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Lecture Plan
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Lecture 2: Word Vectors, Word Senses, and Neural Network Classifiers

1. Course organization (3 mins)

2. Finish looking at word vectors and word2vec (15 mins)

3. Can we capture the essence of word meaning more effectively by counting? (10m)

4. Evaluating word vectors (10 mins)

5. Word senses (8 mins)

6. Review of classification and how neural nets differ (14 mins)

7. Introducing neural networks (10 mins)

Key Goal: To be able to read word embeddings papers by the end of class



1. Course Organization

• Audit/Waitlist

• For other questions, please email cs224n-win2425-staff@lists.stanford.edu

• Come to office hours/help sessions!

• They started yesterday

• Come to discuss final project ideas as well as the assignments

• Try to come early, often and off-cycle!

• TA office hours: 3-hour blocks Mon–Sat, with multiple TAs

• Just show up! Our friendly course staff will be on hand to assist you!

• https://web.stanford.edu/class/cs224n/office_hours.html 

• Instructors’ office hours (in person by default):

• Diyi: Mondays 4:30-5:30pm

• Tatsu: Fridays 1-2pm
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https://web.stanford.edu/class/cs224n/office_hours.html


2. Review: Main idea of word2vec

5

• Start with random word vectors

• Iterate through each word position in the whole corpus

• Try to predict surrounding words using word vectors: 𝑃 𝑜 𝑐 =
exp(𝑢𝑜

𝑇𝑣𝑐)

σ𝑤∈𝑉 exp(𝑢𝑤
𝑇 𝑣𝑐)

• Learning: Update vectors so they can predict actual surrounding words better

• Doing no more than this, this algorithm learns word vectors that capture 
well word similarity and meaningful directions in a word space!

…crisesbankingintoturningproblems… as

𝑃 𝑤𝑡+1 | 𝑤𝑡

𝑃 𝑤𝑡+2 | 𝑤𝑡

𝑃 𝑤𝑡−1 | 𝑤𝑡

𝑃 𝑤𝑡−2 | 𝑤𝑡



2. Optimization: Gradient Descent

• We have a cost function 𝐽 𝜃  we want to minimize

• Gradient Descent is an algorithm to minimize 𝐽 𝜃  

• Idea: for current value of 𝜃, calculate gradient of 𝐽 𝜃 , then take small step in direction 
of negative gradient. Repeat.

Note: Our 
objectives
may not 
be convex
like this 

But life turns 
out to be 
okay ☺
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• Update equation (in matrix notation):

• Update equation (for single parameter):

• Algorithm:

Gradient Descent

𝛼 = step size or learning rate
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Stochastic Gradient Descent

• Problem: 𝐽 𝜃  is a function of all windows in the corpus (potentially billions!)

• So                 is very expensive to compute

• You would wait a very long time before making a single update!

• Very bad idea for pretty much all neural nets!

• Solution: Stochastic gradient descent (SGD)
• Repeatedly sample windows, and update after each one

• Algorithm:
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Mini Batch 
Gradient Descent



Word2vec parameters         …            and computations
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      U                           V                             𝑈 ⋅ 𝑣4
𝑇            softmax(𝑈 ⋅ 𝑣4

𝑇)

   outside             center                       dot product       probabilities

                                                            The model makes the same predictions at each position
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We want a model that gives a reasonably high 
probability estimate to all words that occur in the 
context (at all often)

“Bag of words” model!



Word2vec maximizes objective function by 
putting similar words nearby in space
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Word2vec algorithm family (Mikolov et al. 2013): More details

Why two vectors? → Easier optimization. Average both at the end

• But can implement the algorithm with just one vector per word … and it helps a bit

Two model variants:

1. Skip-grams (SG)
  Predict context (“outside”) words (position independent) given center word

2. Continuous Bag of Words (CBOW)
  Predict center word from (bag of) context words

We presented: Skip-gram model
 

Loss functions for training:
1. Naïve softmax (simple but expensive loss function, when many output classes)

2. More optimized variants like hierarchical softmax

3. Negative sampling

So far, we explained naïve softmax
11



The skip-gram model with negative sampling 

• The normalization term is computationally expensive (when many output classes):

𝑃 𝑜 𝑐 =
exp(𝑢𝑜

𝑇𝑣𝑐)

σ𝑤∈𝑉 exp(𝑢𝑤
𝑇 𝑣𝑐)

• Hence, standard word2vec implements the skip-gram model with negative sampling

• Main idea: train binary logistic regressions to differentiate a true pair (center word and 
a word in its context window) versus several “noise” pairs (the center word paired with 
a random word)
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A big sum over words



The skip-gram model with negative sampling (Mikolov et al. 2013)

• We take k negative samples (using word probabilities)

• Maximize probability that real outside word appears; 
minimize probability that random words appear around center word

• Using notation consistent with this class, we minimize:

𝐽𝑛𝑒𝑔−𝑠𝑎𝑚𝑝𝑙𝑒 𝒖𝑜 , 𝒗𝑐 , 𝑈 = − log 𝜎 𝒖𝑜
𝑇𝒗𝑐 − 

𝑘∈ 𝐾 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑖𝑛𝑑𝑖𝑐𝑒𝑠

log 𝜎 −𝒖𝑘
𝑇𝒗𝑐

• The logistic/sigmoid function: 
(we’ll become good friends soon)

• Sample with P(w)=U(w)3/4/Z, the unigram distribution U(w) raised to the 3/4 power

• The power makes less frequent words be sampled more often
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𝜎 𝑥 =
1

1 + 𝑒−𝑥

sigmoid rather than softmax 

https://arxiv.org/abs/1310.4546


Stochastic gradients with negative sampling [aside]

• We iteratively take gradients at each window for SGD

• In each window, we only have at most 2m + 1 words plus 2km negative 
words with negative sampling, so ∇𝜃𝐽𝑡(𝜃) is very sparse!
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Stochastic gradients with with negative sampling [aside]

• We might only update the word vectors that actually appear!

• Solution: either you need sparse matrix update operations to 
only update certain rows of full embedding matrices U and V, 
or you need to keep around a hash for word vectors

• If you have millions of word vectors and do distributed 
computing, it is important to not have to send gigantic 
updates around!

[            ]|V|

d
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Rows not columns 
in actual DL 
packages!



3. Why not capture co-occurrence counts directly?
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There’s something weird about iterating through the whole corpus (perhaps many times); 
why don’t we just accumulate all the statistics of what words appear near each other?!?

Building a co-occurrence matrix X

• 2 options: windows vs. full document 

• Window: Similar to word2vec, use window around each word → captures some 
syntactic and semantic information (“word space”)

• Word-document co-occurrence matrix will give general topics (all sports terms will 
have similar entries) leading to “Latent Semantic Analysis” (“document space”)



Example: Window based co-occurrence matrix
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• Window length 1 (more common: 5–10)

• Symmetric (irrelevant whether left or right context)

• Example corpus: 

• I like deep learning

• I like NLP

• I enjoy flying

counts I like enjoy deep learning NLP flying .

I 0 2 1 0 0 0 0 0

like 2 0 0 1 0 1 0 0

enjoy 1 0 0 0 0 0 1 0

deep 0 1 0 0 1 0 0 0

learning 0 0 0 1 0 0 0 1

NLP 0 1 0 0 0 0 0 1

flying 0 0 1 0 0 0 0 1

. 0 0 0 0 1 1 1 0



Co-occurrence vectors
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• Simple count co-occurrence vectors

• Vectors increase in size with vocabulary

• Very high dimensional: require a lot of storage (though sparse)

• Subsequent classification models have sparsity issues → Models are less robust

• Low-dimensional vectors

• Idea: store “most” of the important information in a fixed, small number of 
dimensions: a dense vector

• Usually 25–1000 dimensions, similar to word2vec

• How to reduce the dimensionality?



Classic Method: Dimensionality Reduction on X (HW1)
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Singular Value Decomposition of co-occurrence matrix X

Factorizes X into UΣVT, where U and V are orthonormal (unit vectors and orthogonal)

 

Retain only k singular values, in order to generalize.
𝑋 is the best rank k approximation to X , in terms of least squares. 
Classic linear algebra result. Expensive to compute for large matrices.

k
X



Hacks to X 
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• Running an SVD on raw counts doesn’t work well!!!

• Scaling the counts in the cells can help a lot

• Problem: function words (the, he, has) are too frequent → syntax has too much 
impact. Some fixes: 
• log the frequencies

• min(X, t), with t ≈ 100

• Ignore the function words

• Ramped windows that count closer words more than further away words

• Use correlations instead of counts, then set negative values to 0

• Etc.



Interesting semantic patterns emerge in the scaled vectors
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COALS model from
Rohde et al. ms., 2005. An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence 



GloVe [Pennington, Socher, and Manning, EMNLP 2014]:
Encoding meaning components in vector differences

Q: How can we capture ratios of co-occurrence probabilities as 
linear meaning components in a word vector space?



A: Log-bilinear model:

with vector differences

GloVe [Pennington, Socher, and Manning, EMNLP 2014]:
Encoding meaning components in vector differences

Q: How can we capture ratios of co-occurrence probabilities as 
linear meaning components in a word vector space?

•  Fast training

•  Scalable to huge corpora 

Loss:



4. How to evaluate word vectors?

• Related to general evaluation in NLP: Intrinsic vs. extrinsic

• Intrinsic:
• Evaluation on a specific/intermediate subtask

• Fast to compute

• Helps to understand that system

• Not clear if it’s helpful unless correlation to real task is established

• Extrinsic:
• Evaluation on a real task

• Can take a long time to compute accuracy

• Unclear if the subsystem is the problem or its interaction or other subsystems

• If replacing exactly one subsystem with another improves accuracy → Winning!
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Intrinsic word vector evaluation

• Word Vector Analogies

• Evaluate word vectors by how well their cosine 
distance after addition captures intuitive 
semantic and syntactic analogy questions

• Discarding the input words from the search (!)

• Problem: What if the information is there but 
not linear?

man:woman :: king:?

a:b :: c:?

king

man

woman

25



GloVe Visualization
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Meaning similarity: Another intrinsic word vector evaluation

• Word vector distances and their correlation with human judgments

• Example dataset: WordSim353 
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
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Word 1 Word 2 Human (mean)

tiger cat 7.35

tiger tiger 10

book paper 7.46

computer internet 7.58

plane car 5.77

professor doctor 6.62

stock phone 1.62

stock CD 1.31

stock jaguar 0.92

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/


Correlation evaluation

• Word vector distances and their correlation with human judgments

28



Extrinsic word vector evaluation

• One example where good word vectors should help directly: named entity 
recognition: identifying references to a person, organization or location:  
Chris Manning lives in Palo Alto.
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5. Word senses and word sense ambiguity

• Most words have lots of meanings! 

• Especially common words

• Especially words that have existed for a long time

• Example: pike

• Does one vector capture all these meanings or do we have a mess?
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pike

• A sharp point or staff 

• A type of elongated fish 

• A railroad line or system 

• A type of road 

• The future (coming down the pike) 

• A type of body position (as in diving) 

• To kill or pierce with a pike 

• To make one’s way (pike along)

• In Australian English, pike means to pull out from doing something: I reckon he could 
have climbed that cliff, but he piked!
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Improving Word Representations Via Global Context And 
Multiple Word Prototypes (Huang et al. 2012)

• Idea: Cluster word windows around words, retrain with each word assigned to multiple 
different clusters bank1, bank2, etc.
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Linear Algebraic Structure of Word Senses, with Applications 
to Polysemy (Arora, …, Ma, …, TACL 2018)

• Different senses of a word reside in a linear superposition (weighted sum) in standard word 
embeddings like word2vec

• 𝑣pike = 𝛼1𝑣pike1
+ 𝛼2𝑣pike2

+ 𝛼3𝑣pike3
 

• Where 𝛼1 =
𝑓1

𝑓1+𝑓2+𝑓3
, etc., for frequency f

• Surprising result:

• Because of ideas from sparse coding you can actually separate out the senses (providing 
they are relatively common)!
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6. Deep Learning Classification: Named Entity Recognition (NER)

• The task: find and classify names in text, by labeling word tokens, for example:

Last night , Paris Hilton wowed in a sequin gown .

                     PER   PER     

Samuel Quinn was arrested in the Hilton Hotel in Paris in April 1989 .

PER        PER                                         LOC     LOC        LOC      DATE DATE

• Possible uses:

• Tracking mentions of particular entities in documents

• For question answering, answers are usually named entities

• Relating sentiment analysis to the entity under discussion

• Often followed by Entity Linking/Canonicalization into a Knowledge Base such as Wikidata
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Simple NER: Window classification using binary logistic classifier

• Idea: classify each word in its context window of neighboring words

• Train logistic classifier on hand-labeled data to classify center word {yes/no} for each 
class based on a concatenation of word vectors in a window

• Really, we usually use multi-class softmax, but we’re trying to keep it simple ☺

• Example: Classify “Paris” as +/– location in context of sentence with window length 2: 

 the     museums      in         Paris         are      amazing    to      see      .

Xwindow  = [  xmuseums xin           xParis            xare         xamazing ]
T

• Resulting vector xwindow = x ∈ R5d    

• To classify all words: run classifier for each class on the vector centered on each word 
in the sentence
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Classification review and notation

• Supervised learning: we have a training dataset consisting of samples 

    {xi,yi}
N

i=1

• xi are inputs, e.g., words (indices or vectors!), sentences, documents, etc. 

• Dimension d

• yi are labels (one of C classes) we try to predict, for example:

• classes: sentiment (+/–), named entities, buy/sell decision

• other words

• later: multi-word sequences
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Neural classification
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• Typical ML/stats softmax classifier:

• Learned parameters θ are just elements
of W (not input representation x, which has sparse symbolic features)

• Classifier gives linear decision boundary, which can be limiting

• A neural network classifier differs in that:

• We learn both W and (distributed!) representations for words

• The word vectors x re-represent one-hot vectors, moving them 
around in an intermediate layer vector space, for easy classification 
with a (linear) softmax classifier
• Conceptually, we have an embedding layer: x = Le

• We use deep networks—more layers—that let us re-represent and 
compose our data multiple times, giving a non-linear classifier

But typically, it is linear 
relative to the pre-final 
layer representation



NER: Binary classification for center word being location
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• We do supervised training and want high score if it’s a location

𝐽𝑡 𝜃 = 𝜎 𝑠 =
1

1 + 𝑒−𝑠

x  = [  xmuseums xin         xParis            xare        xamazing ]

predicted model 
probability of class

f = Some element-
wise non-linear 
function, e.g., 
logistic, tanh, ReLU



Training with “cross entropy loss” – you use this in PyTorch!

• Until now, our objective was stated as to maximize the probability of the correct class y 
or equivalently we can minimize the negative log probability of that class

• Now restated in terms of cross entropy, a concept from information theory

• Let the true probability distribution be p; let our computed model probability be q

• The cross entropy is: 

• Assuming a ground truth (or true or gold or target) probability distribution that is 1 at 
the right class and 0 everywhere else, p = [0, …, 0, 1, 0, …, 0], then:

• Because of one-hot p, the only term left is the negative log probability of the true 
class yi: − log 𝑝(𝑦𝑖|𝑥𝑖)
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Cross entropy can be used in other ways with a more interesting p, 
but for now just know that you’ll want to use it as the loss in PyTorch



7. Neural computation
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A binary logistic regression unit is a bit similar to a neuron

hw,b(x) = f (wTx+ b)

f (z) =
1

1+ e-z

w, b are the parameters of this neuron
i.e., this logistic regression model

b: We can have an “always on” bias 
feature, which gives a class prior, or 
separate it out, as a bias term
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f = nonlinear activation function (e.g. sigmoid), w = weights, b = bias, h = hidden, x = inputs



A neural network 
= running several logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression functions, then we get 
a vector of outputs …

But we don’t have to decide 
ahead of time what variables 
these logistic regressions are 
trying to predict!
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A neural network 
= running several logistic regressions at the same time

… which we can feed into another logistic regression function, giving composed functions

It is the loss function 
that will direct what 
the intermediate 
hidden variables should 
be, so as to do a good 
job at predicting the 
targets for the next 
layer, etc.
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A neural network 
= running several logistic regressions at the same time

Before we know it, we have a multilayer neural network….
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This allows us to 
re-represent and 
compose our data 
multiple times and to 
learn a classifier that is 
highly non-linear in 
terms of the original 
inputs
(but typically is linear in terms of 
the pre-final layer representations)



Matrix notation for a layer

We have 

In matrix notation

Activation f is applied element-wise:

a1

a2

a3

a1 = f (W11x1 +W12x2 +W13x3 +b1)

a2 = f (W21x1 +W22x2 +W23x3 +b2 )

etc.

z =Wx+ b

a = f (z)

f ([z1, z2, z3]) = [ f (z1), f (z2 ), f (z3)]

W12

b3

48



Non-linearities (like f or sigmoid): Why they’re needed
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• Neural networks do function approximation, 
e.g., regression or classification

• Without non-linearities, deep neural networks 
can’t do anything more than a linear transform

• Extra layers could just be compiled down into a 
single linear transform: W1 W2 x = Wx

• But, with more layers that include non-linearities, 
they can approximate more complex functions!
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