (providing 
they are relatively common)!
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6. Deep Learning Classification: Named Entity Recognition (NER)

• The task: find and classify names in text, by labeling word tokens, for example:

Last night , Paris Hilton wowed in a sequin gown .

                     PER   PER     

Samuel Quinn was arrested in the Hilton Hotel in Paris in April 1989 .

PER        PER                                         LOC     LOC        LOC      DATE DATE

• Possible uses:

• Tracking mentions of particular entities in documents

• For question answering, answers are usually named entities

• Relating sentiment analysis to the entity under discussion

• Often followed by Entity Linking/Canonicalization into a Knowledge Base such as Wikidata
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Simple NER: Window classification using binary logistic classifier

• Idea: classify each word in its context window of neighboring words

• Train logistic classifier on hand-labeled data to classify center word {yes/no} for each 
class based on a concatenation of word vectors in a window

• Really, we usually use multi-class softmax, but we’re trying to keep it simple ☺

• Example: Classify “Paris” as +/– location in context of sentence with window length 2: 

 the     museums      in         Paris         are      amazing    to      see      .

Xwindow  = [  xmuseums xin           xParis            xare         xamazing ]
T

• Resulting vector xwindow = x ∈ R5d    

• To classify all words: run classifier for each class on the vector centered on each word 
in the sentence
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Classification review and notation

• Supervised learning: we have a training dataset consisting of samples 

    {xi,yi}
N

i=1

• xi are inputs, e.g., words (indices or vectors!), sentences, documents, etc. 

• Dimension d

• yi are labels (one of C classes) we try to predict, for example:

• classes: sentiment (+/–), named entities, buy/sell decision

• other words

• later: multi-word sequences
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Neural classification
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• Typical ML/stats softmax classifier:

• Learned parameters θ are just elements
of W (not input representation x, which has sparse symbolic features)

• Classifier gives linear decision boundary, which can be limiting

• A neural network classifier differs in that:

• We learn both W and (distributed!) representations for words

• The word vectors x re-represent one-hot vectors, moving them 
around in an intermediate layer vector space, for easy classification 
with a (linear) softmax classifier
• Conceptually, we have an embedding layer: x = Le

• We use deep networks—more layers—that let us re-represent and 
compose our data multiple times, giving a non-linear classifier

But typically, it is linear 
relative to the pre-final 
layer representation



NER: Binary classification for center word being location

• We do supervised training and want high score if it’s a location

𝐽𝑡 𝜃 = 𝜎 𝑠 =
1

1 + 𝑒−𝑠
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x  = [  xmuseums xin         xParis            xare        xamazing ]

predicted model 
probability of class

f = Some element-
wise non-linear 
function, e.g., 
logistic, tanh, ReLU

∈ R5d 

Embedding of
1-hot words



tanh is just a rescaled and shifted sigmoid (2×as steep, [−1,1]): 

 

Logistic and tanh are still used (e.g., logistic to get a probability)

However, now, for deep networks, the first thing to try is ReLU: it 
trains quickly and performs well due to good gradient backflow.

ReLU has a negative “dead zone” that recent proposals mitigate

GELU is frequently used with Transformers (BERT, RoBERTa, etc.)

Non-linearities, old and new

logistic (“sigmoid”)                  tanh                       hard tanh                         ReLU

tanh(z) = 2logistic(2z)-1

1

0

1

−1

arXiv:1710.05941

Swish arXiv:1710.05941
swish 𝑥 = 𝑥 ∙ logistic(𝑥)

ReLU 𝑧 = max(𝑧, 0)

(Rectified Linear Unit) Leaky ReLU /
Parametric ReLU

0

0
0

arXiv:1606.08415

GELU arXiv:1606.08415

GELU 𝑥
   = 𝑥 ∙ 𝑃 𝑋 ≤ 𝑥 , 𝑋~𝑁(0,1)
   ≈ 𝑥 ∙ logistic(1.702𝑥)

https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1606.08415


Non-linearities (i.e., “f ” on previous slide): Why they’re needed
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• Neural networks do function approximation, 
e.g., regression or classification

• Without non-linearities, deep neural networks 
can’t do anything more than a linear transform

• Extra layers could just be compiled down into a 
single linear transform: W1 W2 x = Wx

• But, with more layers that include non-linearities, 
they can approximate any complex function!



Training with “cross entropy loss” – you use this in PyTorch!

• Until now, our objective was stated as to maximize the probability of the correct class y 
or equivalently we can minimize the negative log probability of that class

• Now restated in terms of cross entropy, a concept from information theory

• Let the true probability distribution be p; let our computed model probability be q

• The cross entropy is: 

• Assuming a ground truth (or true or gold or target) probability distribution that is 1 at 
the right class and 0 everywhere else, p = [0, …, 0, 1, 0, …, 0], then:

• Because of one-hot p, the only term left is the negative log probability of the true 
class yi: − log 𝑝(𝑦𝑖|𝑥𝑖)

21

Cross entropy can be used in other ways with a more interesting p, 
but for now just know that you’ll want to use it as the loss in PyTorch



Remember: Stochastic Gradient Descent

Update equation:

i.e., for each parameter: 𝜃𝑗
𝑛𝑒𝑤 = 𝜃𝑗

𝑜𝑙𝑑 − 𝛼
𝜕𝐽 𝜃

𝜕𝜃𝑗
𝑜𝑙𝑑

In deep learning, 𝜃 includes the data representation (e.g., word vectors) too! 

How can we compute ∇𝜃𝐽(𝜃)?

1. By hand

2. Algorithmically: the backpropagation algorithm

𝛼 = step size or learning rate

22



Lecture Plan

Lecture 4: Gradients by hand and algorithmically

1. Introduction (10 mins)

2. Matrix calculus (35 mins)

3. Backpropagation (35 mins)

Key Learning: The mathematics and practical implementation of how neural networks are 
trained by backpropagation

23



Computing Gradients by Hand
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• Matrix calculus: Fully vectorized gradients

• “Multivariable calculus is just like single-variable calculus if you use matrices” 

• Much faster and more useful than non-vectorized gradients

• But doing a non-vectorized gradient can be good for intuition; recall the first 
lecture for an example

• Lecture notes and matrix calculus notes cover this material in more detail

• You might also review Math 51, which has an online textbook: 
http://web.stanford.edu/class/math51/textbook.html 

http://web.stanford.edu/class/math51/textbook.html


Gradients
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• Given a function with 1 output and 1 input

 𝑓 𝑥 = 𝑥3

• It’s gradient (slope) is its derivative 

𝑑𝑓

𝑑𝑥
= 3𝑥2

“How much will the output change if we change the input a bit?”
At x = 1 it changes about 3 times as much: 1.013 = 1.03

At x = 4 it changes about 48 times as much: 4.013 = 64.48



Gradients

• Given a function with 1 output and n inputs

• Its gradient is a vector of partial derivatives with 
respect to each input 
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Jacobian Matrix: Generalization of the Gradient

• Given a function with m outputs and n inputs

• It’s Jacobian is an m x n matrix of partial derivatives 
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Chain Rule

• For composition of one-variable functions: multiply derivatives

• For multiple variables functions: multiply Jacobians
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Example Jacobian: Elementwise activation Function
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Example Jacobian: Elementwise activation Function

Function has n outputs and n inputs → n by n Jacobian
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Example Jacobian: Elementwise activation Function
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Example Jacobian: Elementwise activation Function
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Example Jacobian: Elementwise activation Function
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Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes
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Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes
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Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes

36

Fine print: This is the correct Jacobian. 
Later we discuss the “shape convention”; 
using it the answer would be h.



Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes
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Back to our Neural Net!

x  = [  xmuseums xin         xParis            xare        xamazing ]
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Back to our Neural Net!

• Let’s find

• Really, we care about the gradient of the loss J but we 
will compute the gradient of the score for simplicity
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x  = [  xmuseums xin         xParis            xare        xamazing ]



1. Break up equations into simple pieces
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Carefully define your variables and keep track of their dimensionality!



2. Apply the chain rule
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2. Apply the chain rule
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2. Apply the chain rule
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2. Apply the chain rule
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3. Write out the Jacobians

Useful Jacobians from previous slide
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3. Write out the Jacobians
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𝒖𝑇

Useful Jacobians from previous slide



3. Write out the Jacobians
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𝒖𝑇

Useful Jacobians from previous slide



3. Write out the Jacobians
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𝒖𝑇

Useful Jacobians from previous slide



3. Write out the Jacobians
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𝒖𝑇

𝒖𝑇

Useful Jacobians from previous slide
.

⊙ = Hadamard product = 
element-wise multiplication
of 2 vectors to give vector 



Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:
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Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:

 

The same! Let’s avoid duplicated computation …
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Re-using Computation

• Suppose we now want to compute

• Using the chain rule again:
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𝛿 is the upstream gradient (“error signal”)

𝒖𝑇



Derivative with respect to Matrix: Output shape

• What does             look like?         

• 1 output, nm inputs: 1 by nm Jacobian?

• Inconvenient to then do 
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Derivative with respect to Matrix: Output shape

• What does             look like?         

• 1 output, nm inputs: 1 by nm Jacobian?

• Inconvenient to then do 

• Instead, we leave pure math and use the shape convention: 
the shape of the gradient is the shape of the parameters!

• So              is n by m: 

54



Derivative with respect to Matrix

• What is 

•     is going to be in our answer

• The other term should be       because

• Answer is:  

55

𝛿 is upstream gradient (“error signal”) at 𝑧
𝑥 is local input signal



Why the Transposes?
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• Hacky answer: this makes the dimensions work out!

• Useful trick for checking your work!

• Full explanation in the lecture notes

• Each input goes to each output – you want to get outer product



Deriving local input gradient in backprop

• For 
𝜕𝒛

𝜕𝑾
 in our equation:

• Let’s consider the derivative of a single weight Wij

• Wij only contributes to zi

• For example: W23 is only 
used to compute z2 not z1
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x1            x2                 x3            +1

f(z1)=   h1            h2 =f(z2) 

s  u2

W23

b2

𝜕𝑠

𝜕𝑾
= 𝜹

𝜕𝒛

𝜕𝑾
= 𝜹

𝜕

𝜕𝑾
(𝑾𝒙 + 𝒃)

𝜕𝑧𝑖

𝜕𝑊𝑖𝑗
=

𝜕

𝜕𝑊𝑖𝑗
𝑾𝑖∙𝒙 + 𝑏𝑖

                 =
𝜕

𝜕𝑊𝑖𝑗
 σ𝑘=1

𝑑 𝑊𝑖𝑘𝑥𝑘 = 𝑥𝑗



What shape should derivatives be?

• Similarly,                            is a row vector 

• But shape convention says our gradient should be a column vector because b is 
a column vector …

• Disagreement between Jacobian form (which makes the chain rule 
easy) and the shape convention (which makes implementing SGD easy)

• We expect answers in the assignment to follow the shape convention 

• But Jacobian form is useful for computing the answers
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What shape should derivatives be?

Two options for working through specific problems:

1. Use Jacobian form as much as possible, reshape to 
follow the shape convention at the end:

• What we just did. But at the end transpose       to make the 
derivative a column vector, resulting in

2. Always follow the shape convention

• Look at dimensions to figure out when to transpose and/or 
reorder terms

• The error message 𝜹 that arrives at a hidden layer has the 
same dimensionality as that hidden layer
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3. Backpropagation

We’ve almost shown you backpropagation

It’s taking derivatives and using the (generalized, multivariate, or matrix) 
chain rule

Other trick: 

We re-use derivatives computed for higher layers in computing 
derivatives for lower layers to minimize computation
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Computation Graphs and Backpropagation

 + 

• Software represents our neural 
net equations as a graph 

• Source nodes: inputs

• Interior nodes: operations
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Computation Graphs and Backpropagation

 + 

• Software represents our neural 
net equations as a graph 

• Source nodes: inputs

• Interior nodes: operations

• Edges pass along result of the 
operation
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Computation Graphs and Backpropagation

 + 

• Software represents our neural 
net equations as a graph 

• Source nodes: inputs

• Interior nodes: operations

• Edges pass along result of the 
operation

“Forward Propagation”
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Backpropagation

 + 

• Then go backwards along edges

• Pass along gradients
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Backpropagation: Single Node

• Node receives an “upstream gradient”

• Goal is to pass on the correct 
“downstream gradient”

Upstream 
gradient 65

Downstream 
gradient



Backpropagation: Single Node

Downstream 
gradient

Upstream 
gradient 

• Each node has a local gradient

• The gradient of its output with 
respect to its input

Local 
gradient66



Backpropagation: Single Node

Downstream 
gradient

Upstream 
gradient 

• Each node has a local gradient

• The gradient of its output with 
respect to its input

Local 
gradient67

Chain 
rule!



Backpropagation: Single Node

Downstream 
gradient

Upstream 
gradient 

• Each node has a local gradient

• The gradient of its output with 
respect to its input

Local 
gradient

[downstream gradient] = [upstream gradient] x [local gradient]
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Backpropagation: Single Node

*

• What about nodes with multiple inputs?
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Backpropagation: Single Node

Downstream 
gradients

Upstream 
gradient 

Local 
gradients

*

• Multiple inputs → multiple local gradients
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An Example
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An Example

+

*

max
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Forward prop steps



An Example
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max
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Forward prop steps
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An Example
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Forward prop steps
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An Example
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An Example
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An Example
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An Example
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*

max
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Forward prop steps
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Local gradients

upstream * local = downstream

1

1*3 = 3

1*2 = 2



An Example

+

*

max
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Forward prop steps
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Local gradients

upstream * local = downstream
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An Example

+

*

max
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Forward prop steps
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2
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Local gradients

upstream * local = downstream

1

3

2

3

0

2*1 = 2

2*1 = 2



An Example

+

*

max
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Forward prop steps
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Local gradients

1

3

2

3

0

2

2



Gradients sum at outward branches
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Gradients sum at outward branches
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Node Intuitions

+

*

max
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6
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2

0

1

2
2

2

• + “distributes” the upstream gradient to each summand



Node Intuitions

+

*

max
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6

3

2

1

2

2

0

1

3
3

0

• + “distributes” the upstream gradient to each summand

• max “routes” the upstream gradient



Node Intuitions

+

*

max
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6

3

2

1

2

2

0

1

3

2

• + “distributes” the upstream gradient

• max “routes” the upstream gradient

• * “switches” the upstream gradient



Efficiency: compute all gradients at once 

* + 

• Incorrect way of doing backprop:

• First compute 
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Efficiency: compute all gradients at once 

* + 

• Incorrect way of doing backprop:

• First compute 

• Then independently compute

• Duplicated computation!

88



Efficiency: compute all gradients at once 

* + 

• Correct way:

• Compute all the gradients at once

• Analogous to using 𝜹 when we 
computed gradients by hand
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1. Fprop: visit nodes in topological sort order 
- Compute value of node given predecessors

2. Bprop:
 - initialize output gradient = 1 
 - visit nodes in reverse order:

 Compute gradient wrt each node using 
      gradient wrt successors

Done correctly, big O() complexity of fprop and 
bprop is the same

In general, our nets have regular layer-structure 
and so we can use matrices and Jacobians…

Back-Prop in General Computation Graph

…

…

Inputs

                             = successors of 

Single scalar output
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Automatic Differentiation

• The gradient computation can be 
automatically inferred from the symbolic 
expression of the fprop

• Each node type needs to know how to 
compute its output and how to compute 
the gradient wrt its inputs given the 
gradient wrt its output

• Modern DL frameworks (Tensorflow, 
PyTorch, etc.) do backpropagation for 
you but mainly leave layer/node writer 
to hand-calculate the local derivative
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Backprop Implementations
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Implementation: forward/backward API
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Implementation: forward/backward API
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Manual Gradient checking: Numeric Gradient

• For small h (≈ 1e-4),

• Easy to implement correctly

• But approximate and very slow:

• You have to recompute f for every parameter of our model 

• Useful for checking your implementation

• In the old days, we hand-wrote everything, doing this everywhere was the key test

• Now much less needed; you can use it to check layers are correctly implemented
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Summary

96

We’ve mastered the core technology of neural nets!    

• Backpropagation: recursively (and hence efficiently) apply the chain rule 
along computation graph

• [downstream gradient] = [upstream gradient] x [local gradient]

• Forward pass: compute results of operations and save intermediate 
values

• Backward pass: apply chain rule to compute gradients



Why learn all these details about gradients?

97

• Modern deep learning frameworks compute gradients for you!

• Come to the PyTorch introduction this Friday!

• But why take a class on compilers or systems when they are implemented for you?

• Understanding what is going on under the hood is useful!

• Backpropagation doesn’t always work perfectly out of the box

• Understanding why is crucial for debugging and improving models

• See Karpathy article (in syllabus):
• https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

• Example in future lecture: exploding and vanishing gradients
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