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Abstract

Clinical text summarization is important for transfer of care, record-keeping, and
patient access, but can be time consuming and error-prone. In this work, we
investigate the use of GPT-4o and Llama3 for three clinical text summarization
tasks. We evaluate the model outputs using four established heuristic methods–
BLEU, ROUGE-L, BERTScore, and MEDCON–and a novel LLM-based evaluation
metric, LLM-EVAL, where GPT-4o acts as a “human" evaluator. We find on av-
erage, fine-tuned Llama3 often outperforms GPT-4o without fine-tuning in the
heuristic methods. However, GPT-4o often outperforms Llama3 in LLM-EVAL,
which appears to be able to analyze semantic meaning beyond BERT embeddings
and pre-specified medical concepts. These results show promise for using both
GPT-4o and fine-tuned Llama3 for clinical text summarization over prior older
models, as well as shows promise for LLM-EVAL and LLM-based evaluation in
general for potential use for evaluation clinical text summarization performance.
We additionally explore using LLM-EVAL for Direct Preference Optimization and
provide preliminary findings.

1 Key Information to include

TA mentor: Archit Sharma External collaborators, External mentor, Sharing project: No
Team Contributions: Daphne set up the baseline using Azure OpenAI to inference GPT-4o for
clinical text summarization. Matthew and Bora fine-tuned Llama3-8B on each of our three datasets
using QLoRA. Bora inferenced our fine-tuned Llama3-8B models for each dataset’s task. Daphne
quantitatively evaluated the inferenced responses using GPT-4o to create LLM-EVAL. Matthew used
the GPT-4o evaluations as preferences for DPO fine-tuning. Daphne calculated our five evaluation
methods for GPT-4o (baseline) and our fine-tuned Llama3-8B models on each dataset’s task. All
team members supported other techical aspects of the project and prepared the project deliverables.

2 Introduction

Electronic health records have drastically increased the workload of documentation on clinicians,
with reports of up to two hours for each patient interaction and 60% of nurses’ working time spent
on documentation alone. In addition to diverting attention from direct patient care, this clinical
documentation workload has shown to directly contribute to stress and burnout in clinicians, leading
to worse patient outcomes and decreased job satisfaction. A key part of this workload is clinical text
summarization, or summarizing key information from electronic health records, which is immensely
important for transfer of care, record-keeping, and patient access, but can be time-consuming and
error-prone. Van Veen et al. (2024) claims that prior large language model (LLM) benchmarks for
general natural language processing (NLP) tasks do not evaluate performance on relevant clinical
tasks. However, prior work has already shown potential for LLM use in clinical NLP tasks through
methods including training a new model, fine-tuning an existing model, and supplying task-specific
examples in the model prompt. Van Veen et al. (2024) aims to demonstrate adapted LLMs that
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perform at least as well as experts in clinical text summarization and to analyze potential medical
harm from expert and LLM-generated summaries, alleviating documentation burden and improving
patient outcomes.

In this project, we build upon Van Veen et al. (2024) and explore current state-of-the-art large language
models, GPT-4o and Llama 3 8B, for three clinical text summarization tasks. We use GPT-4o as
a baseline, and we fine-tune Llama 3 to summarize the prompt at the level of a medical expert. In
addition to established heuristic metrics–BLEU, ROUGE-L, BERTScore, and MEDCON, we create a
novel LLM-based evaluation metric, dubbed LLM-EVAL, where GPT-4o acts as a “human" evaluator.
We then explore LLM-EVAL’s potential for use in direct preference optimization (DPO). Our novel
contributions include include clinical text summarization with GPT-4o and fine-tuned Llama 3, an
LLM-based evaluation metric, and experimental DPO training with an LLM as the evaluator.

3 Related Work

Our reference paper which our project draws most of its ideas and evaluation methods from is the
clinical summarization project Van Veen et al. (2024). It establishes a benchmark of several models,
datasets, and metrics to evaluate performance on the task of clinical text summarization. Notably,
since Llama 3 is considerably new at the time of writing, it is not included in Van Veen et al. (2024).
That said, Llama 3 is a significant improvement over Llama 2, especially with regard to the size of
the tokenizer.

One limitation of Van Veen et al. (2024) is that it uses likelihood-based objectives; however, there
are new techniques such as Direct Preference Optimization (DPO) Rafailov et al. (2023) that can
directly optimize for the performance on metrics like BLEU or ROUGE. Given that Van Veen et al.
(2024) uses these metrics, it felt sensible to directly optimize for them. For this, we used GPT-4o to
evaluate responses that can be benchmarked with those from the fine-tuned Llama 3. Comparison
to an instruction-tuned LLM was an ambitious goal, but felt necessary in the landscape of superior
instruct models. While we used Llama 3 pre-trained, we found in experimentation that the instruct
model was considerably better at summarization than the base model, which was expected.

DPO Rafailov et al. (2023) represents a significant paradigm shift from using reward functions to
measure the favorability of an inference result. It is oftentimes computationally and mathematically
challenging to set up the complicated reward function found in traditional reinforcement learning.
By optimizing directly for the user’s preferences in a mechanism that is based on tuples of different
responses, there is a possibility to more directly learn preference, circumventing a construct that is in
some ways a proxy.

On the topic of optimizing for preferences, the evaluation techniques of LLMs has also become
more robust. While metrics like BLEU Papineni et al. (2002) have been cornerstones of natural
language processing for decades, there are possible shortcomings in these metrics that serve as a
rigid heuristic for evaluating quality. Namely, G-Eval Liu et al. (2023), given a metric, criteria,
and evaluation steps, can evaluate inference quality using LLMs. Large foundation models have a
significant and breakthrough ability to generalize, so the trend of using them to evaluate the quality
of more task-specific LLMs is likely to be perpetuated.

Fine-tuning LLMs that have become exponentially larger over the years is infeasible for the full set of
parameters, which consume copious amounts of memory. When considering the memory also used
for gradients, this task becomes even more daunting. An approach to parameter-efficient fine tuning
(PEFT) is low-rank adaptation (LoRA) Hu et al. (2021). This consists of using a set of low-rank
tensors that are representative of latent factors of the original weights. Only this small representation
of the entire set of weights is tuned, so memory for gradients is drastically reduced. QLoRA Dettmers
et al. (2023a) further reduces the finetuning memory footprint by quantizing the base model and only
storing gradients for the low-rank adapters which are trained in full fp16. The library, bitsandbytes
Dettmers is used to facilitate the quantization to 4-bit.

4 Approach

In this project, we investigate the use of LLMs for clinical text summarization tasks using LLM-based
evaluation. Specifically, we conduct clinical text summarization using state-of-the-art LLMs, GPT-4o
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and fine-tuned Llama3; we introduce LLM-EVAL, an LLM-based quantitative metric where GPT-4o
is used to evaluate generated summaries; and we experiment with LLM-based DPO, a novel DPO
method where an LLM-based evaluation metric, in this case LLM-EVAL, is used as a proxy for human
feedback for further model fine-tuning.

Baseline: GPT-4o Prior work that predated GPT-4o and Llama3 found that GPT-4 with in-context
learning was the best performing model tested on clinical text summarization tasks at the time
(Van Veen et al. (2024)). Building upon this work, we use GPT-4o, a newly released version of GPT-4,
as our baseline. We prompt GPT-4o with medical professional expertise and task-specific instructions
without fine-tuning to generate clinical text summaries. We inference GPT-4o using the Azure
OpenAI Service for our experiments.1 We used a low temperature of 0.1 to reduce hallucinations.

Fine-tuning Llama3-8B with QLoRA Unlike typical causal language modeling, where an au-
toregressive model uses the prompt as a prior and finds the tokens with the greatest probability of
occurring next, summarization tasks are instead meant to condense the prior. Since this is not the
default behavior of Llama3 model without instruction-tuning, fine-tuning on datasets that map a long
set of text to a corresponding summary was used to train the desired summarization behavior. Details
on our preliminary experiment using Llama3-8B without fine-tuning are provided in Section A.4.

To fine-tune Llama3-8B on a commercial 24GB GPU (RTX 4090), we reduced its fine-tuning
memory footprint using low rank approximation techniques and quantization by adapting prior
work on QLoRA Dettmers et al. (2023b,a). Details on our preliminary experiment for fine-tuning
Llama3-8B on the Alpaca Dataset to develop our fine-tuning system are provided in Section A.5.

QLoRA mitigates out-of-memory issues by loading in a quantized version of the model and training
a separate matrix called an adapter head on top of the model’s existing weight matrices following

h = W0x+∆Wx = W0x+BAx

where W0 represents the model’s original parameters and W represents the weights of the adapter
head. In order to save space, the QLoRA approach decomposes W (say, Rd×d) into B (Rd×r) and
A (Rr×d) to reduce the space complexity from O(d2) to O(d). In addition, it ignores the gradient
calculation for W0 as the original model weights remain frozen during fine-tuning. In addition, using
4-bit and 8-bit quantization to load the model further decreased the fine-tuning memory requirements
to about 12GB and 18GB respectively.

The tokenization used for fine-tuning is comprised of an input with the instruction, prompt, and
summary concatenated. Additionally, a label contains only the summary. The tokenization and label
enable summarization rather than generation of new text. In this summarization tasks, generation of
new text would be considered a hallucination. We additionally utilized left-padding using the format
<pad><pad>...<begin><instruction>...<prompt>...<begin><label>...<end>.

The model was quantized to 4-bit with a LoRA alpha and rank of 32 using the bitsandbytes library.2
In general, LoRA alpha and rank are set to be equivalent, except for tasks where the model’s response
format is being adapted (e.g., extrapolation to summarization) where a higher rank is recommended.
These quantization and low-rank adaptation hyperparameter settings consumed a nontrivial amount
of VRAM, but this was somewhat offset by the quantization to 4-bits. Although the traditional
recommendation for learning rate is 2∗10−5, we were able to obtain a low loss with a learning rate of
2 ∗ 10−4, although the training loss had high variance as a result. We trained for 50 epochs, allowed
the training loss to plateau.

When inferencing fine-tuned Llama3-8B, we used a temperature of 0.1 to avoid hallucinations in
sensitive healthcare settings with a low tolerance for errors. However, this often results in duplicate
responses when inferencing with the same reference text. The figures in Section A.3 show the
fine-tuning training loss and samples per second.

LLM-Based Evaluation Our LLM-based evaluation metric uses GPT-4o prompted for custom
task evaluation as described in Table 1. The full prompt text is provided in Table 4. This general
structure is adapted from Liu et al. (2023) to be used for clinical text summarization. We used a low

1https://azure.microsoft.com/en-us/products/ai-services/openai-service/
2https://pypi.org/project/bitsandbytes/
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temperature of 0.1 to reduce hallucinations and help retain the proper reference text and inferences
provided in the prompt during evaluation.

The result of our prompting is three sub-metrics each scaled from [−10,+10] for completeness,
correctness, and conciseness. Larger values indicate a better score for each sub-metric. These values
mirror previous clinical reader studies used to evaluate LLM-generated clinical text summarization
tasks (Van Veen et al. (2024)). To calculate LLM-EVAL, we sum the three sub-metrics into a single
value ranging from [−30,+30] and scale the value to range from [0, 100] to align with the other
evaluation metrics used.

Evaluation Introduction Describes the evaluation task for the LLM to conduct.
Task-Specific Instructions Describes the summarization task for the associated dataset.
Evaluation Criteria Describes the completeness, correctness, and conciseness metrics

and how they are used for evaluation.
Evaluation Steps Describes the steps to evaluate the inferences, generate quantitative

scores based on the evaluation criteria, and format the evaluation.
Reference Text The original reference text to be summarized.
Inferences A list of generated summaries as inferenced from the model.

Table 1: Prompt section descriptions used by an LLM to produce LLM-EVAL metrics.

LLM-Based Direct Preference Optimization We additionally experimented with Direct Pref-
erence Optimization using LLM-based evaluation instead of requiring resource-intensive human
evaluators, and investigated whether LLM-based DPO could improve clinical text summarization
results. DPO requires a “chosen" and a “rejected" sample to learn what it should and should not
output for a given prompt respectively.

To generate the “chosen" and “rejected" samples for the DPO dataset using LLMs, we prompted
GPT-4o to evaluate four responses generated from the fine-tuned Llama3 model responding to the
same prompt. We used the process outlined in the previous section to calculate LLM-EVAL scores.
The highest scored response is labeled as the “chosen" sample and the lowest scored response is
labeled as the “rejected" sample for the corresponding prompt.

To perform preliminary DPO fine-tuning, we generated three DPO datasets based on the three
clinical text summarization datasets in our experiments using a subset ( 10%) of the original test
dataset. These datasets were then passed to HuggingFace’s DPO trainer to train on top of their
corresponding QLoRA fine-tuned Llama3-8B models. Completion of LLM-based DPO requires
additional investigation into the tokenization process.

5 Experiments

We conduct three experiments using distinct clinical text summarization datasets and tasks to compare
GPT-4o and QLoRA fine-tuned Llama3-8B and evaluate our LLM-EVAL metric.

Data We use three clinical text summarization datasets and tasks from Van Veen et al. (2024):
MeQSum (chq), Open-i Radiology (opi), and Dialogue to Note (d2n). chq contains 1,200 commonly
asked questions by patients, often written in a conversational tone, with the goal of reducing these
into neutral single-sentence questions. opi contains 3,418 radiology reports detailing the findings
of the doctor, with the goal of reducing these findings into a single observation. d2n contains 126
machine transcribed conversations between doctor and patient, with the goal of reducing the dialogue
into a summarized assessment and plan. All datasets contain sample outputs. Example input-output
pairs are provided in Section A.1.

Evaluation method We use five quantitative metrics for evaluation: BLEU, ROUGE-L, BERTScore,
MEDCON, and LLM-EVAL. BLEU from Papineni et al. (2002) is a syntactic measurement, calculating the
overlap between reference and generated text from 1-grams to 4-grams. ROUGE-L from Lin (2004) is
a syntactic measurement, calculating syntactic similarity through the longest common subsequence.
BERTScore from Zhang et al. (2020) is a semantic measurement, calculating semantic similarity via
contextual BERT embeddings. MEDCON from Yim et al. (2023) is a medical concept measurement,
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calculating semantic similarity of used medical concepts. LLM-EVAL is a novel summarization-
specific quality measurement, calculating the completeness, correctness, and conciseness of the
summary when compared to the reference text to be summarized. All five metrics range from [0, 100].
For BLEU, ROUGE-L, BERTScore, and MEDCON, higher scores indicate greater similarity between
generated and example output texts. For LLM-EVAL, higher scores indicate greater completeness,
correctness, and conciseness compared to the reference text.

We calculate BLEU, ROUGE-L, and BERTScore using the Evaluate library.3 We calculate MEDCON
using the QuickUMLS system (Soldaini (2016); Okazaki and Tsujii (2010)), which requires a Unified
Medical Language System license. We calculate LLM-EVAL using our novel LLM-based evaluation
methods that prompt GPT-4o to quantitatively evaluate our metric as described in Section 4.

Experimental details We inferenced GPT-4o (our baseline) and fine-tuned QLoRA Llama3-8B for
our three clinical text summarization datasets and tasks, resulting in six sets of inferences. For chq
and opi, we conduct approximately 250 inferences each. For d2n, which contains larger texts, we
conduct approximately 100 inferences each. We then calculated our five evaluation metrics, BLEU,
ROUGE-L, BERTScore, MEDCON, and LLM-EVAL for each set of inferences. Finally, we conducted
qualitative evaluation on the inferenced responses.

Results Table 2 provides the resulting evaluation metrics for the chq, opi, and d2n experiments.
Notably, fine-tuned Llama3-8B performed better on average than GPT-4o in all metrics except for
LLM-EVAL for opi and d2n. This is expected, since fine-tuned Llama3-8B was additionally trained on
the two datasets, allowing it to better summarize the radiology reports and transcribed doctor/patient
conversations. Fine-tuned Llama3-8B performed similarly on average to GPT-4o in all metrics
except for LLM-EVAL for chq. We expected fine-tuned Llama3-8B to perform better, but the similar
performance could instead indicate that fine-tuning was not as necessary for this task (such that an
LLM that was not fine-tuned can sufficiently summarize patient questions). This likely does not
indicate that fine-tuning was less effective on this task’s dataset, since our measured loss reduced
over training and Llama3-8B without fine-tuning performed worse.

For all experiments, GPT-4o performed better on average than fine-tuned Llama3-8B for LLM-EVAL.
This was unexpected, because in most cases for all other metrics, fine-tuned Llama3-8B performed
better. Unlike the other four metrics, LLM-EVAL takes into account both syntactic and semantic
aspects of the summarization during evaluation through completeness, correctness, and conciseness
properties. Qualitatively, we find Llama3-8B summaries to be syntactically more similar to the
reference text, aligned with the general BLEU and ROUGE-L metrics. However, we find GPT-4o
summaries to be more semantically similar than implied by their BERTScore and MEDCON metrics at
times. In particular, there are cases where GPT-4o summaries contain the semantic meaning of the
reference text, but are written in a way that is substantially different from the syntax and structure used
in the reference text. Using colloquially shortened text can potentially be missed by BERTScore and
MEDCON, and LLM-EVAL can potentially be picking up on the semantic meanings in the summaries.

We note that there are large standard deviation values across all metrics except BERTScore, which
is expected since there is a large variety in the test sets such that different test values could have
substantially different scores. LLM-EVAL provides the largest standard deviations, which is not
expected since GPT-4o was not prompted to scale the scores in a particular distribution or relative to
particular scoring examples.

We additionally compare our results to the metrics for GPT-4 from Van Veen et al. (2024). We find
that fine-tuned Llama3-8B outperforms GPT-4 on its own but that GPT-4 with sufficient in-context
learning examples still outperforms fine-tuned Llama3-8B.

6 Analysis

Overall, we find that fine-tuned Llama3-8B performed better on average than GPT-4o in most metrics
except for LLM-EVAL, our proposed LLM-based evaluation metric. However, from our qualitative
results, we find that LLM-EVAL might be identifying semantic similarities missed by BERTScore and
MEDCON. This could potentially explain why GPT-4o summaries have higher LLM-EVAL scores, but
generally lower scores in all other metrics. Additionally, it’s possible that GPT-4o could be biased

3https://pypi.org/project/evaluate/
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chq
BLEU ROUGE-L BERTScore MEDCON LLM-EVAL

GPT-4o (Baseline) 3.3± 10.3 32.5 ± 17.1 91.4 ± 2.5 47.8± 32.6 97.7 ± 46.0
Fine-tuned Llama3-8B 4.9 ± 14.8 31.3± 19.4 91.0± 3.3 48.0 ± 40.3 77.3± 33.3

opi
BLEU ROUGE-L BERTScore MEDCON LLM-EVAL

GPT-4o (Baseline) 1.4± 4.9 15.4± 16.0 86.7± 2.8 13.4± 22.4 95.0 ± 62.3
Fine-tuned Llama3-8B 12.3 ± 30.5 41.2 ± 33.7 90.0 ± 5.3 25.6 ± 41.0 58.0± 49.7

d2n
BLEU ROUGE-L BERTScore MEDCON LLM-EVAL

GPT-4o (Baseline) 5.8± 3.4 21.9± 5.3 85.1± 1.1 36.8± 12.8 84.3 ± 30.3
Fine-tuned Llama3-8B 18.2 ± 14.0 30.8 ± 13.7 88.3 ± 2.5 48.5 ± 18.1 71.7± 19.3

Table 2: Average and standard deviation of scores for GPT-4o and Fine-tuned Llama3-8B across
BLEU, ROUGE-L, BERTScore, MEDCON, and LLM-EVAL metrics for the chq, opi, and d2n tasks.

when evaluating text generated by GPT-4o itself, due to the generated text being more probable in
its own language model word-generation distribution. By comparing the other quantitative metrics
and qualitative evaluation with LLM-EVAL, it appears that LLM-EVAL shows potential for measuring
clinical text summarization success beyond typical heuristic evaluations.

Similarly to the approach taken in the clinical summarization paper, we used a low temperature given
the domain of healthcare and the low tolerance for hallucinations. This frequently resulted in outputs
that were very similar or even repeated which impacts metrics such as the BLEU score as there is
less opportunity to try different words that will be similar to the reference text.

In addition, due to the custom method the original paper used to tokenize their inputs, some examples
in the test dataset were discarded due to exceptions that were presumably caused by some tokenization
issue. The discarded examples were not manually selected, but were jumped over by the for-loop that
processed the inferences.

Hardware limitations also made fine-tuning the d2n dataset difficult since it contained prompts that
sometimes had thousands of words. Whenever, a prompt exceeded the max pad length specified
during our fine-tuning process (1024), we simply truncated the prompt to fit which would have
impacted our final performance. Nonetheless, Table 2 shows that fine-tuning Llama3 on the truncated
inputs still produced reasonable outputs.

Given the specific nature of each task, we realize that DPO might not be necessary for these clinical
summarization tasks. In most cases, when the model was considered incorrect, the generated text
was more harmless than malicious, and it is obvious to the user that the model had some issues
summarizing the prompt.

Another issue with DPO was that the low temperature used for generation led to similar responses.
On occasion, Llama3 would generate the same response when queried multiple times which impacted
our process for choosing the chosen and rejected prompts for the DPO dataset as GPT-4o’s ranking
of the responses would be meaningless. As a result, the generated DPO datasets sometimes contained
chosen and rejected prompts that were exactly the same. We did consider raising the temperature to
generate a wider variety of responses, but that often resulted in less accurate generations overall.

7 Conclusion

In this work, we investigate the use of GPT-4o and Llama3 for three clinical text summarization
tasks. We evaluate the model outputs using four established heuristic methods–BLEU, ROUGE-L,
BERTScore, and MEDCON–and a novel LLM-based evaluation metric, LLM-EVAL, where GPT-4o acts
as a “human" evaluator. We find on average, fine-tuned Llama3 often outperforms GPT-4o without
fine-tuning in the heuristic methods. However, GPT-4o often outperforms Llama3 in LLM-EVAL,
which appears to be able to analyze semantic meaning beyond BERT embeddings and pre-specified
medical concepts. These results show promise for using both GPT-4o and fine-tuned Llama3 for
clinical text summarization over prior older models, as well as shows promise for LLM-EVAL and LLM-
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based evaluation in general for potential use for evaluation clinical text summarization performance.
We additionally explore using LLM-EVAL for Direct Preference Optimization and provide preliminary
findings.

In general, we learned that clinical text summarization is a deviation from the typical task of language
modeling. In these types of tasks, fine-tuned models for domain-specific applications often perform
better than instruction-tuned models that can potentially conduct summarization, and instruction-
tuned models often perform better than pretrained models without further instruction-tuning or
fine-tuning. In most cases, there is a trade-off between breadth and depth, and instruction-tuned
models are able to handle a variety of queries, but the fine-tuned model qualitatively better handled
domain-specific medical terminology.

The primary limitations in this work include data and computing resources. Medical datasets are
very hard to obtain due too strict privacy regulations, and for deep learning applications, datasets
with sizes in the 1000s was likely not sufficient to generalize. While we did see good results, it is
important to note that the distribution of language and context used is not very wide, and it is possible
that inferencing prompts of a different format or from a different clinic would yield undesirable
results. With respect to compute, due to using half of the VRAM used by the original paper, we had
to use a quantized model with low batch sizes which increased training time and may have impacted
the precision of the resulting generations.

Besides experimenting with further improving LLM models adapted for clinical text summarization,
potentially by combining our state-of-the-art models with in-context learning examples from Van Veen
et al. (2024), future work should systematically experiment with versions of LLM-EVAL with various
prompting details and evaluate these results again human medical professional preferences, and
future work should build on our preliminary investigation of LLM-based DPO to determine potential
quantitative benefits over other methods by conducting more robust DPO fine-tuning and comparing
LLM-based DPO Llama3-8B existing results on chq, opi, and d2n with QLoRA fine-tuned Llama3-
8B. To more efficiently do these experiments, methods newer than QLoRA, such as GaLore which
does not use extra memory for the gradients themselves allowing for more weights or larger batch
sizes in the training process, could be utilized. Finally, in addition to DPO, RPO can be explored to
consider the feedback on the responses to similar inquiries, rather than only those in the dataset. This
can make a significant difference in the generation quality for inputs that are very out-of-distribution
compared to the training datasets.
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8 Ethics Statement

In general, the major ethical challenges and possible societal risks of using LLMs for clinical text
summarization are concerns about (1) inferior summaries causing worse patient outcomes, (2) a
lack of transparency in model decision-making, (3) data privacy for electronic health records. For
LLM-based DPO, a specific ethical challenge based on these general challenges is ensuring that DPO
fine-tuning on LLM evaluations does not result in inferior summaries compared to DPO fine-tuning
on medical expert evaluations. To consider models developed using LLM-based DPO sufficient for
clinical text summarization, safety checks and regulations must be put into place to ensure the quality
of the summaries are at least equivalent to those of human medical experts. We attempt to mitigate
this concern by doing thorough quantitative and qualitative evaluations (via LLM-evaluation) on our
model outputs, and especially analyze any concerns for hallucination or understanding ambiguity.
Further mitigation should involve medical experts in the field before approval for use.

A second ethical challenge is concerns about patient health information privacy. Compliance with
HIPAA and other data handling standards is paramount, and there are additional measures and costs
to ensure the proper anonymization and isolation of patient data. Even with the best efforts, it is
possible for information to be left over in the datasets. For example, if the live chat session in the
d2n dataset contained a patient’s name, it is possible that it would not be filtered out, especially if
it were in lowercase or was also a common noun. To mitigate these concerns, all datasets used to
develop LLMs for clinical text summarization must follow proper data handling standards to prevent
LLMs from even accessing improper data. Additionally, proactive work should be done to test and
ensure that such LLMs do not hallucinate incorrect patient health information from filtered content to
prevent LLMs from appearing to have patient health information even when they do not.
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A Appendix

A.1 Dataset Details and Example Input-Output Pairs

Dataset Example Input Example Output

Open-i Radiology: 3,418 radi-
ology reports detailing the find-
ings of the doctor. The goal of
the dataset is to reduce those
findings into a single observa-
tion. No planned preprocessing.

"Heart size is enlarged, pulmonary vas-
cularity within normal limits. Cardiac
defibrillator generator projects over the
left mid lateral lung. No visible pneu-
mothorax or pleural effusion. Minimal
streaky airspace opacities in the lower
lobes."

"1. Cardiomegaly without pul-
monary edema. 2. Minimal
bibasilar opacities which may re-
flect atelectasis or infiltrate."

Dialogue to Note: 126 ma-
chine transcribed conversations
between doctor and patient. The
goal of the dataset is to con-
dense the dialogue into a sum-
marized assessment. Preprocess-
ing to only consider the 126
samples containing ‘assessment
and plan’ sections, similar to
Van Veen et al. (2024).

"[doctor] so bryan it’s nice to see you
again in the office today what’s going on
[patient] i was in my yard yesterday and
i was raking leaves and i felt fine and
then when i got into my house about two
hours later my back started tightening
up and i started getting pins and needles
in my right foot ..."
[truncated for space]

"ASSESSMENT \n \n Low back
sprain. \n \n PLAN \n \n The
examination findings and x-ray
results were discussed with the
patient and his partner today. I
recommend we treat this conser-
vatively with rest, meloxicam,
and formal physical therapy. If
he fails to improve, we can con-
sider obtaining an MRI for fur-
ther evaluation."

MeQSum: 1,200 commonly
asked questions by patients, of-
ten written in a conversational
tone. The goal of the dataset is
to reduce these inputs to neutral
single-sentence questions. No
planned preprocessing.

"SUBJECT: Friedreich’s ataxia MES-
SAGE: I have been told I have Friedre-
ich’s ataxia. I am looking for a treatment
to reverse it. I has to do with the chromo-
some number 9 defective in both of my
parents and possible damage to chromo-
some number 10. Would you be able to
tell me if number 9 is defective in me."

"Where can I get genetic testing
for friedreich’s, and what are the
treatments for it?"

Table 3: Dataset descriptions and example input-output pairs.
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A.2 LLM-EVAL Prompt Text

Evaluation Introduction You are quantitatively evaluating scores for multiple responses to
the same reference text. We will provide you a Task Introduction,
which is the description used to describe the desired response to the
reference text; Evaluation Criteria, which describes how you should
evaluate each response; Evaluation Steps, which describes how to
score each response; Input Context, which is the reference text; and
Input Targets, which are the responses you will be evaluating.

Task-Specific Instructions (chq) Task Introduction: Summarize the patient health query into
one question of 15 words or less. The reference text is the patient
health query. Note that the response should summarize the query
into one question, and it should not answer the query.
(opi) Task Introduction: Summarize the radiology report findings
into an impression with minimal text. The reference text is the
radiology report findings.
(d2n) Task Introduction: Summarize the patient/doctor dialogue
into an assessment and plan. The reference text is the patient/doctor
dialogue.

Evaluation Criteria Evaluation Criteria: There are three evaluation criteria: complete-
ness, correctness, and conciseness. Completeness evaluates which
response most completely captures important information. Cor-
rectness evaluates which response includes the lease false infor-
mation. Conciseness evaluates which response contains the least
non-important information.

Evaluation Steps Score each response as an integer from -10 to +10 for each of the
three evaluation criteria: completeness, correctness, and concise-
ness. A score of -10 indicates the response is the worst possible
response for that criterion, a score of 0 indicates the response is
just acceptable, and a score of +10 indicates the response is the
best possible response for that criterion. Each response should
have three scores, one for each criterion. Return your evalua-
tion in the exact format "Reference Text: reference_text, (infer-
ence_text_1, (completeness_value_1, correctness_value_1, con-
ciseness_value_1)), (inference_text_2, (completeness_value_2, cor-
rectness_value_2, conciseness_value_2)), (inference_text_3, (com-
pleteness_value_3, correctness_value_3, conciseness_value_3)),
(inference_text_4, (completeness_value_4, correctness_value_4,
conciseness_value_4))" Replace inference_text_1, complete-
ness_value_1, correctness_value_1, conciseness_value_1, infer-
ence_text_2, completeness_value_2, correctness_value_2, concise-
ness_value_2, inference_text_3, completeness_value_3, correct-
ness_value_3, conciseness_value_3, inference_text_4, complete-
ness_value_4, correctness_value_4, conciseness_value_4 with the
actual values. Otherwise, use the exact formatting provided. Do
not add newlines, tabs, or other unnecessary formatting characters.

Reference Text [The original reference text to be summarized.]
Inferences [A list of generated summaries as inferenced from the model.]

Table 4: Prompt section text used by an LLM to produce LLM-EVAL metrics.
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A.3 Fine-tuning Training Loss and Samples per Second

Figure 1: Training loss for chq and opi

d2n was trained using a separate process that did not allow for easy logging on Weights&Biases
Biewald (2020). In addition, the small dataset size means that 50 epochs involves only a couple
hundred optimization steps.

Figure 2: Evaluation samples per second for chq and opi

opi had a lower sampling rate due to generally larger prompt sizes.
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A.4 Additional Experiment: Llama3 without Fine-Tuning

We conducted preliminary experiments on Llama3-8B without fine-tuning. We found that it produced
summaries with low scoring metrics and qualitatively bad evaluations. However, adding instructions
or fine-tuning with instructions (such as Alpaca Taori et al. (2023)) helped produce better summaries
by both quantitative and qualitative metrics.

These preliminary results are expected, because the pretrained large language model’s is trained to
generate the next probable token, and in most text, if someone is asking a question, writing a report,
or providing a dialogue, it is usually not followed by a summary. Using the prior tokens themselves,
rather than the tokens that are likely to follow, as the distribution of data for generation, is unique to
summarization. Furthermore, general pretrained LLMs are not necessarily accustomed to instruction.
The instruction followed by the prompt, with the Llama3-8B model without fine-tuning resulted in
seemingly random generation of text until the maximum length was reached.

A.5 Additional Experiment: Fine-tuning Llama3-8B on the Alpaca Dataset

We conducted a preliminary experiment on the Alpaca dataset (Taori et al. (2023)) to help establish
our system for fine-tuning Llama3-8B. We fine-tuned both 4-bit and 8-bit quantized model versions
of Llama3-8B on the Alpaca dataset for 10,000 iterations, taking around 12 hours and 16 hours
respectively. For both 4-bit and 8-bit runs, we use a learning rate of 0.0002, a LoRA dimension of 64,
and Adam parameters β1 = 0.9 and β2 = 0.999. The hardware used for training is an RTX 4090.
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