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Abstract

Speech brain–computer interfaces (BCIs) hold promise for restoring communica-
tion in individuals who are unable to speak intelligibly by decoding neural activity
into text. However, current state-of-the-art brain-to-text systems produce word
error rates (WER) that are too high for practical use. This study mitigates com-
mon sources of error by integrating an additional rescoring step in the pipeline
that considers the conversational context of the decoded transcriptions. From
there, we explore three lightweight, context-inclusive interventions, including a
self-improvement approach to prompt engineering inspired by iterative prompt
tuning. Using the model ensemble proposed by Willett et al. (2023) as our baseline,
our low-resource interventions achieve a 5% reduction in WER, highlighting the
potential of context-aware decoding to enhance the accuracy of speech BCIs and
improve their usability in real-world applications.

1 Introduction

Speech BCIs have the potential to restore rapid communication to individuals who cannot physically
speak intelligibly by decoding neural activity into text Willett et al. (2023). These systems are typically
activated when BCI users think about or attempt to vocalize the words they wish to communicate.
This mental activity generates neural spikes in target regions of the brain, which the system decodes
into corresponding sentences or phrases.

Willet et al. recently demonstrated a groundbreaking speech-to-text inference pipeline that decodes
spiking activity into sentences with a 23.8% word error rate (WER) on a 125,000-word vocabulary,
which is not yet sufficiently low for everyday use Xiong et al. (2018)He et al. (2019).

In their analysis, they noted that phonemes articulated similarly were more likely to be confused by
the RNN decoder. Additionally, after examining the outputs from their test set, we observed that many
of the errors were homonymous in nature—for example, if the ground truth value is ‘know,’ their
pipeline outputs ‘no.’ Given these observations, our project aims to disambiguate similar-sounding
outputs by incorporating conversational context into the decoding process with an additional rescoring
step. Borrowing from existing large language models (OPT-350M, GPT-3.5), we study the effects
of three context-inclusive approaches to rescoring—using a general-purpose transformer model,
exploring a parameter efficient fine-tuning (PEFT) method to improve the transformer’s accuracy,
and developing a self-tuning prompt engineering technique.

Quantitative and qualitative analysis of our interventions suggests that incorporating context-
awareness into the brain-to-text pipeline is a highly-effective intervention for improving the quality
and accuracy of the decoded transcriptions. While there is still much work to be done to ensure the
usability of speech BCIs, we hope our findings are a positive step towards their practical deployment.
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2 Related Work

2.1 Recent Advancements in Brain-to-Text Systems:

Most of the work on speech BCIs explores one of two areas of improvement: disambiguation
of similar-sounding phonemes, or latency reduction. This project concentrates on the former. In
particular, it builds upon the recent work by Willett et al. Their system employs intracortical
electrode arrays to capture neural activity, which is processed through a five-layer gated recurrent unit
architecture. This architecture decodes a time series of neural spikes into a sequence of phonemes by
selecting the highest probability phoneme at each index. The resulting phoneme sequences are then
inputted into a Weighted Finite-State Transducer, which maps the phonemes to likely words using
weights generated by a trigram language model (LM). The output from the trigram LM is a list of
decoded hypotheses, ranked according to the probability that each one accurately represents what
was actually thought or voiced by the user. In their supplementary work, Willett et al. found that
applying a transformer LM to rescore these outputs significantly reduced the word error rate from
23.8% to 17.4%. These findings were corroborated by in a subsequent study.

Additionally, tangential work by Benster et al. (2024) on noninvasive silent-speech interfaces intro-
duced a technique called LiSA. This technique employs few-shot learning on transformer language
models to select the most accurate output from the decoding step, prioritizing contextual and gram-
matical correctness while avoiding repetitive or nonsensical phrases. Although their work focuses on
noninvasive BCIs, they evaluated their method with the same vocabulary used by Willett et al. and
achieved a 8.9% error rate. This marked the first instance where noninvasive silent speech recognition
on an open vocabulary achieved a WER of less than 15%.

2.2 Low-resource computing:

Given the size of our dataset and the limited computational resources at our disposal, we also explored
several approaches to low-resource, low-data computing.

First, prompt engineering is the process of optimizing the task descriptions passed through to large
language models for better performance on the prompted task. Compared to fine-tuning, it has a lower
computational cost. Shin et al. (2020) introduced a prompt engineering technique called Autoprompt,
which employs search algorithms to select prompts that elicit knowledge from pre-trained language
models. Related work by Li and Liang (2021) added continuous prompts to the input text and used
gradient descent to adjust these prefixes.

3 Approach

With the model architecture proposed by Willet et al., our translation pipeline initially passes RNN-
generated phoneme probabilities to a trigram model created with Kaldi, which is then used to score
all of the possible sentences. WeNet is employed to simplify the implementation of this real-time LM
decoder Willett (2022).

Unlike Willett et al., instead of outputting the highest probability sentence after the trigram-weighted
beam search step, we extracted the top n possible outputs for each sequence, as well as its ground
truth sentence. To each of the outputs, we prepended additional conversational context, which we
defined as the m utterances that precedeed the ground truth sentence in its corresponding transcript
from the Switchboard corpus.

Then, we rescored n best context-prepended hypotheses (fewer in cases where the RNN provided less
than n possible hypotheses). We ran three experiments to determine the best approach to rescoring.

3.1 OPT-350M

First, based off work by Card et al. (2024), we experimented with rescoring our hypotheses using a
general purpose facebook/opt-350m model and a byte-level Byte-Pair Encoding tokenizer. This
model contains 350 million parameters, and belongs to Facebook’s Open Pre-trained Transformer
(OPT) family of models, which are trained on large-scale datasets and are optimized for both efficiency
and accessibility.
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We selected this model for several reasons. Firstly, its open-source nature and lightweight architecture
make it ideal for environments with limited computational resources. Secondly, we conducted a
hyperparameter sweep for both facebook/opt-350m and facebook/opt-6.7b and found that the
larger model’s marginal increase in performance (a 0.1% decrease in accuracy) did not justify the
substantial increase in computational and memory demands. This insight underscored the efficiency of
facebook/opt-350m, allowing us to achieve nearly equivalent accuracy while significantly reducing
resource usage.

Each block in facebook/opt-350m is composed of a multi-head attention mechanism and a feed-
forward layer. Multi-head attention can be represented as a linear transformation of concatenated
individual heads, where a single head hi is equal to

hi = softmax(
QiK

T
i√

dk
)Vi.

For each tokenized input, the model stacks several of these blocks to output a matrix of logits Li,
where each entry Lijk represents the logit for the k-th possible token at the j-th position in the i-th
hypothesis Zhang et al. (2022) Vaswani et al. (2017).

We use this series of logits to compute the conditional log probabilities for each token. To obtain the
rescores for each hypothesis, we applied a length penalty to these probabilities.

Si =

ntokens∑
j=context_length

Pij(hypothesis | context)− ni,real_tokens × lengthPenalty

To calculate a total score for each hypothesis, we linearly combined Si with the acoustic scores from
the RNN and the LM scores from the trigram model, using weighting hyperparameters α and a:

Stotal = α ∗ Si + (1− α) ∗ oldLMScores + a ∗ acousticScores.

Finally, we reranked n best hypotheses using Stotal , and reevaluated the WER with this new ranking.

3.2 OPT-350M-LoRA

In this study, we utilized Low-Rank Adaptation (LoRA) Hu et al. (2021) with the OPT-350M model.
LoRA is a parameter-efficient fine-tuning technique (PEFT) designed for fine-tuning pre-trained
language models with limited computational resources. LoRA operates by leaving the original weight
matrix W0 of the model as is during fine-tuning instead learning two low-rank matrices A and B
such that W ≈ W0 +BA.

Given an original weight matrix W0 ∈ Rd×k, LoRA decomposes the fine-tuning process into learning
A ∈ Rr×k and B ∈ Rd×r, where r is the rank of the adaptation. The final weight matrix used during
inference is W = W0 +BA. An illustration of LoRA is available in Appendix A Figure 2

3.3 GPT-3.5

We used GPT-3.5-turbo-0125, a GPT-3 variant designed to provide faster responses and more efficient
processing compared to the standard GPT-3.5 models. Rather than asking GPT-3.5 to rescore the
n-best hypotheses, we asked it to choose and return the best option.

3.3.1. Prompt Engineering: We employed prompt engineering and few-shot learning to direct GPT-
3.5 on this task. Distinct from the previous methods we examined, we used iterative self-feedback
loops to tune our prompts in real-time. Specifically, for a small part of our dataset, we prompted
GPT-3.5 to compare its response to the ground truth transcription for that set of hypotheses, and apply
its insights to rewrite the task description, which we then fed back into it.

This approach enables the model to identify and guard against common decoding errors specific
to the dataset it evaluates, effectively tuning its task to the nuances of this particular dataset. This
is especially important for this task as the candidate transcriptions are notably noisy, often failing
to closely match the ground truth. The model adapted to this challenge, learning to recognize the
phonetic and stylistic similarities even among inaccurate candidates. It even began to autonomously
generate its own hypotheses, mirroring the style of the candidate descriptions but aligning more
closely with the actual context.
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Figure 1: Iterative prompt tuning for a single set of hypotheses.

3.4 Baselines

Prior to applying LLM rescoring, we recalculated the WER for our dataset and established a prelimi-
nary score of approximately 16.2%. After rescoring with the LLM on hypotheses without context,
we observed a WER of 14.0%.

4 Experiments

4.1 Data

To evaluate the effects of our intervention, we started with Willett et al.’s dataset. To generate this
dataset, a speech-impaired research participant with looked at the sentences on a screen and thought
about speaking a total of 12,100 sentences sampled from the Switchboard Dialog Act CorpusJurafsky
et al. (1997)Shriberg et al. (1998)Stolcke et al. (2000) and OpenWebText2Gao et al. (2020) datasets.
The entire dataset is publicly available on Willett et al.’s GitHub.

As mentioned, Willett et al. prompted their research participant to speak sentences from the following
corpora:

• Switchboard Dialog Act Corpus: Comprises over 1,000 short telephone conversations in
English between two individuals. The 440 participants were provided with specific prompts
to guide their discussions. The conversations are transcribed into text, with disfluencies and
other irregularities removed through post-processing methods.

• OpenWebText2: Consists of web pages scraped from Reddit URLs with 40GB across more
than 8 million pages.

The Switchboard Corpus comes with several utility functions for the retreival of conversational context
associated with each of the ground truth sentences. Since OpenWebText2 consists of individual web
pages scraped from various sources without any inherent conversational structure or continuity, the
sentences from OpenWebText2 were omitted from our dataset. After this omission, we ended up with
284 sentences with conversational context.

4.2 Evaluation method

We evaluated the performance of our model using word error rate and character error rate, measuring
the Levenshtein distance between the ground truth transcription and the post-rescoring highest-
ranked hypothesis. WER provides a straightforward measure of the overall accuracy of the predicted
transcriptions at the word level. CER, on the other hand, evaluates the performance by comparing
individual characters. They are computed as follows:

WER, CER =
Substitutions + Deletions + Insertions
Total words, characters in ground truth

.

4.3 Experimental details

4.3.1. Context Types: We explored several methods for incorporating context, using information
from the Switchboard Corpus. For our first approach, we prepended previous utterances from the
conversation onto the decoded phrase. After rescoring with facebook/opt-350m, this intervention
resulted in a 12.8% Word Error Rate (WER). Next, we added punctuation back into the context
before prepending it. This adjustment decreased the WER by 0.6%, bringing it to 12.2%. Finally,
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we included speaker turns by listing the current speaker throughout the conversation. This further
reduced the WER to 11.8%.

An example of this processing on a single contextual passage can be found in Appendix A, Table 5

4.3.2. OPT-350M Configuration and Hyperparameters: In developing our general-purpose OPT
model for rescoring, we enabled 8-bit loading to reduce memory usage. Our preliminary experiments
indicated that 8-bit precision did not significantly impact performance, while substantially decreasing
compute time and memory requirements. We initialized the tokenizer with the standard end-of-
sequence (eos_token) token, ensuring it was appended to the end of each sequence.

We performed a comprehensive hyperparameter sweep to determine the optimal values for our
rescoring calculations. Specifically, we swept the following hyperparameters over the corresponding
ranges: α and a: [0, 1]; lengthPenalty: [-10, 10]; n (number of best hypotheses to include in
rescoring): [10, 100]; m (context length for each hypothesis): [10, 25]. The context length (m) sweep
was capped at 25 utterances, as larger contexts necessitated memory capacities exceeding those
available. We determined that the optimal hyperparameters were α = 0.8, a = 0.5, lengthPenalty =
−0.5, n = 30, and m = 25, yielding a WER of 11.5%.

4.3.3. LoRA Hyperparameters and Performance We chose r to be 16 to encourage expressiveness
and set the LoRA α parameter to 32 to enhance adaptability without causing high variance. The
alpha parameter is a scaling factor used to adjust the learning rate of the low-rank matrices A and
B. Specifically, the adapted weight matrix during fine-tuning is calculated as W = W0 +

1
αBA.

A higher α scales down the updates, helping to prevent overfitting and maintain stability, while a
lower α increases the risk of overfitting. A dropout rate of 0.3 was used to prevent overfitting and the
learning rate was set to 3e-5. We trained conducted over 6 epochs. Given the size of our dataset, we
restricted the size of the training set (only 100) for fine-tuning.

4.3.4. GPT-3.5 Hyperparameters: Before prompt engineering, we determined the optimal number
of examples for few-shot learning by conducting a sweep from one to five examples. This range
was chosen based on the constraints of our small dataset and the findings from previous studies
on few-shot learning. Our experiments determined that two examples yielded the most accurate
predictions from GPT-3.5.

4.3.5. Prompt Engineering: Using few-shot learning, we asked GPT-3.5 to choose and return the
best option from a list of hypotheses given the context for that set of hypotheses. The specific prompt
we sent to ChatGPT, modified from Benster et al, can be found in Appendix A Section 8.4.1.

We also developed a self-feedback approach to prompt engineering. Specifically, for a small subset
of our dataset—60 examples—we executed a second task that prompted GPT-3.5 to compare its
output against the ground truth transcription, and rewrite the first task description to provide better
instructions. Each iteration aimed to address the general shortcomings identified in the previous
output, refining the prompts to enhance performance. The specific script we used to prompt GPT-
3.5 to rewrite the task description can be found in Appendix A Section 8.4.2. Below are several
modifications that GPT-3.5 made to the first task description. The table also includes the ground truth
and output transcriptions that prompted each change with bolded differences:

Table 1: Dynamic Prompt Engineering

GPT-3.5 Output Ground Truth Additions to the Task Description
they didn’t hook
up the wiring
wrong

they didn’t fit the car “...Always choose the best candidate
transcription, even if none seem to
perfectly fit the context..."

anything like that
we provided

anything like that we
participated

“... If needed, you can change a word in
the candidate sentence to make it fit
better, but never add or delete words..."

call and find out “i call and find out" “... Some of the correct answers may be
grammatically incorrect..."
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Each time GPT-3.5 returned a modified prompt, we used it as the task description for the subsequent
query into task 1.

After tuning the first prompt on the small subset of datapoints, we queried GPT-3.5 with the tuned
prompt on 150 more datapoints. This number was chosen with consideration for our credit limit and
the runtime for a dataset of this size—approximately an hour with a 25-utterance context. We used
the same dataset to determine two baselines. First, we queried GPT-3.5 with our original prompt,
omitting context from each set of hypotheses. Then, we reincorporated context and determined our
second baseline. Compared to these methods, our dynamic prompt engineering approach significantly
reduced the WER.

4.4 Results

The best performance we achieved with each of the following methods is listed below:

Table 2: Comparison of Models Based on WER and CER

Method WER CER
Trigram (Baseline) 16.2% 11.8%

Trigram + OPT-350M (Baseline with OPT) 14.0% 10.0%

Trigram + OPT-350 + context 11.5% 8.4%
Trigram + OPT-350M-LoRA 18.35% 15.7%

GPT-3.5 + few-shot learning - context (Baseline) 21.9% 14.6%

GPT-3.5 + few-shot learning + context (Baseline with context) 16.9% 11.9%

GPT-3.5 dynamic prompt engineering 12.3% 9.5%

Trigram + OPT-6.7B + context 11.1% 8.3%

GPT-4 + few-shot learning + context 11.3% 8.4%

The marked reductions in the WER and CER exceed initial expectations. However, the analysis also
highlighted some challenges to tackle with further research.

Notably, the performance of OPT-350M-LoRA, which recorded a WER of 18.35%, did not meet our
expectations, as it performed worse than both of its baseline measures. This was unexpected since
LoRA is designed to mitigate overfitting. A potential explanation for this apparent overfitting might
involve poor tuning of relevant hyperparameters, or a small-sample dataset that skewed the learning
process. Delving deeper into the proper training method for LoRA could uncover more about why
the model’s expected generalization didn’t occur as anticipated.

Moreover, the minimal performance gap between the OPT-6.7B and OPT-350M models raises
questions about the diminishing returns of scaling up model sizes within specific transcription tasks.
That being said, we are curious to see how a more recent, much larger model like LLaMA would
perform.

That being said, we are very encouraged by the 5% reduction in the WER following OPT-350M
rescoring. A visual review of the outputs from this step revealed that a significant number of errors
were due to the absence of accurate candidates in the initial lists. This suggests that the accuracy of
the system is somewhat bottlenecked by the performance of the RNN and trigram LM. To address this,
future work should apply adversarial training on input phoneme sequences to increase the robustness
of the RNN against errors in phoneme capture.

Crucially, the dynamic prompt engineering approach with GPT-3.5 demonstrated significant potential
in circumventing this bottleneck, as it was able to generate accurate hypotheses that were not included
in the initial candidate lists. In Table 3, we illustrate several examples where GPT-3.5 generated
responses that matched the ground truth transcriptions much better than any of the provided candidate
transcriptions could.
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Table 3: Dynamic Prompt Engineering Mitigates RNN Decoding Errors

Best Choice from Static
Prompting or LLM
Rescoring

Dynamic Prompt
Engineering

Ground Truth

they put him in the
nursery office

they put him in the
nurse’s office

they put him in the nurse’s
office

i just feel valuable
in time that every
year

i just file federal
and joint income tax
every year

i just file federal income tax
every year

that’s not that you
like your settings
also

that’s neat that you
like cross-stitching
also

that’s neat that you like
cross-stitching also

i do personally find
it on

i do personally find
it annoying

i do particularly find it
annoying

it has so been nice
here

it has mostly been
nice here

i do particularly find it
annoying

i take it she was an
icon

i take it she was an
accountant

i take it she was an accountant

i has so been nice
here

it has mostly been
nice here

it has really been nice here

i know the us i know there is i know there is

Although the last output from dynamic prompt engineering shares the same WER as the best option
from the candidate transcriptions, it still has a more gramatically correct structure.

That being said, there remains a need to refine the extent to which GPT-3.5 can alter its outputs.
Occasionally, if the model decided that none of the provided hypotheses were sufficiently accurate,
it generated a substantially different and inaccurate response that closely matches the context. To
address this, tuning the second prompt is essential. We present an example of this below.

Table 4: Comparison of Prompt Engineering, Dynamic Prompt Engineering, and Ground Truth

Context Candidate
Hypotheses

Dynamic Prompt
Engineering

Ground Truth

speaker 1370:
do you want to
hear about my
other animals
i’ve had? i’ve
had a
skunk––speaker
1362:, do the
skunk, was it
kind of like a
cat to have
around the
house?

1. this to say
it’s either all
through the
house; 2. here
to see each
other all
through the
house; 3. these
two see each
other all
through the
house; ...

did the skunk
act like a cat
to have around
the house

used to chase each
other all through the
house

While we didn’t have the credits to run all of our GPT tests with it, our initial experiments with GPT-4
using static, context-inclusive few-shot learning yielded an 11.3% WER. The significantly improved
results with dynamic prompt engineering on GPT-3.5 lead us to be optimistic about the potential
performance enhancements that could be achieved with GPT-4.
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5 Analysis

5.1 OPT-350M Rescoring

A review of outputs following the OPT-LLM rescoring step revealed that a significant number of
errors were due to either the absence of the correct transcription in the set of decoded hypotheses, the
lack of appropriate context, or ambiguous hypotheses. We expand on this now.

Due to the limited quality of the RNN and trigram-decoded outputs, the set of n best candidate
hypotheses doesn’t always contain the ground truth transcription. In these cases, the hypotheses will
phonetically resemble the ground truth transcription, but often contain none of the correct content or
words. See Table 5 for an example of such a set.

These errors in RNN decoding are often compounded by poor contexts. Contextual passages are often
quite noisy, and contain people stuttering or abruptly moving on to a different topic. For example, con-
sider the following subset of transcriptions: [one in college away, run in college away,
runs in college away, done in college away, and in college way...]. The context
corresponding to this set of transcriptions covers a wide range of topics, including the government,
taxes, and “exotic weapon systems." The utterance right before the decoded transcription—which is
supposed to say, “one’s in college already"—cuts off, so the local context isn’t adequately captured.
“One’s in college already" is not in the list of decoded hypotheses, but even GPT-3.5 directed with
dynamic prompting was unable to generate the correct hypothesis because of this poor context.

The last class of errors that the LLM we encountered is the presence of ambiguous hypotheses.
For example, one set of candidate transcriptions contains both “i can relate to that" and “i
can’t relate to that", in response to the other speaker’s specific circumstances. In this case,
without specific knowledge about the person, it is difficult to choose the correct transcription. This is
the smallest class of errors, appearing only a handful of times throughout the dataset.

We believe that the main bottleneck is still primarily the accuracy of the RNN and trigram transcrip-
tions, as it worsens everything else.

5.2 Prompt Engineering

We identified several limitations in our dynamic prompting approach. Firstly, GPT-3.5 consistently
failed to remove elements from previous task descriptions, opting instead to continue to append
additional stipulations. This accumulation led to overly complex prompts, which we observed to be
less effective because they increased the model’s cognitive load, leading it to be less focused.

Secondly, our current strategy does not provide a particularly effective method for GPT-3.5 to identify
and integrate corrective feedback directly into the task descriptions. Many times, GPT-3.5 returned the
unedited task description, even if there were remarkable errors between its output and the ground truth.
To address this, we propose splitting the second prompt into two distinct parts. The first part would
identify discrepancies between the model’s outputs and the ground truth, and the second would rewrite
the task description based on these discrepancies. We tested this method using the ChatGPT UI,
where it demonstrated a significant improvement in recognizing and integrating corrective feedback.

6 Conclusion

In this project, we investigated an innovative approach to brain-to-text decoding by integrating
context awareness into the decoding pipeline. Our initial findings indicated that context awareness
significantly reduced the word error rate. To capitalize on this improvement, we explored several
context-based interventions, including a lightweight, dynamic prompt engineering scheme that
mitigates decoding errors from the RNN and trigram LM.

We hope that our project will contribute to the usability of speech BCIs. In practical applications,
conversational context can be recorded in real-time with an ensemble of automatic speech-to-text
models and our brain-to-text pipeline. Additionally, with access to more computational power and
memory, we expect even more significant improvements in transcription accuracy.
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7 Ethics Statement

Given that brain-computer interfaces possess intimate access to a user’s neurodata, these devices
have the potential to be extremely dangerous. If, for example, outside parties obtained data from the
neuroprosthesis, such as individualized model weights, they would be able to obtain deep insights
into users’ cognitive processes and emotional states, and perhaps capitalize on them. Additionally,
there is the risk that users will lose autonomy if people find ways to control them through the devices.
To address these risks, these systems should incorporate robust security measures, such as encryption
to safeguard data during transmission, and anti-virus and anti-malware technology to defend against
cyberattacks that could target or hijack the devices. Additionally, there must be strict access control
protocols—rigorous authentication processes, for example—in place to ensure that only authorized
personnel have access to sensitive data. To ensure that BCI companies are adhering to these strict
privacy standards and regulations, there should be regular audits of these companies conducted by
independent bodies.

Additionally, obtaining informed consent is all the more crucial, both because BCIs interact with a
person’s neurological processes and because they are a new, relatively unknown, and usually invasive
device whose long term impacts are unknown. That being said, it is very difficult to explain enough
about how they work to obtain consent, since understanding the technology requires a high level of
technical knowledge and the brain is very opaque.

Another ethical concern is the potential for BCIs to exacerbate social inequalities. If these technologies
are accessible only to a select few, it could deepen the divide between socioeconomic groups, and
worsen the stigmatization of disability. As promising as this burgeoning technology is, it is crucial to
develop policies in tandem with the development of these devices to promote both safe and equitable
access to BCIs. Policymakers could subsidize the cost of these technologies, or align innovation
incentives with with public health equity objectives to encourage companies to cater to a larger
consumer base.

If only a select few individuals can afford and access these emerging technologies, BCIs may
exacerbate existing social inequalities. In order to ensure this does not become a reality, policies
should subsidize access to BCIs, especially for people with disabilities who stand to benefit the most
from such technology. Through government subsidies, companies might also be encouraged to foster
innovation in areas that meet broad societal needs.

8 Appendix A:

8.1 LoRA Illustration

Figure 2: Visualization of Low-Rank Adaptation (LoRA). The original weight matrix W ∈ Rd×d is
frozen, and two low-rank matrices A and B are learned.
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8.2 Sentence Preprocessing

To ensure consistent formatting, we preprocess the corpus similarly to Willett et al., but with
additional cleanup steps. Specifically, we remove filler words (e.g., "uh", "huh", "um"), unnecessary
characters such as parentheses, hashtags, and asterisks, normalize spaces, handle contractions, correct
punctuation issues (e.g., double punctuation, misplaced commas), capitalize the first letter of each
sentence, split utterances into sentences based on punctuation, and add speaker information to each
utterance to maintain conversational context.

In the Switchboard corpus, an utterance is equivalent to a persons turn in a conversation. When one
of the conversation participants begins to say something, a new utterance is added to the conversation.
These utterances can be multiple sentences long, or just filler words such as "uhm", or "hmm".

The preprocessing function is designed to clean and normalize the text to ensure consistency across
all sentences, integrating speaker information for better contextual understanding.

8.3 Different Context Interventions

Here is an example of this processing on a single contextual passage:

Table 5: Comparison of Different Transcription Formats

Stripped Punctuation Punctuation and Speakers
well got any problems on
mockingbird with crime or is
that a crime free zone there no
i dont think there is any such
thing as a crime free zone any
longer im afraid youre right
one evening i decided to retire
early and heard sirens and
noises and thought oh well
somethings happened on
mockingbird and then heard
yells and screams and the next
thing i know there are
policemen all around my
house and they had stopped a
b

well, got any problems on
mockingbird with crime or is
that a crime free zone there?
no, i don’t think there is any
such thing, as a crime free
zone any longer. i’m afraid
you’re right. one evening i
decided to retire early and
heard sirens and noises and
thought, oh, well, something’s
happened on mockingbird and
then heard yells and screams
and the next thing i know
there are policemen all around
my house. and they had
stopped a, b-,

speaker 1397: well, got any
problems on mockingbird
with crime or is that a crime
free zone there? speaker
1378: no, i don’t think there is
any such thing, as a crime free
zone any longer. speaker
1397: i’m afraid you’re right.
speaker 1378: one evening i
decided to retire early and
heard sirens and noises and
thought, oh, well, something’s
happened on mockingbird and
then heard yells and screams
and the next thing i know
there are policemen all around
my house. and they had
stopped a, b-,
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8.4 Prompt Engineering Prompts

8.4.1 Task Description 1: Modified Prompt from Benster et al.

Your task is to choose or generate the most accurate and contextually appropriate transcription
from a list of candidate transcriptions. The candidate transcriptions you will receive were
ranked by an RNN and are in order from most likely to least likely.

You will be provided with five examples, each containing a list of candidate transcriptions,
the corresponding ground truth transcription, and the context before which the transcription
occurs. You must use these examples to learn and guide your decisions when selecting or
generating transcriptions for new lists. Focus on key differences in the candidates that change
the meaning or correctness. Avoid selections with repetitive or nonsensical phrases. In cases
of ambiguity, select the option that is most coherent and contextually sound.

Always only respond with either a candidate transcription or a generated transcription. Never
provide any introductory or error text, only the transcription you chose. Don’t give up. If there
are less than two candidate transcriptions, DO NOT generate your own; choose one of them.

Here are the two examples for you to learn from: [Examples here]
And here is the context for your current set of candidate transcriptions: [Context here]

8.4.2 Task Description 2: Self-Feedback-Driven Tuning:

This is the task description we used to prompt ChatGPT to assess its errors and return a modified
version of Task Description 1 that we could use in our next query.

Here is the ground truth transcription that you should have returned: [Ground truth here]
for the following task: [Original task description here]. Follow these steps:
1. Read your response–[Model output here]– and the ground truth.
2. Compare your response to the ground truth to identify any differences.
3. If your response and the ground truth are not the same, generate a new task description
that clarifies the original task or adds a stipulation to improve accuracy. Otherwise, return the
original task description.
4. Focus on general features that would have been helpful to pay attention to, rather than
specific details of the error/pair.
5. Do not make edits specific to the error/pair, but rather ensure the new task description
addresses the general issues.
6. Include the two examples I gave you in the previous task at the end of your task description.
Do not modify or add examples to your task description.
7. Make sure GPT will always choose the best option, even if none of them seem to fit the
context. Never return messages that they don’t fit the context. Never generate your own option.
If it needs to, GPT can change a word in the candidate sentence to make it fit better, but never
add words or delete them.
8. Never return anything other than the best candidate transcription.
Feel free to change the original task description as much as you need.
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