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Abstract

In the realm of Language Models, the computational and storage demands of large pre-trained
models often hinder their practical application, particularly when only specific downstream tasks
are of interest. Parameter-efficient fine-tuning (PEFT) methods, such as those proposed by the
LoRA and prefix tuning frameworks, present a solution to this challenge by enabling effective
model fine-tuning with a minimal increase in parameter count. This study evaluates the PEFT
method for fine-tuning the minBERT model on multi-task learning, targeting sentiment analysis,
paraphrase detection, and semantic textual similarity. Using datasets such as Stanford Sentiment
Treebank, CFIMDB, Quora, and SemEval STS Benchmark, we aim to assess LoRA and prefix
tuning’s efficiency. We hypothesize that PEFTs, particularly with LoRA, will maintain or enhance
minBERT’s performance while significantly reducing parameter count. We also compare LoRA
variants, including hyperparameter tuning, and its application to different layers, to determine their
impact on performance and tradeoffs. The results show that the model with our final LoRA version,
applied to the self-attention layers, resulted in a decreased accuracy. The results also show that with
prefix-tuning, the accuracy decreased.

1 Key Information to include

• Late Days: Our group is sharing late days (2 from Lara and 1 from Mateo) for an extra late day.
TA Mentor: Aditya Agrawal
Team Contributions: Mateo adapted the code base to enable LoRA fine-tuning and its different variations.
Susan worked on adapting the code to enable prefix tuning. Lara focused on research of methodologies and
analysis of results. We all participated in the implementation of the minBERT, the write-ups and poster.

2 Introduction

Natural Language Processing (NLP) has achieved significant advancements with the advent of pre-trained language
models like BERT (Bidirectional Encoder Representations from Transformers). These models have set new benchmarks
in various NLP tasks, such as text classification, named entity recognition, and question answering. However, fine-
tuning such large models for specific tasks can be resource-intensive and time-consuming, often requiring substantial
computational power and large amounts of labeled data. To address these challenges, researchers have proposed
Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA) and other techniques. These
methods aim to reduce the number of parameters that need to be updated during fine-tuning, thereby decreasing the
computational load and resource requirements. Moreover, PEFT methods allow effective model fine-tuning, often
achieving similar or better performance than full fine-tuning [1].

Resource Efficiency:
One of the most significant advantages of using PEFT methods like LoRA is the substantial reduction in computational
resources required for fine-tuning. Traditional fine-tuning involves updating a large number of parameters in models
like BERT, which necessitates considerable GPU power and memory. PEFT methods, by updating only a fraction of the
parameters or using low-rank adaptations, minimize this requirement, making it feasible to fine-tune large models on
more modest hardware (Xu et, al 2023).
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Speed and Time Efficiency:
By reducing the number of parameters that need to be adjusted, PEFT methods accelerate the fine-tuning process.
Fine-tuning all the pre-trained parameters can become time-consuming (Xu et, al 2023). This leads to faster convergence
times, enabling quicker iterations and experimentation.

In our approach, we use PEFT methods, LoRA and prefix tuning, to fine-tune our minimalist version of the
BERT model (minBERT) efficiently. Firstly, we implemented the minBERT model and obtained baseline accuracy
metrics for the sentiment classification task on the SST and CFIMDB datasets. Secondly, we implemented baseline
PEFT techniques, namely, LoRA and prefix tuning. We researched how these PEFT methods work through reading
the literature that explains their mechanisms. In this first iteration of the experiment, a LoRA class was implemented
to the self-attention layer (query and value matrices), and then to the feed-forward layers of the transformer. Then,
we implemented prefix tuning that was added to the embedding layers. In the end, we evaluated the performance of
these methods across the different variations on these downstream tasks over the baseline performances of our PLM
(Pre-trained Language Model).

RESULTS:

3 Related Work

BERT[1] revolutionized NLP by introducing bidirectional training of Transformer models. Unlike previous models
that processed text in a left-to-right or right-to-left manner, BERT reads the text in both directions through "jointly
conditioning on both left and right context in all layers", allowing the model to understand the context of a word based
on all surrounding words in a sentence. This bidirectional approach enables BERT to achieve superior performance on
various NLP tasks. We worked on a smaller version of BERT, minBERT, to be able to train and make inferences in an
accessible way.

In the systematic review of PEFT methods for PLMs titled "Parameter-Efficient Fine-Tuning Methods for Pretrained
Language Models: A Critical Review and Assessment", various PEFT methods that can be used on pretrained language
models are explained. The review catogizes PEFT methods into the following cateogies: additive fine tuning, unified
fine tuning, reparameterized fine-tuning, hybrid fine-tuning, and partial fine-tuning. Amongst the reparameterized
Fine-tuning of the PEFT methods, we focused on LoRA, listed under low-rank decomposition.

LoRA [2] was proposed by researchers at Microsoft through the paper "LoRA: Low-Rank Adaptation of Large
Language Models". The paper discusses the method of freezing "the pre-trained model weights and injects trainable
rank decomposition matrices into each layer of the Transformer architecture". The insight is that certain tasks have
intrinsic "low dimensionality" and thus we only need low rank matrices to capture task specific features. The paper
notes that this approach greatly reduces "the number of trainable parameters for downstream tasks". The paper
discusses the method of adapting large pre-trained language models by learning low-rank updates to their weights,
significantly reducing the number of trainable parameters required for fine-tuning. We used this paper as a baseline in
forming our understanding of how LoRA works and the best practices to implement it. For example, we followed the
recommendations of the ideal rank parameter to use and to which transformer layers LoRA should be applied to.

Amongst the additive fine-tuning of the PEFT methods, we focused on prefix-tuning, listed under soft prompt-based
fine-tuning. Reading the systemic review, we got inspired by prefix-tuning [3], which proposes to prepend soft prompts
to the "hidden states of the multi-head attention layer, differing from prompt-tuning which adds soft prompts to
the input". Prefix tuning was developed by researchers from the University of Washington and Microsoft Research,
introduced in the paper titled "Prefix-Tuning: Optimizing Continuous Prompts for Generation". The paper defines
prefix tuning as "a lightweight alternative to fine-tuning for natural language generation tasks, which keeps language
model parameters frozen, but optimizes a small continuous task-specific vector"[3]. This paper was helpful for us in
understanding how prefix-tuning works and the best practices for its implementation.

Our work is a promising analysis and exploration of these two PEFT methods applied to minBERT for downstream
tasks such as sentiment classifications, paraphrase detection and semantic text similarity. The papers discussed above
compare the BLEU scores of both methods to fine-tuning and found that both lead to similar or better performance than
full fine-tuning. We want to replicate their results on a smaller model as well as validate whether the best practices
described also lead to better performance on minBERT.

4 Approach

The first project implementation is the multi-head self-attention and transformer layers of minBERT, a simplified BERT
model. The coding of this model is done on top of the minBERT- Default-Final-Project Repository, integrating them
into the baseline minBERT model provided. Finally, we ensured they function as intended through testing and sanity
checks.
After implementing a minimalist version of BERT, we implemented LoRA and prefix tuning as described below.
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Figure 1: ∆W = BA[2]

LoRA:
LoRA uses two trainable low-rank matrices for weight update. In LoRA, a down-projection matrix and an up- projection
matrix are utilized in parallel with the query (Q) and value (V) matrices in the attention layer of the transformer as well
as the feed-forward layers. These matrices represent the full-rank pre-trained weight matrix.

For a pretrained weight matrix W0 ∈ Rd×k, the low rank decomposition can be represented as:
W0 +∆W = W0 +BA, where B ∈ Rd×r, A ∈ Rr×k and ∆W is the adaptation matrix, with r ≪ min(d, k)
indicating the rank and BA being a low-rank product.
This decomposition reduces the number of trainable parameters even though the total number of parameters in the

model increases, as A and B have smaller dimensions than the original weight matrix which is freezed during training.

To implement this into our minBERT model, we first initialized the necessary LoRA parameters, the low rank matrices.
The up-projection matrix B is initilized with zeros and the down projection matrix A with a uniform distribution. Then
when calculating the projection, we integrated the LoRA low rank matrices into this calculation, when the linear layer is
applied to the input tensor x, it projects it into a new space. This is then multiplied by the low rank LoRA matrices, and
added to the original projection (Figure 1).

During training, only the LoRA parameters A and B (the low-rank matrices of LoRA), and layer norm, biases and
task-specific heads are fine-tuned, and all other pre-trained parameters are frozen. This allows for more efficiency in
tasks by reducing the number of parameters to train (Figure 2). Selective training allows the model to focus on the
task at hand without compromising the model’s overall capabilities. It also allows us to train and use different LoRA
instances by appending them to the original matrices at inference time depending on the task at hand.

Prefix Tuning:
In prefix tuning, we add a set of trainable parameters that are meant to increase the performance of specific tasks, without
having to retrain the entire model. In our implementation, we prefixed the input with a set of trainable embeddings. In
the model’s embedding layer, we included a set of embeddings that are learned during training. When training this
data using the classifier and multitask classifier, we froze all parameters excluding any prefix parameters, layer norms,
biases and task-specific model heads. This gave the model less parameters to train in order to enhance performance on
different tasks. We configured the prefix length in the initialization of the BERT model and experimented with different
prefix lengths depending on the task we wanted to improve. For more complex tasks, we would experiment with longer
prefix lengths, and shorter prefix lengths for simpler tasks. We found the most optimal prefix length to be 10. In the
embed function, the aforementioned prefix embeddings were added to the standard embeddings of the input tokens, this
contained the original information and the additional information from the trainable prefix parameters.
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Figure 2: LoRA [1] (LoRA not applied to key matrix in our case)

5 Experiments

5.1 Data

1. Stanford Sentiment Treebank (SST) [4]: Consists of 11,855 sentences from movie reviews, parsed and
annotated into 215,154 unique phrases. The dataset is divided into training (8,544 examples), development
(1,101 examples), and testing (2,210 examples) splits. Each phrase is labeled as negative, somewhat negative,
neutral, somewhat positive, or positive.

2. CFIMDB dataset: Includes 2,434 polar movie reviews with a binary sentiment label (negative or positive).
The splits are training (1,701 examples), development (245 examples), and testing (488 examples).

3. Quora Dataset [5]: Comprises 404,298 question pairs labeled to indicate whether they are paraphrases of one
another. The data splits include training (283,010 examples), development (40,429 examples), and testing
(80,859 examples).

4. SemEval STS Benchmark Dataset [6]: Contains 8,628 sentence pairs with similarities rated on a scale from
0 (unrelated) to 5 (equivalent meaning). This dataset is divided into training (6,040 examples), development
(863 examples), and testing (1,725 examples).

5.2 Evaluation method

Our study employs well-defined, quantitative metrics to evaluate the performance of the PEFT-enhanced minBERT
model across different tasks.
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Figure 3: Prefix Tuning [3]

Accuracy: For sentiment analysis on the Stanford Sentiment Treebank (SST) and the CFIMDB dataset, as well as for
paraphrase detection on the Quora dataset, accuracy will serve as the primary metric.
Trainable Parameter Reduction: The Trainable Parameter Reduction is the percentage decrease of parameters that
are trained (not frozen) in the model during fine-tuning compared to full fine-tuning or to other fine-tuning methods.
This metric will be used for comparisons across all experiments.
Pearson Correlation: For the task of semantic textual similarity, as assessed using the SemEval STS Benchmark
dataset, we will utilize the Pearson correlation between the true similarity values and the predicted similarity scores.
Loss: For sentiment classification and paraphrase detection, we used cross-entropy loss to measure the difference
between the predicted probabilities and the actual class labels. For semantic textual similarity, we employed mean
squared error (MSE) loss to quantify the difference between the predicted and true similarity scores.
GPU usage: We tracked GPU usage during training thanks to the pynvml library. We report average and maximum
GPU usage in Megabytes during training.

5.3 Experimental details

Report how you ran your experiments (e.g., model configurations, learning rate, training time, etc.)

In our experiments with Low-Rank Adaptation (LoRA), we tested various configurations to evaluate their performance
on the task. Specifically, we utilized a learning rate of 1e− 4 and experimented with different ranks of 4, 8, and 16
for the low-rank matrices. LoRA was applied both exclusively to the self-attention layers and to a combination of
self-attention and feed-forward network (FFN) layers within the model. Each model was trained for a maximum of
10 epochs. However, we kept the checkpoint weights at 7 epochs due to signs of overfitting or a reduction in training
accuracy observed beyond the fifth epoch. We also incorporated an alpha scaling factor of 32 to appropriately scale the
low-rank updates. The experimental setup allowed us to identify the optimal configuration while preventing overfitting,
ensuring robust evaluation of LoRA’s impact on model performance.
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For our experiments with prefix tuning, we focused on exploring the impact of different prefix lengths on model
performance. We tested a range of prefix lengths to determine the most effective configuration. The models were trained
with a consistent learning rate of 1e-4, ensuring a controlled comparison of prefix length effects. Each experiment was
conducted over 10 epochs to observe the training dynamics and performance across a sufficient number of iterations.
The training was consistently stopped at X epochs to maintain uniformity in the evaluation process.

5.4 Results

• Pre-Trained MinBERT Baseline Results:
– SST Dataset:

* Full model Dev Accuracy: 0.516
* Last Linear Layer Dev Accuracy: 0.409

– CFIMDB Dataset:
* Full model Dev Accuracy: 0.967
* Last Linear Layer Dev Accuracy: 0.787

LoRA Training:

(a) Training curves SST

(b) Training Curves PARA

(c) Training Curves STS

Figure 4: Analysis Graphs

Trainable Parameter Reduction:
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Table 1: LoRA Results

Dataset Configuration Rank Dev Accuracy/Correlation
4*SST Self-attention only 4 0.712

Self-attention only 8 0.743
Self-attention only 16 0.732
Self-attention and FFN 4 0.705

PARA Self-attention only 8 0.627

STS Self-attention only 8 0.15

Test Leaderboard Results
SST Self-attention only 8 0.471
PARA Self-attention only 8 0.372
STS Self-attention only 8 -0.037

Number of frozen parameters: 109360128
Number of total parameters: 109629696

Parameter Reduction: 99.75%

GPU usage:

Average GPU usage: 1222.76 MB
Maximum GPU usage: 1224.94 MB

We achieved a LoRA implementation with 99.75% fewer trainable parameters and with the Dev Accuracy higher than
for the Full Model and Last Linear Layer fine-tuning baseline model in sentiment classification. This increase in
performance was expected, and it can even be said more than expected as LoRA usually only brings similar or slightly
better performance than full fine-tuning. In our LoRA variations exploration, we achieved the best results with rank
8 and when the LoRA matrices were only applied to the self-attention layer. Despite good performance on the dev
accuracies (SST/PARA datasets), the correaltion for the STS dataset seems rather low, being close to 0 and therefore
signaling no correlation at all. Overall, despite the tarining loss steadily declining, we saw over-fitting for the SST
dataset and reduction in training accuracy/correlation on the PARA and STS datasets after 4 or 5 epochs. Finally for
the test leaderboard, we did not achieve promising results for all three tasks compared to the performance of other
apporaches in the leaderboard, thus showing that despite LoRA bringing increases in performance, it is not a suitable
approach for small models like minBERT on these tasks.
Prefix Tuning:
Trainable Parameter Reduction:

Table 2: Prefix Tuning Results

Dataset Prefix Length Dev Accuracy/Correlation Test Leaderboard
SST 10 0.381 0.230
PARA 10 0.677 0.532
STS 10 0.130 0.019

Number of frozen parameters: 109482240
Number of total parameters: 109474560

Parameter Reduction: 99.99%

GPU usage:

Average GPU usage: 1215.34 MB
Maximum GPU usage: 1216.48 MB

The prefix tuning results indicate varied performance across different datasets. For the SST dataset, a prefix length
of 10 resulted in a development accuracy of 0.381 and a test leaderboard accuracy of 0.230. These were lower than
baseline and LoRA models. In the paraphrase detection task (PARA), the same prefix length yielded a higher than
LoRA dev accuracy of 0.677 and a test leaderboard accuracy of 0.532, demonstrating the effectiveness of prefix tuning
in this context. The semantic textual similarity (STS) task showed a lower performance than LoRA, with a development
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correlation of 0.130 and a test leaderboard correlation of 0.019. These results highlight the differential impact of prefix
tuning across various NLP tasks, with notable success in paraphrase detection compared to sentiment classification and
semantic similarity where it performed poorly.

6 Analysis

The prefix tuning results provide valuable insights into the qualitative performance of the PEFT-enhanced minBERT
model across different tasks. The observed performance variations across datasets suggest several potential causes and
areas for improvement.

For the SST dataset, the prefix tuning approach resulted in lower development and test accuracies compared to both
the LoRA implementation and the baseline models. This could be attributed to the inherent complexity of sentiment
classification tasks, which might require more nuanced understanding and representation capabilities that prefix tuning,
with its fixed-length prefixes, may struggle to capture. The lower performance indicates that the fixed prefix length
might not provide enough flexibility for the model to adapt to the diverse sentiment expressions in the data. To address
this, experimenting with dynamic or variable prefix lengths could help the model better capture context and nuances.
Additionally, combining prefix tuning with other fine-tuning methods, such as LoRA, might leverage the strengths of
both approaches and improve performance. Enhancing the training data with augmented examples could also help the
model generalize better to varied sentiment expressions. In the paraphrase detection task, prefix tuning demonstrated
significant effectiveness, surpassing the LoRA approach in development accuracy and achieving a respectable test
leaderboard accuracy. This success suggests that prefix tuning can effectively capture the relationships between sentence
pairs, which is crucial for paraphrase detection. The fixed-length prefixes likely provided a consistent context for
evaluating sentence similarity, contributing to the higher performance.

For the STS dataset, prefix tuning showed lower performance compared to the LoRA implementation. The low
development correlation and test leaderboard correlation suggest that the fixed-length prefixes were not effective in
capturing the subtleties of semantic similarity between sentences. The STS task requires a nuanced understanding of
context and meaning, which fixed-length prefixes might fail to provide. Implementing adaptive prefixes that can change
length or content based on the input might better capture the semantic nuances required for the STS task. Integrating
external semantic resources or knowledge graphs during fine-tuning could also provide additional context and improve
the model’s understanding of semantic similarity.

The varied performance across different tasks highlights the strengths and limitations of prefix tuning. While it shows
promise in tasks like paraphrase detection, it struggles with sentiment classification and semantic textual similarity.
This indicates that prefix tuning may be more suited to tasks where the relationship between inputs is relatively
straightforward and less reliant on nuanced contextual understanding. In general, it might be a valuable next step to add
more layers to the BERT model and then apply prefix tuning and LoRA to these.

7 Conclusion

The main findings were that the PEFT strategies implemented did improve performance compared to the full fine tuning
model but did not achieve good results in the leaderboard. They did, however, improve the parameter efficiency of the
model by reducing the number of parameters being used significantly, as demonstrated by the results above and the
GPU usage. In future work, we would apply these methods to a larger model to see how it would improve performance
when there are more parameters. We would also run the model with the extensions both implemented to see if the
performance is improved when there are both LoRA and prefix tuning implemented into the model so the model is able
to handle more complex tasks.

8 Ethics Statement

Implication 1: Bias Amplification One significant concern is the potential for these models to amplify existing biases
present in the training data. For instance, in sentiment classification, if the training data contains biased sentiments
toward specific demographic groups, the model may perpetuate and even amplify these biases, leading to unfair and
discriminatory outcomes in real-world applications such as automated hiring systems or customer service bots.

Mitigation Strategy: To mitigate this, it is essential to perform thorough bias audits on the training data and the model
outputs. Techniques such as fairness-aware learning, which adjusts the training process to minimize bias, can be
employed. Additionally, integrating diverse and representative datasets during training can help in reducing bias.
Regular monitoring and updating of the models with new data that reflects diverse perspectives is also crucial to ensure
fairness over time.

Implication 2: False Positive Paraphrase Detection In the context of paraphrase detection, a significant real-world
implication is the risk of false positives—incorrectly identifying two non-paraphrase sentences as paraphrases. This
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can have serious consequences in applications such as academic integrity systems, where wrongly flagged paraphrases
might unjustly accuse students of plagiarism, or in content moderation, where different but related content might be
erroneously treated as duplicates and removed.

Mitigation Strategy: To address this issue, implementing a robust validation and verification process is crucial. One
potential strategy is to use ensemble methods, where multiple models with different architectures and training regimes
are combined to reduce the likelihood of false positives. Additionally, human review processes can be integrated for
cases where the model’s confidence is low, ensuring that critical decisions are verified by humans. Regularly updating
the model with new examples of non-paraphrases and edge cases can also improve its ability to distinguish between
paraphrases and non-paraphrases accurately.
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