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Abstract

While Large Language Models (LLMs) have revolutionized artificial intelligence,
fine-tuning LLMs is extraordinarily computationally expensive, preventing smaller
businesses and research teams with limited GPU resources from engaging with new
research. Hu et al. (2021) and Liu et al. (2024) introduce Low-Rank Adaptation
(LoRA) and Weight-Decomposed Low-Rank Adaptation (DoRA) as highly effi-
cient and performant solutions to the computational challenges of LLM fine-tuning,
demonstrating huge speedups and memory usage savings for models such as GPT-3
and RoBERTa. We seek to expand upon the original LoRA and DoRA papers
by benchmarking efficiency and performance of LoRA and DoRA when applied
to a much smaller scale of language model: our case study here is the compact
minBERT model. Our findings reveal that optimal custom configurations of LoRA
and DoRA, coupled with Automatic Mixed Precision (AMP), significantly enhance
training efficiency without compromising performance. Furthermore, while the pa-
rameterization of minBERT is significantly smaller than GPT-3, our results validate
the observation that gradient updates to language models are inherently low-rank
even in small model space, observing that rank 1 decompositions yield negligible
performance deficits. Furthermore, aided by our highly efficient minBERT im-
plementation, we investigate numerous architectures, custom loss functions, and
hyperparameters to ultimately train an optimal ensembled multitask minBERT
model to simultaneously perform sentiment analysis, paraphrase detection, and
similarity scoring.

1 Key Information to include

• Mentor: Kaylee Burns; External Collaborators (if you have any): N/A; Sharing project: No
• Team Contributions:

Aditri: Base minBERT implementation (excluding Adam), baseline models for all subtasks
with enhanced features, data preprocessing, contrastive experiments.
Moritz: Debugged Adam, implement LoRA and DoRA, benchmark/grid search LoRA and
DoRA, ablation studies
Daniel: Implemented Adam, multi-task training regimes, Clf layers, AMP, TensorBoard,
LR expts, EMA, pearson & hybrid losses, architecture expts, ensembling, nltk cleaning,
iterative unfreezing.

2 Introduction
In recent years, large language models have increased massively in terms of both performance and
size. Current best estimations of large language model performance scaling laws, such as Kaplan
et al. (2020) suggest that this trend will continue for the foreseeable future, with model performance
scaling consistently as a power law relative to model size, dataset size, and the amount of compute
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used for training. As a consequence of the massive scale of modern large language models, the
accessibility of language model fine-tuning has significantly decreased.

The traditional approach for fine-tuning involves updating all model parameters, which can quickly
become infeasible as the number of model parameters grows. However, this methodology came into
question when Li et al. (2018) uncovered the promising finding that many models could be massively
compressed into smaller parameter subspaces without compromising performance. Aghajanyan et al.
(2020) extended this finding to demonstrate that fine-tuning updates to pre-trained large language
models had low intrinsic rank. Subsequently, Hu et al. (2021) and Liu et al. (2024) proposed LoRA
and DoRA, respectively, as solutions towards parameter efficient fine-tuning of pre-trained large
language models, achieving a 10, 000x reduction in trainable parameters and 3x reduction on GPU
memory requirement when fine-tuning GPT-3 175B, without sacrificing performance.

To the best of our knowledge, no prior research has benchmarked efficiency gains or implementation
best practices when leveraging LoRA and DoRA for the fine-tuning of small BERT models. As an
extension to the work of Hu et al. (2021) and Liu et al. (2024), we seek to understand the intrinsic
rank of fine-tuning updates, benchmark expected efficiency gains and performance reductions, and
propose optimal selection of layers for low-rank adaptation of small BERT models. Our case study is
our ≈ 226M (Appendix O) parameter minBERT model (built off of Stanford’s CS224N minBERT:
Stanford University (2024)). To achieve this, we design custom implementations of LoRA and DoRA
for minBERT and quantify efficiency gains and performance reduction for a multi-task minBERT
model. Our model is designed to perform sentiment analysis, paraphrase detection, and semantic
textual similarity scoring simultaneously. As a secondary goal, empowered by our efficient fine-tuning
capabilities, we conduct extensive experiments towards deriving an optimal minBERT multi-task
model.

3 Related Work
3.1 Efficient Fine-Tuning
Li et al. (2018) uncovered the fact that many models can be re-parameterized in much lower dimen-
sional space without losing performance. Building upon this, Aghajanyan et al. (2020) set out to
investigate the intrinsic rank of fine-tuning updates for pre-trained large language models, finding
that Li et al.’s results held true in the language modeling domain. Subsequently, Hu et al. (2021)
and Liu et al. (2024) proposed parameter efficient fine-tuning techniques to take advantage of the
low intrinsic rank in large language model fine-tuning updates. The novel contribution of Hu et al.
(2021), Low-Rank Adaptation for Large Language Models (LoRA), has gained massive popularity in
both academia and industry, enabling research teams with limited resources to explore fine-tuning
use cases that might not otherwise be approachable. Liu et al. (2024) was released earlier this year
and suggests that LoRA tine-tuned model performance might be massively improved by a simple
decomposition of weight updates into separate magnitude and direction components.

LoRA’s original benchmark results demonstrated a striking reduction in VRAM usag ——for instance,
it reduced memory requirements from 1.2TB to 350GB during training on GPT-3 175B Hu et al.
(2021). Hu et al. (2021) also benchmarked LoRA with impressive results on GPT-2, RoBERTa,
and DeBERTa and evaluated fine-tuned models across a variety of benchmarks, including GLUE,
WikiSQL, SAMSum, and the E2E NLG Challenge. RoBERTa and DeBERTa were fine-tuned with
LoRA and performance tested against the GLUE benchmark, containing several subtasks such as
MNLI (Multi-Genre Natural Language Inference) [Williams et al. (2018)], SST-2 (Stanford Sentiment
Treebank) [Socher et al. (2013)], MRPC (Microsoft Research Paraphrase Corpus) [Dolan and Brockett
(2005),] and QQP (Quora Question Pairs) [Quora (2017)]. On these subtasks, LoRA achieved scores
close to full fine-tuning, and even outperformed on some tasks. The LoRA adaptations of GPT-2
and GPT-3, tested on WikiSQL (natural language to SQL conversion) and E2E NLG (generating
descriptions of restaurants from structured data), respectively, performed better than full fine-tuning
while drastically reducing the number of parameters by up to 10,000 times Hu et al. (2021).

3.2 Performance Optimizations
Several additional works guided our multi-task performance optimization experiments. The Adamax
optimizer was proposed alongside the Adam optimizer by Kingma and Ba (2015), where moment
updates rely on the infinity norm, Lp, p → ∞, rather than the L2 norm. Given that we investigate
fine-tuning of a small BERT model, our gradient updates involved high (768) dimensional embedding
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updates and potentially low intrinsic-rank attention layer updates. As such, the infinity norm may be
a suitable measurement of gradient magnitude since our gradient updates are likely sparse.

Recent works such as Howard and Ruder (2018) have demonstrated the efficacy of iterative backbone
unfreezing throughout fine-tuning of pre-trained large language models, whereby more and more
of the large language model backbone is unfrozen as training progresses. Iterative unfreezing may
yield superior generalization model performance and increase robustness of transfer learning to the
phenomenon of catastrophic forgetting Kirkpatrick et al. (2017).

As recently confirmed by Mohammed and Kora (2023), ensembling methods provide consistent
performance gains and generally yield flatter, more generalizable optima. This fundamental principle
applies across traditional regression/classification methods, tree-based methods, and deep learning,
though in deep learning there is still some debate as to whether ensembling provides gains that can’t
be equivalently accomplished by larger deep neural network architectures.

A portion of our experiments are dedicated to elucidating whether Adamax, iterative unfreezing, and
ensembling are suitable approaches to increase the multi-task performance of small fine-tuned BERT
models.

4 Approach
We implement all of the following model architectures and fine-tuning approaches ourselves using
PyTorch (Paszke et al. (2019)).

4.1 Multi-task Baseline
As a baseline, we implemented a minBERT model as described in Stanford’s CS224N default project
handout (Stanford University (2024)), with 1D convolutions and 1-layer fully-connected-network
(FCN) classifier layers for each of our three tasks (sentiment, paraphrase detection, similarity scoring).
Raw BERT embeddings from the minBERT backbone were fed as input into the SST classifier, while
absolute BERT embedding differences between sentence pairs were computed and fed as input into
the Quora and STS classifiers. Baseline training utilized a training routine where SST, Quora, and
STS were each trained in turn, once per epoch, using Cross-Entropy (CE) loss for SST sentiment
classification, Binary Cross-Entropy (BCE) loss for Quora paraphrase binary classification, and mean
squared error (MSE) loss for similarity score prediction.

4.2 Optimized Multi-task Model

Figure 1: Architecture of our optimized minBERT model.

Following the results of our performance optimization experiments (subsection 5.3), our optimized
model architecture was constructed as depicted in Figure 1. Our BERT backbone consists of two
identical but separate "Sent" and "Sim" pre-trained minBERT instances. A similarity feature extraction
layer extracts features from sentence pair embeddings, concatenating the raw embeddings, e1, e2 with
their elementwise product, e1⊙e2, cosine similarity, e1·e2

∥e1∥∥e2∥ , and absolute difference ∥e1−e2∥. All
classifier layers consist of 1D convoltuions with kernel size 3 and 4 filters. BatchNorms are applied
after convolutional and fully-connected layers, and we use ReLU non-linearity. Iterative unfreezing
is applied to the backbone such that only a subset of parameters, θ + ω, are trainable at any given
time. We denote classifier parameters as θ = θSST + θPara + θSTS and BERT backbone parameters
as Ω, with trainable backbone parameters ω ⊆ Ω.
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4.3 Multi-task Learning Problem Formulation
Based on the results of our performance optimization experiments around loss functions (Appendix F,
we utilize Cross-Entropy loss to optimize for the SST sentiment task, Binary Cross-Entropy loss to
optimize for the Quora paraphrase detection task, and a custom Pearson correlation loss to optimize
for the STS similarity task. Thus we can consider our learning procedure to be an optimization
problem where we seek to minimize the following composite loss

L(θ) = LCE(fθSST+Ω, ySST) + LBCE(fθPara+Ω, yPara) + LPearson(fθSTS+Ω, ySTS)

where fθSST+Ω, fθPara+Ω, fθSTS+Ω represent the model logits for SST, Quora paraphrase, and STS tasks
respectively. We note also that our optimization problem has increasing degrees of freedom at each
epoch depending how many of the backbone parameters ω ⊆ Ω are unfrozen and trainable.

4.4 Fine-Tuning Efficiency
4.4.1 Baselines
Our baseline reference point for memory usage, time and accuracy consisted of the training baseline
described in subsection 4.1 with all layers unfrozen, and without any automatic mixed-precision
(AMP) or efficient fine-tuning (LoRA and DoRA) applied. We derived a lower bound for accuracy
and an upper bound for efficiency by comparing against fine-tuning of only the classifier layers.

4.4.2 AMP
With automatic mixed precision (AMP) training, we computed forward passes and loss during training
in half-precision format (float16), then cast back to full float32 to backpropagate gradients, using
a gradient scaler to minimize loss of gradient information due to float16 underflow. This can
substantially improve training throughput by reducing memory usage (NVIDIA (2023)). For an
overview of the mathematical principles behind AMP, see Appendix C.

4.4.3 LoRA
Various Python libraries, such as peft (Mangrulkar et al. (2022)), provide implementations of LoRA
and DoRA for common model architectures. However, we built a custom implementation tailored to
the minBERT model, granting us precise control over the layers subjected to LoRA modifications.
LoRA involves freezing the pre-trained weights of a linear layer (W0) and integrating trainable
low-rank matrices B and A. This adaptation is represented by the equation:

W ′ = W0 +BA

where W0 ∈ Rd×k, B ∈ Rd×r, and A ∈ Rr×k with r ≪ min(d, k). This methodology reduces
the number of parameters that need to be updated, thereby enhancing the efficiency of fine-tuning.
While Hu et al. (2021) introduced an additional parameter α that scales the weight update by α

r ,
they acknowledged that using the Adam optimizer makes tuning α nearly equivalent to adjusting the
learning rate. Consequently, we maintained α at a constant value equal to r since we utilized Adam
variants for efficiency experiments.

To implement LoRA, we froze all original parameters of each linear layer and initialize matrices A
and B according to the layer’s dimensions and the rank hyperparameter r, with A receiving Gaussian
initialization and B being zero-initialized as described by Hu et al. (2021). During the forward pass,
outputs from the original layer and the BA product were computed and summed.

4.4.4 DoRA
DoRA was proposed recently by Liu et al. (2024) Liu et al. (2024) as a more performant version of
LoRA, with weight updates decomposed into directional and magnitude components, offering more
precise control over updates. The weights are updated as follows:

W ′ =
m

∥W0 +BA∥c
(W0 +BA)

where ∆V represents the incremental directional update, m = ∥W0∥c, and ∥ · ∥c denotes the vector
norm of a matrix across its columns. Note that m is a trainable magnitude parameter (m) initialized
to the column norms of the original weights. While peft recently released initial implementations of
DoRA, we implemented DoRA from scratch based loosely on the work of Taylor et al. (2023).
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4.4.5 LoRA and DoRA Modes
Our custom implementations of LoRA and DoRA enabled four distinct matrix decomposition modes:

1. attn-only: This mode aligns with the recommendations from Hu et al. (2021), applying
LoRA only to the attention mechanism’s query, key, and value matrices while freezing all
other parameters except classifier layers. Especially powerful for transformer architectures.

2. attn: Similar to the attn-only mode, this setting replaces the attention matrices (query, key,
and value) but does not freeze the remaining layers.

3. all-lin-only: In addition to query, key, and value matrices, this mode extends LoRA to all
linear layers within the minBERT model. All other layers except classifiers are frozen.

4. all-lin: Operates similarly to all-lin-only by applying LoRA across all linear layers, but does
not freeze the other layers, permitting full model dynamics during training.

These modes offer varying degrees of parameter adaptability and training dynamics, enabling the
tailored application of LoRA/DoRA depending on specific model requirements and targeted results.
In terms of the number of parameters being updated, attn-only modifies the fewest, while attn adjusts
the most. As a reference point, the entire minBERT model has 110M parameters. 21M of these are
contained in linear layers within the attention blocks, a further 64M are contained in linear layers
outside of the attention blocks.

4.5 Performance Optimization
Our efficient fine-tuning techniques enabled us to perform numerous experiments towards deriving the
most performant multi-task minBERT model possible. We experimented with Linear, NonLinear, and
Convolutional classifiers, cosine annealing and multiplicative learning rate scheduling, exponential
moving average (EMA) weight updates, custom loss functions (Pearson loss, hybrid MSE/BCE loss,
ordinal CE loss, SimCSE contrastive loss and others), various data cleaning pipelines, various simi-
larity task feature extraction layers, iterative BERT backbone unfreezing, various optimizers (SGD,
AdamW, RAdam, Adamax, SparseAdam) and task-specific optimizers, weight decay strength, initial
learning rate selection, sub-task learning rate multipliers, multiple interleaving training schedules,
and finally model ensembling and optimal ensemble mixtures.

5 Experiments
All experiments were conducted on NVIDIA A100 Tensor Core GPU with 40GB of VRAM. We
conducted 3 main experiments to evaluate the impact of our efficiency improvements.

5.1 Data
We experiment with Stanford Sentiment Treebank (SST), Quora Question Pairs (QQP), and Se-
mantic Textual Similarity Benchmark (STS) datasets for our three model sub-tasks. Sub-tasks and
corresponding dataset details are included in Table 1.

Task Input Output

Sentiment
Analysis (SST)

11, 855 sentences from movie reviews. A sentiment score ranging from 0 (Negative) to
4 (Positive)

Paraphrase
Detection
(QQP)

404, 298 question pairs with binary labels indi-
cating whether the questions are paraphrases.

A binary label (Yes or No), indicating whether
the question pairs are paraphrases.

Semantic Tex-
tual Similarity
(STS)

8, 628 sentence pairs with similarity scores. A semantic similarity score on a scale from 0
(unrelated) to 5 (equivalent meaning)

Table 1: Overview of Data and Tasks

We perform some basic data preprocessing before passing inputs into our multi-task BERT model
(see Appendix N for details).

5.2 Evaluation methods
We evaluate our models using multi-class acurracy for sentiment analysis (SST), binary accuracy for
paraphrase detection (Quora) and Pearson correlation for semantic textual similarity (STS). For a total
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multi-task performance score (and for the purposes of checkpointing our best model weights during
training), we adopt the same formula as the CS224N project competition leaderboard, normalizing
the Pearson correlation to a [0, 1] range and taking a simple average across the three tasks.

Additionally, to assess the efficiency of our models, we record the average time and average peak
memory usage per training epoch for each task. Due to significant variability in computational
demands across tasks——with the Quora paraphrase detection task requiring approximately 15 times
more resources than the SST and STS tasks——these measures are averaged on a per-task basis.

5.3 Performance Experiments and Results
After initial experiments on optimizers (Appendix A), learning rate, weight decay, architecture
(Appendix G), iterative unfreezing (Appendix B), EMA weight updates (Appendix E), custom loss
functions (Appendix F), ensembling (Appendix D) and optimal ensemble mixtures of models with
varied sub-task bias (Appendix L, our optimal model architecture was implemented as reported in
subsection 4.2, and our best final model consists of 23 different models ensembled together, across our
"G6 Duality of Man" (Appendix H), "G6 Yin Yang" (Appendix I), and "G6 Interleaver" (Appendix K
model architectures/ learning routines. We dub this best ensemble "G6 Lisan Al Gaib", and report its
results on the test dataset in Table 2. We also report our "G6 Oligarch v1" ensemble results.

Model Sentiment Paraphrase Similarity Overall Score

G6 Oligarch v1 0.551 0.881 0.853 0.786
G6 Lisan al Gaib 0.543 0.889 0.861 0.788

Table 2: Best Ensemble Model Test Results

5.4 Efficiency Experimental Details and Results
5.4.1 Large Grid Search
To evaluate the impact of LoRA and DoRA on our multitask classifier, we conducted a comprehensive
grid search over the parameters summarized in Table subsection M.1.

The results of this grid search are presented in Figure 2, where values are averaged over all parameters
and for each decomposition rank r. We observe a decrease in total accuracy with fewer fine-tunable
parameters, as expected. Moreover, examining the results by batch size, memory consumption exhibits
the anticipated trend: greater numbers of parameters correspond to higher memory usage, while
fewer parameters result in reduced memory consumption. However, we also make two unexpected
observations: 1) accuracy does not improve with increasing rank; and 2) DoRA does not outperform
LoRA. These findings suggest that the intrinsic dimensionality of the weight updates for our small
minBERT model are sufficiently low such that most information can be captured by a rank-one
approximation. Higher ranks or distinctions between directionality and magnitude may capture
only minimal additional nuances, overshadowed by the variability introduced. This hypothesis was
substantiated through a comprehensive series of experiments comparing LoRA and DoRA across
various ranks, which demonstrated that while memory usage and computational time escalate with
rank, accuracy does not. Detailed results and analysis are provided in subsection M.2.

5.4.2 Ablation Study
To gauge the memory, time, and performance impact of various combinations of LoRA, DoRA, and
AMP, we ran an ablation experiment, collecting metrics across all configurations. The hyperparame-
ters for the experiment setup and the detailed results can be found in Figure M.3. In summary, the
key findings are that AMP led to a reduction of memory usage by 26%, combining it with LoRA
attn-only brought this to a 50% reduction, while using LoRA attn brought it to 28%. We noticed
that in one case, using AMP caused the accuracy to drop significantly. This is likely due to our
baseline efficiency experiment model being unstable (this model did not yet use Adamax and multiple
minBERT backbones). That said, even though we apply a gradient scaler to avoid underflow, AMP
can increase model instability in that we lose some precision in our gradient update space. In general
AMP left accuracy unaffected. AMP yielded significant average time speedups of 60%, whereas
LoRA and DoRA caused negligible time improvements. These results are as expected as LoRA and
DoRA’s main advantage is the memory savings they bring.

5.4.3 Applying Improvements to Final Model
Finally, we evaluated the performance of our best (non-ensemble) model architecture (subsection 4.2)
with and without efficiency optimizations, employing AMP with either LoRA or DoRA in the all-lin
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Figure 2: Left: LoRA and DoRA Accuracy per Mode across Rank. Dashed lines represent DoRA,
solid lines LoRA. Normalized to Full Model baseline. Right: Normalized Peak Memory Consumption
compared to Batch Size.

mode, across three seeds and seven epochs of training. The configurations are detailed in Table 7 and
the accuracy results in Figure 3. The LoRA + AMP combination slightly outperformed the baseline,
while DoRA + AMP marginally underperformed, with variances within a 1% range suggesting
no statistical significance. Despite these minor performance differences, LoRA + AMP was more
resource-efficient, showing a 1% improvement in performance, 33% faster execution, and 12% less
memory usage than the baseline. Conversely, DoRA + AMP, despite a slight performance dip, was
24% faster and used 7% less memory. The memory savings were somewhat muted due to the iterative
unfreezing approach and averaging our measurements over all epochs.

Figure 3: Comparison of Total Accuracy, Average Log Time and Average Log Memory across all
tasks. The black dots represent the average over all 3 runs.

6 Analysis
Our findings suggest that with optimal hyperparameters, the integration of LoRA and DoRA with
AMP can significantly enhance memory and time efficiency with minimal impact on model accuracy.
We observed memory reductions ranging from 7% to 50% and time efficiency improvements up to
60%. Notably, the effect on accuracy does not correlate with LoRA rank but is highly dependent on its
operational mode, with observed variations from a decrease of 24% to an increase of 3%. Low-rank
adaptations, due to their reduced memory demands and relatively modest performance degradation,
are particularly apt for scenarios requiring frequent model updates, such as real-time language
processing or environments constrained by hardware capabilities. Furthermore, our study underscores
the necessity for a nuanced understanding and thorough evaluation of potential failure cases induced
by these adaptations, particularly in high-stakes scenarios. Before deployment, it is crucial to assess
whether these adaptations introduce undesirable biases or failure patterns. Additionally, we found that
STS tasks suffer an average performance decrease of 4% more compared to sentiment classification
tasks, suggesting task-specific changes in the intrinsic dimension of the weight updates.

For sentiment analysis, outputs from LoRA and DoRA closely matched those of our best model. In
scenarios where DoRA predictions were incorrect, they deviated from our optimal model’s predictions
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by only one point in 94% of the cases. This variance is considered acceptable given the subjective
nature of sentiment analysis. Examples where DoRA’s sentiment predictions significantly diverged
from our best model are presented in Table Table 3, typically involving sentences with mixed
emotional content, which seem to have posed challenges for DoRA in capturing nuanced sentiment.

Table 3: Example Discrepancies in Sentiment Score Prediction: DoRA vs. Our Best Model

Sentence True Sentiment DoRA Score Best Model Score
“It’s one pussy-ass world when even
killer-thrillers have no edge.”

0 3 1

“It’s like watching a nightmare made
flesh.”

0 3 1

“Harland Williams is so funny in drag
he should have his own TV series.”

2 3 1

In terms of paraphrase detection, our model attained a peak accuracy of 0.888, with the DoRA version
achieving a comparable 0.858. The performance of DoRA on the STS task was also close to that on
sentiment classification, mostly differing by minor points.

Regarding our secondary goal of deriving an optimal minBERT-based model for our multi-task
reasoning benchmarks, we found that using Adamax as an optimizer (Appendix A), strong multiplica-
tive learning rate decay (0.5epoch × LR), separate Sentiment and Similarity minBERT backbones
(Appendix H), shared Quora and STS non-linear feature extraction layer, 1D convolutional classifiers,
Pearson correlation loss (Appendix F), and ensembling of as many models as possible (subsection D.1)
were critical to maximizing performance.

7 Conclusion
We extend the work of Hu et al. (2021) and Liu et al. (2024) by customizing LoRA and DoRA for
minBERT, and benchmarking efficiency and accuracy effects of low-rank adapation on small BERT
models. Our results confirm that even for small BERT models the intrinsic dimension of the weight
updates, ∆W , is 1. Increasing the rank beyond this point does not yield significant performance
gains. The fact that Adamax proved to be our best optimizer may be further evidence that the intrinsic
rank of our fine-tuning updates was very low, given that Adamax is well-suited to sparse gradient
updates.

We find that for our small BERT model, LoRA provides sufficient granularity for performant fine-
tuning, with LoRA fine-tuning exceeding vanilla training performance. Our DoRA fine-tuning
approach achieves slightly lower performance, suggesting that we do not benefit from separately
decomposing magnitude and direction for our weight updates. Moreover, while the efficiency gains
demonstrated here on minBERT are more modest compared to those observed in larger models such
as GPT-3, our findings endorse the adoption of AMP combined with LoRA, applied to all linear
transformer layers, even within smaller language model frameworks. These efficiency optimizations
facilitate broader architectural explorations and the utilization of computationally expensive tech-
niques like ensembling, enhancing the model’s performance and feasibility for extensive deployment.
While we make qualitative observations about model errors when using parameter efficient fine-tuning
versus full fine-tuning (see section 6), further research is necessary to elucidate the exact relationship
between low-rank weight updates to small BERT models and the specific types of errors made by
these models on downstream tasks.
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8 Ethics Statement

This work analyzes minBERT, a compressed version of BERT. As a result of its decreased parameteri-
zation, our minBERT model may not capture the full richness and complexity of the data it was trained
on. For instance, minBERT may not capture the appropriate use of terms based on social context,
varied dialects or regional differences, and may generate responses that are too reductive based on
general patterns observed in the data. To mitigate this, we propose conducting comprehensive bias
audits [dwt (2024)] to identify any problematic patterns in task predictions, and involving community
stakeholders in an iterative model refinement process prior to deployment in any high-risk use cases,
such as chat applications, social media, loan approval, etc. Incorporating feedback from diverse
user groups and integrating domain-expert rules can help address specific biases and ensure more
equitable model performance.

Using compression techniques such as LoRA and DoRA may also result in a loss of interpretability
of our model. By introducing low-rank matrices which interact with existing high-dimensional
parameter spaces, we further obfuscate the model’s decision-making techniques. While deep-learning
models are already challenging to interpret, techniques such as attention heat-mapping can be used
to gain qualitative insight into model predictions. No studies to date have specificially investigated
the impact of low-rank fine-tuning on interpretive visualizations, so it is entirely possible that we
lose attention granularity. To combat this loss in interpretabality, future research should explore
designing visual tools to understand how adjusting intermediate matrices influences model outputs,
using high-rank update counterfactuals. This may offer a clearer picture of the impact of these
compression techniques on model decision-making. Furthermore, establishing new interpretability
benchmarks specific to models using LoRA and DoRA, combined with controlled A/B testing in
deployment, can provide insights into the practical impacts of these techniques and safeguard against
unforeseen adverse outcomes. Interpretability is absolutely critical to any applications where our
model might be deployed as a decision-maker, or incorporated into a decision making pipeline (e.g.
loan applications, mortgage pricing).
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A Adamax Optimizer

The Adamax optimizer was proposed alongside the Adam optimizer by Kingma and Ba (2015), where
moment updates rely on the infinity norm, Lp, p → ∞, rather than the L2 norm. For our use-case
whereby we seek to propagate gradient updates to embeddings when training in iterative and
full-model fine-tuning modes, the infinity norm may be a more suitable measurement of gradient
magnitude, since our embeddings are high dimensional (size 768) and gradient updates are likely
sparse. Empirically, we found a significant performance increase when using Adamax as opposed
to Adam and SGD (see Figure 7). Adam and RAdam were also inferior to Adamax for our training
process.

Figure 4: Adamax yields smoother performance increase and better convergence (light blue) as
opposed to Adam (grey) and SGD (dark blue).
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B Iterative BERT Backbone Unfreezing

Recent works such as Howard and Ruder (2018) have demonstrated the efficacy of iterative backbone
unfreezing throughout fine-tuning of pre-trained large language models, whereby more and more
of the large language model backbone is unfrozen as training progresses. Iterative unfreezing may
yield superior generalization model performance and increase robustness of transfer learning to the
phenomenon of catastrophic forgetting Kirkpatrick et al. (2017). Motivated by the promising results
of progressive unfreezing in the literature, we implement iterative unfreezing (see subsection B.1)
of the BERT backbones in our multit-task BERT model. Our early experiments comparing training
convergence between full unfreezing and iterative unfreezing clearly demonstrated better convergence
using the iterative strategy, and as such we sought to derive an optimal unfreezing schedule. Ultimately,
our optimal schedule required fairly rapid unfreezing. We unfreeze 3 additional BERT backbone
attention layers (there are 12 in total) each epoch until the entire backbone is unfrozen. Note also
that when we unfreeze the first backbone layers, we make sure to unfreeze all post-attention BERT
layers. Similarly, when all BERT backbone layers are unfrozen, we unfreeze not only through the
first attention layer, but all the way back to the original Embedding layer. For a closer look at the
iterative unfreezing controller, see subsection B.2.

B.1 Flexible Unfreezing MultitaskBERT Class Method

1 def manage_freezing(self , structure: str):
2 """
3 Manages freezing of BERT Attention layers
4

5 Adjusts the trainable status of layers in a model based on a
specified

6 structure command. This function can freeze all layers , unfreeze
all layers ,

7 or unfreeze only the top N layers of the model.
8

9 Args:
10 structure (str): A command string that dictates how layers

should be
11 frozen or unfrozen. It can be ’freezeall ’, ’

unfreezeall ’,
12 or ’unfreezetopN ’ where N is an integer

indicating the
13 number of top layers to unfreeze.
14

15 Raises:
16 ValueError: If the structure parameter does not follow the

expected
17 format or specifies an invalid option.
18 """
19 for bert in (self.bert_sentiment , self.bert_sim):
20 children = list(bert.children ())
21 # The ModuleList containing the 12 self -attention layers is at

index 5
22 attn_idx = 5
23 attention_layers = children[attn_idx]
24 total_attn_layers = len(attention_layers)
25

26 if structure == "freezeall":
27 # Freeze all layers
28 for param in bert.parameters ():
29 param.requires_grad = False
30

31 elif structure == "unfreezeall":
32 # Unfreeze all layers
33 for param in bert.parameters ():
34 param.requires_grad = True
35

36 elif structure.startswith("unfreezetop"):
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37 # Attempt to extract the number of attn. layers to
38 # unfreeze from the structure string
39 try:
40 n_layers = int(structure[len("unfreezetop") :])
41 except ValueError:
42 raise ValueError(
43 (
44 "Invalid layer specification. Ensure it "
45 "follows ’unfreezetopN ’ "
46 "format where N is a number."
47 )
48 )
49

50 # Freeze all layers first
51 for param in bert.parameters ():
52 param.requires_grad = False
53

54 # Unfreeze children after the attention layers
55 for i in range(attn_idx+1, len(children)):
56 for param in children[i]. parameters ():
57 param.requires_grad = True
58 # Unfreeze the last n attention_layers
59 for i in range(total_attn_layers - n_layers ,

total_attn_layers):
60 for param in attention_layers[i]. parameters ():
61 param.requires_grad = True
62 else:
63 raise ValueError(
64 (
65 "Invalid structure parameter. Use ’freezeall ’,"
66 "’unfreezeall ’, or "
67 "’unfreezetopN ’ where N is a number."
68 )
69 )
70 return None

Listing 1: Manage Freezing Function

B.2 Iterative Unfreezing Controller for Training

1 for epoch in range(args.epochs):
2 if args.fine_tune_mode == ’iterative ’:
3 checkpoint_slice = args.epochs // 5 # no longer using this ,
4 #but can be used for ’even -slice’

unfreezing
5 if epoch < 1:
6 model.manage_freezing(’freezeall ’)
7 print(f"\n====== All BERT Layers Frozen ======\n")
8 elif epoch < 2:
9 model.manage_freezing(’unfreezetop3 ’)

10 print(f"\n====== Top 3 BERT Layers Unfrozen ======\n")
11 elif epoch < 3:
12 model.manage_freezing(’unfreezetop6 ’)
13 print(f"\n====== Top 6 BERT Layers Unfrozen ======\n")
14 elif epoch < 4:
15 model.manage_freezing(’unfreezetop9 ’)
16 print(f"\n====== Top 9 BERT Layers Unfrozen ======\n")
17 else:
18 model.manage_freezing(’unfreezeall ’)
19 print(f"\n====== All BERT Layers Unfrozen ======\n")
20 # 12 total attn layers and early layers including

Embeddings
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C AMP

There are a few key strategies that AMP employs to reduce computational load and memory utilization,
primarily by using FP16 instead of FP32 wherever feasible, without sacrificing numerical stability
and accuracy too significantly. This leads to performance improvements on hardware designed to
effectively exploit lower precision arithmetic (such as our NVIDIA A100s).

Loss Scaling (LS)

To prevent numerical underflow in lower precision (FP16), gradients are scaled up by a factor S
during computation:

L′ = S · L
After backpropagation, gradients are scaled down to update weights. This ensures that no significant
digits are lost.

∂L

∂w
=

1

S
· ∂L

′

∂w

Precision Casting

Critical operations such as gradient accumulations and updates are performed in higher FP32 precision.
To account for mixed precision operations, we cast appropriately to prevent information loss.

Master Weight Copy

A high precision (FP32) copy of the weights is maintained. This ensures accurate update steps:

wnew = w − η · cast(
∂L

∂w
,FP32)
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D Ensembling

Towards achieving optimal multi-task model performance, we ensemble various mixtures of high-
performance models together. As recently confirmed by Mohammed and Kora (2023) Mohammed
and Kora (2023), ensembling methods provide consistent performance gains and generally yield
flatter, more generalizable optima. This fundamental principle applies across traditional regression/-
classification methods, tree-based methods, and deep learning, though in deep learning there is still
some debate as to whether ensembling provides gains that can’t be equivalently accomplished by
larger deep neural network architectures. In general, the two overarching ensemble approaches are to
concatenate the predictions of many weak models, such that each learns from each others mistakes
(e.g. XGBoost Chen and Guestrin (2016)) or to average the predictions of many strong models (e.g.
RandomForest Breiman (2001)).

In the present work, we apply the latter strategy to average the strengths and weaknesses of our
various strong learners. We find that ensembling consistently increases performance across all three
sub-tasks, and propose that despite the debate in deep learning literature as to whether ensembling
provides gains inachievable with better architecture, the ease of ensembling versus spending days
searching for more optimal architecture is well worth it when computational resources are sufficient
to perform the ensembling. Given our general approach in this paper towards deriving more efficient,
yet performant multi-task minBERT models, our ensembling approach can be regarded as a case study
in the performance benefits that efficient fine-tuning can provide, agnostic of resource shortages.

Our ensembling approach is as follows. We initialize an EnsembledModel class with a list of
pre-loaded, trained MultitaskBERT models (or MultitaskBERTDualityOfMan for the older Duality
of Man architecture). Then, we aggregate sentiment, paraphrase and similarity predictions by
stacking predictions from all EnsembledModel sub-models into a tensor, and taking the mean of these
predictions. In this way, we hope to approximate a better optimum point by averaging the predictions
of a number of sub-models converged to less optimal local minima.

Towards creating an ensemble which comprises of sub-models that excel at different sub-tasks, we
implement separate optimizers with varying weight-decay and learning rate for each sub-task. We
found that within a reasonable learning rate range (≈ 1e− 4), variations in learning rate of up to 10x
primarily had the effect of biasing model performance towards the task with larger learning rate. As
such, we apply various learning rate scales to different sub-task across our ensemble sub-models (for
examples, see the training invocations in Appendix H and Appendix I).

Our EnsembledModel class implementation is as follows:

1 import torch
2

3 class EnsembledModel(nn.Module):
4 def __init__(self , models):
5 super(EnsembledModel , self).__init__ ()
6 self.models = nn.ModuleList(models)
7

8 def forward(self , input_ids , attention_mask):
9 raise NotImplementedError("EnsembledModel does not support the

forward "
10 "method directly. Use predict_sentiment ,

predict_paraphrase , "
11 "or predict_similarity methods.")
12

13 def predict_sentiment(self , input_ids , attention_mask):
14 with torch.no_grad ():
15 logits = torch.stack ([model.predict_sentiment(input_ids ,
16 attention_mask) \
17 for model in self.models], dim=0)
18 return torch.mean(logits , dim=0).squeeze ()
19

20 def predict_paraphrase(self , input_ids_1 , attention_mask_1 ,
21 input_ids_2 , attention_mask_2):
22 with torch.no_grad ():
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23 logits = torch.stack ([model.predict_paraphrase(input_ids_1
,

24 attention_mask_1 ,
25 input_ids_2 ,
26 attention_mask_2) \
27 for model in self.models], dim

=0)
28 return torch.mean(logits , dim=0).squeeze ()
29

30 def predict_similarity(self , input_ids_1 , attention_mask_1 ,
31 input_ids_2 , attention_mask_2):
32 with torch.no_grad ():
33 logits = torch.stack ([model.predict_similarity(input_ids_1

,
34 attention_mask_1 ,
35 input_ids_2 ,

attention_mask_2) \
36 for model in self.models],

dim =0)
37 return torch.mean(logits , dim=0).squeeze ()

Listing 2: Ensembled Model and Model Loading in PyTorch

To load models into an EnsembledModel (with the desired filepaths in args.filepaths), a minimal ex-
ample is as follows. For example, we call our overall ensembling script with $python ensemble.py
model1.pt model2.pt.

1 from multitask_bert import MultitaskBERT , MultitaskBERTDualityOfMan
2

3 def load_models(filepaths , device):
4 models = []
5 for filepath in filepaths:
6 print(f"====== Loading Model: {filepath} ======")
7 saved = torch.load(filepath , map_location=device)
8 config = saved[’model_config ’]
9 if "duality" in filepath:

10 model = MultitaskBERTDualityOfMan(config)
11 else:
12 model = MultitaskBERT(config)
13 model.load_state_dict(saved[’model ’])
14 model = model.to(device)
15 model.eval()
16 models.append(model)
17 return models
18

19 def main(args):
20 device = torch.device(’cpu’)
21 if torch.cuda.is_available ():
22 device = torch.device(’cuda’)
23 elif torch.backends.mps.is_available ():
24 device = torch.device(’mps’)
25

26 model_list = load_models(args.filepaths , device)
27 ensemble_model = EnsembledModel(model_list).to(device)
28

29 test_multitask(args , model=ensemble_model)

D.1 Ensemble Results

We found ensembling to consistently boost performance (see Appendix H, Appendix I, Appendix J,
Appendix K), and in general more models yielded better performance (Appendix L). Notably adding
more "votes" to better models had a very minor postive impact on performance (see Oligarchy v1
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in Appendix L), but generally the effect of adding more models was stronger. Our best model, "G6
Lisan al Gaib" outperforms the "G6 The Sage" model, with the difference between them being that
the "Lisan al Gaib" variant includes more relatively low-performance models. Even in the case of
weaker sub-models, we note very good ensembled performance (e.g. Appendix K).
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E Exponential Moving Average (EMA) Model

E.1 Motivation

We implement a multitask-compatible version of the exponential moving average (EMA) model,
a form of Polyak averaging Pol (2023). This decision was motivated by the success of stochastic
weight averaging (SWA) introduced by Izmailov et al. (2019) Izmailov et al. (2019), who propose
SWA as a solution to achieve more optimal convergence using exponential moving averages and
cyclical (or constant) learning rates as compared to traditional SGD with learning rate decay. The
general proposal of SWA is that SGD solutions are often inoptimal, but an average of solution points
yields a more generalizable optimum point that yields superior performance on unseen data. EMA is
similar to SWA, except that a running average of weights is maintained and updated every epoch,
rather than updating weights to be an average of weights from the ’converged’ weights at the end of
various cycles.

E.2 Adopted Method and Extensions

We use a custom cyclical learning rate for our EMA experiments, motivated by the fact that Izmailov
et al. (2019) find cyclically decreasing learning rates to better approximate solutions each cycle,
despite the fact that the loss space is overall better explored by constant learning rate SGD due to its
larger updates and greater movement. Given our compute limitations, we opted for cyclical learning
rate scheduling, towards producing an average of fewer better weights versus the average of many
weaker weights.

We implement a custom cyclical learning rate scheduler which decreases learning rate by 8x each
cycle, with cycles each running for 2 epochs. We further match these 2 epoch cycles up with our
iterative unfreezing strategy, whereby each successive deepening of the unfreezing corresponds
perfectly to a learning rate cycle. Because of the demonstrably superior performance of Adamax
as an optimizer (see Appendix A), we use Adamax as opposed to SGD, which is typically utilized
for SWA methods. Thirdly, as an extension to the official PyTorch implementation of EMA, we
design a custom implementation of the EMA model wrapper which performs weight-averaging each
epoch as usual, but at evaluation-time adopts the multiple task output methods of our superclass
MultitaskBERT model. We update BatchNorms at the end of training in line with the original work,
using the official PyTorch implementation from torch.optim.swa_utils.

1 import copy
2

3 class EMA:
4 def __init__(self , model , decay):
5 self.model = model
6 self.decay = decay
7 self.shadow = copy.deepcopy(model.state_dict ())
8 self.ema_model = copy.deepcopy(model)
9

10 def update(self):
11 for name , param in self.model.state_dict ().items ():
12 if name in self.shadow:
13 self.shadow[name] = self.decay * self.shadow[name] + \
14 (1.0 - self.decay) * param
15

16 def apply_shadow(self):
17 self.ema_model.load_state_dict(self.shadow)
18 return self.ema_model

Listing 3: EMA Class

E.3 EMA Results

Unfortunately, our EMA results were very poor. We propose that this is likely a result of (1) the
relatively few epochs we train for and (2) our non-traditional implementation choices. With a
traditional decay value of 0.999, we retain far too much of our initial (and low performing) weights
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due to the very few epochs we train for (see medium blue curve below), and with a lower decay
of 0.5 we see instability (see light blue curve below), especially as training progresses (Figure 5).
Furthermore, our use of extremely short cycles (2 epochs), cyclical learning rate with Adamax and
EMA (rather than SGD and SWA) are non-traditional and seem to significantly detract from model
training performance.

Figure 5: Impact of cyclic learning rate and EMA on performance. Medium Blue is EMA with decay
0.999, Light Blue is EMA with decay 0.5, reference curves are traditional training with cyclic LR
scheduling.
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F Custom Loss Functions

F.1 Optimal Loss Functions

LCE(p, y) = −
C∑
i=1

yi log

(
epi∑C
j=1 e

pj

)
where C is the number of classes, p are the predicted logits, and y is the one-hot encoded true label
vector.

LBCE(p, y) = − 1

N

N∑
i=1

[yi log(σ(pi)) + (1− yi) log(1− σ(pi))]

where σ(pi) =
1

1+e−pi
denotes the sigmoid function, p represents the logits from the model, y is the

binary label, and N is the number of samples.

LPearson(p, y) = 1−
∑n

i=1(pi − p̄)(yi − ȳ)√∑n
i=1(pi − p̄)2

√∑n
i=1(yi − ȳ)2

where p̄ and ȳ are the means of the predicted and true values, respectively.

The optimization objective is to find the parameter set θ = {θSST, θPara, θSTS,Ω} that minimizes the
total loss L:

θ∗ = argmin
θ

L(θ)

F.2 Other Loss Function Experiments

Kullback-Leibler Divergence Loss (KL)

This loss measures how one probability distribution diverges from a second, expected probability
distribution:

L =

n∑
i=1

yi · (log(yi)− zi)

where yi represents the target probability for the i-th instance, and zi denotes the predicted log-
probabilities for the i-th instance.

Mean Squared Error Loss (MSE)

Typically used for regression:

L =
1

n

n∑
i=1

(ŷi − yi)
2

where ŷi represents the predicted value for the i-th instance and yi denotes the actual target value for
the i-th instance.

Log-Cosh Loss

Log-cosh is a smooth loss that behaves much like the mean squared error but does not yield gradients
as steep as MSE:

L =
1

n

n∑
i=1

log(cosh(ŷi − yi))

where ŷirepresents the predicted value for the ith instance. yi denotes the actual target value for the
ith instance.
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BCE/MSE Mixed Loss

A combination of BCE and MSE, useful for tasks that benefit from both probabilistic and regression-
based approaches. We tested this mixed loss on both the SST and STS tasks, with some improvements
in early epochs, but ultimately worse convergence.

L = λBCE · LBCE + λMSE · LMSE

Ordinal Cross Entropy Loss

This loss function is used for ordinal regression. It involves calculating the cumulative probabilities
for each class and then applying the cross entropy loss to these cumulative probabilities. The loss is
defined as:

L = −
n∑

i=1

[one_hot(yi, k) · log(cumulative_probsi) + (1− one_hot(yi, k)) · log(1− cumulative_probsi)]

where one_hot(yi, k) is the one-hot encoded vector of the target class label yi with k classes. The
cumulative probabilities cumulative_probsi for a predicted class label j are calculated as:

cumulative_probsi(j) =
j∑

l=1

softmax(zi)(l)

where zi are the logits predicted by the model for the i-th instance, and softmax(zi)(l) = ezil∑k
m=1 ezim

is the softmax function applied to these logits.

Contrastive Loss

Often used in learning embeddings or in siamese networks, contrastive loss helps to ensure that
similar items are closer to each other than they are to dissimilar items. The loss is defined as:

L =

n∑
i=1

[
(1− yi)

1

2
(disti)2 + yi

1

2
max(0,margin − disti)2

]
where yi is the binary label indicating whether the pair of instances are similar (1) or dissimilar (0),
disti is the Euclidean distance between the embeddings of the pair, computed as:

disti =

√√√√ d∑
j=1

(xi1j − xi2j)2

where xi1j and xi2j represent the j-th dimension of the embeddings for the first and second instance of
the i-th pair, respectively, and d is the dimensionality of the embeddings. The margin is a predefined
threshold that defines how far dissimilar pairs should be pushed apart.

1 def pearson_correlation_loss(preds , target):
2 vx = preds - torch.mean(preds)
3 vy = target - torch.mean(target)
4 cost = torch.sum(vx * vy) / (torch.sqrt(torch.sum(vx ** 2)) *

torch.sqrt(torch.sum(vy ** 2)))
5 return 1 - cost # return 1 - correlation to make it a loss
6

7 def log_cosh_loss(preds , target):
8 def log_cosh(x):
9 return x + torch.nn.functional.softplus (-2. * x) - torch.log(

torch.tensor (2.0))
10 return torch.mean(log_cosh(preds - target))
11

12 class OrdinalCrossEntropyLoss(nn.Module):
13 def __init__(self):
14 super(OrdinalCrossEntropyLoss , self).__init__ ()
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15

16 def forward(self , logits , targets):
17 targets_one_hot = F.one_hot(targets , num_classes=logits.size

(1)).float ()
18 cumulative_probs = torch.cumsum(F.softmax(logits , dim=1), dim

=1)
19 loss = - torch.sum(targets_one_hot * torch.log(

cumulative_probs) + (1 - targets_one_hot) * torch.log(1 -
cumulative_probs))

20 return loss

Listing 4: Python Code for Various Loss Functions and Training Loops

In the training loop for SST, we tried CE, BCE, KL loss (which can be equivalent to CE but has
different convergence properties which may make it less favorable), ordinal CE, and finally a "mixed"
version which was a hybrid between MSE and BCE. We found that the mixed loss led to the best
performance for SST.

1 # ======= Various Criterion Options ==========
2 criterion_ce = nn.CrossEntropyLoss(reduction=’mean’)
3 criterion_bce = nn.BCEWithLogitsLoss(reduction=’mean’)
4 criterion_kl = nn.KLDivLoss(reduction=’batchmean ’)
5 criterion_ord = OrdinalCrossEntropyLoss ()
6

7 if criterion == criterion_ce:
8 loss = criterion(logits , b_labels.view(-1))
9 elif criterion == criterion_bce:

10 labels_one_hot = F.one_hot(b_labels , num_classes =5).float ()
11 loss = criterion(logits , labels_one_hot)
12 elif criterion == criterion_kl:
13 labels_one_hot = F.one_hot(b_labels , num_classes =5).float ()
14 log_probs = F.log_softmax(logits , dim=-1)
15 loss = criterion(log_probs , labels_one_hot)
16 elif criterion == "mixed":
17 lambda_bce = 1
18 lambda_mse = 0.1
19 labels_one_hot = F.one_hot(b_labels , num_classes =5).float ()
20 loss_bce = nn.BCEWithLogitsLoss ()(logits , labels_one_hot)
21 probabilities = F.softmax(logits , dim=1)
22 scores = torch.tensor ([1, 2, 3, 4, 5], dtype=torch.float32 ,
23 device=device).unsqueeze (0)
24 expected_scores = torch.matmul(probabilities , scores.T).squeeze (1)
25 loss_mse = nn.MSELoss ()(expected_scores , b_labels.float ())
26 loss = lambda_bce * loss_bce + lambda_mse * loss_mse

In the training loop for STS, we tried MSE, Pearson, constrastive loss, and a hybrid between MSE
and Pearson. We found that Pearson loss works best. Contrastive loss led to a slight decrease in
performance. This may be because contrastive loss is fundamentally binary, optimizing to categorize
pairs as either similar or dissimilar without accounting for degrees of similarity (which is what
the STS task includes). The dichotomous nature of contrastive loss doesn’t support the precise
quantification of semantic closeness required by STS.

1 criterion_mse = nn.MSELoss () # MSE loss since labels are 0-5
2 criterion_pearson = pearson_correlation_loss
3

4 if criterion in [criterion_mse , criterion_pearson ]:
5 loss = criterion(logits , b_labels)
6 elif criterion == "mixed":
7 lambda_mse = 0.5
8 lambda_pears = 1.0
9 mse_loss = criterion_mse(logits , b_labels)

10 pears_loss = pearson_correlation_loss(logits , b_labels)
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11 loss = lambda_mse * mse_loss + lambda_pears * pears_loss

23



G Chronological Performance Experiments

Below we detail the chronological and qualitative experiments performed towards deriving our
strongest model architectures and training routines. In early experiments, we worked iteratively
and used learning curves obtained via TensorBoard ten (2015) as our measure of model training
stability and performance. We performed all early experiments using only SST and STS training,
due to the massive compute requirements for training the Quora paraphrase task. In occasional
interleaved full-training experiments, we found that bench-marking optimal architecture and learning
rates using these two tasks served as a fairly reliable proxy full-training performance. Experiments
were run for 10 epochs with an initial learning rate of 2e− 4 and multiplicative learning rate decay
of 0.5epoch × LR unless indicated otherwise.

First, we tested several different optimizers. SGD (green and purple below) performed much worse
than Adam variants (light blue), as shown in Figure 6.

Figure 6: Performance comparison of SGD and Adam variants.

Adamax, which has been proposed as a suitable optimizer for embeddings, performed better than
vanilla Adam and SGD tests on SST and STS. Adding a shared Linear Similarity Feature Extraction layer
shared between the Quora and STS classifiers, after the BERT backbone, enabled more improvement
(see Figure 7). We hypothesized, and later confirmed, that this shared sub-layer would further improve
performance when training for Quora, since Quora and STS are both similarity-based tasks. The
shared Similarity Feature Extraction layer might enable these two tasks to learn more from each other
even with a frozen backbone.

Result (no Quora training):

1. Dev sentiment accuracy: 0.520

2. Dev paraphrase accuracy: 0.368

3. Dev STS correlation: 0.611

Figure 7: Adamax (dark blue) yields smoother performance increase and better convergence as
opposed to Adam and SGD (grey). Adamax + Linear Similarity Feature Extraction layer between
minBERT and Quora/STS tasks further improves performance (light blue)
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We then implemented a number custom loss functions, including a Pearson Correlation Loss designed
to directly optimize STS for Pearson Correlation (see Appendix F). The Pearson Correlation Loss
Optimizer improved STS performance, but somehow decreased SST performance even though it
wasn’t applied to SST, as shown in Figure 8. This impact on SST performance was later resolved by
the "Duality of Man" architecture (see Appendix H).

Pearson Correlation Loss result (no Quora training):

1. Dev sentiment accuracy: 0.396
2. Dev paraphrase accuracy: 0.368
3. Dev STS correlation: 0.688

Figure 8: Effect of Pearson Correlation Loss Optimizer (Purple) on STS and SST performance.

We then upgraded the Similarity Feature Extraction layer to be non-linear instead of linear and noted
further STS performance improvements, as shown in Figure 9.

Result (no Quora training):

1. Dev sentiment accuracy: 0.384
2. Dev paraphrase accuracy: 0.632
3. Dev STS correlation: 0.737

Figure 9: NonLinear Similarity Feature Layer improves STS (light green).
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Towards gaining a rough-and-dirty approximation of Quora performance, we then implemented partial
Quora training whereby we would randomly select approximately 5% (200 batches at batch size 96)
of Quora data to get a rough and dirty train and benchmark. Unfortunately, this approximation did
not work. Performance definitely decreased on the other tasks, as shown in Figure 10. Notably, with
full Quora training experiments, we did not see the same performance decrease.

Figure 10: Performance impact of using a small portion of Quora data for training and benchmarking.

We then implemented iterative unfreezing (see Appendix B for details). Iterative unfreezing worked
well for STS. However, we noticed some continued instability on SST with an initial learning rate of
2e-4, as shown in Figure 11.

Figure 11: Iterative Unfreezing (Orange) benefits STS convergence. SST suffers instability.

To explore the SST learning instability, we modified initial learning rate, and noticed (unexpectedly,
given the SST instability) that faster learning rates were very important to SST, but detrimental to
STS. We also found that larger regularization (weight_decay) hurt SST. See Figure 12 below.

Figure 12: Orange (low learning rate) benefits STS performance while green (high learning rate)
benefits SST performance. Large regularization (weight decay of 1e− 3) decreases performance on
both SST and STS.

Towards optimizing learning rate for each sub-task, we then introduced 3 separate Adamax optimizers
and 3 separate learning rate schedulers towards obtaining more degrees of freedom on training
optimization for each task. In the first experiment, we multiply SST by 10 (purple). This did help
SST do well and stabilized the learning curves, but STS performance decreased, possibly due to being
overwhelmed by STS. This finding that increased sub-task learning rate within a reasonable range
(≈ 1e− 4 to 2e− 4) leads to increased bias towards learning that task held for future experiments as
well. See Figure 13 below.
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Figure 13: Effect of increasing the initial learning rate for SST by 10 on training stability and
performance.

To alleviate the sensitivity in balancing SST and STS performance, we separated the minBERT back-
bone into two separate "Sent" (SST) and "Sim" (Quora + STS) backbones, with moderate performance
improvements (see Appendix H for more dualities on this architecture, dubbed "Duality of Man" for
the two backbones). This architecture prevented SST from blowing up the STS performance when
increasing the learning rate. Furthermore, introducing some nltk preprocessing (lemmatization,
stopword removal, special character cleanup) to the input data for all three tasks yielded minor gains.
See Figure 14 below.

Duality of Man + nltk Initial Result (No Quora training):

1. Dev sentiment accuracy: 0.510
2. Dev paraphrase accuracy: 0.368
3. Dev STS correlation: 0.760

Figure 14: Effect of separating minBERT backbones (orange) and introducing nltk preprocessing
(purple) on performance.

We ran a massive 50 epoch (10 epoch cycles for each unfreezing of 1/4 of the backbone) experiment
for 35 epochs overnight, and noticed that the Quora dataset did not appreciably improve in perfor-
mance until the backbone was somewhat unfrozen (epoch 10 here), as shown in Figure 15. As such,
we implemented a dynamic Quora training option whereby Quora training does not begin until a later
stage of unfreezing (though we did not experiment with this much).
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Figure 15: Performance improvement of the Quora dataset after unfreezing the backbone.
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Our next experiment used a lower initial learning rate (1e-4) with a shallower learning rate decay
(0.7epoch ∗ LR). This led to worse performance. In particular, STS suffered, as shown in Figure 16.

Result:

1. Sentiment classification accuracy: 0.487
2. Paraphrase detection accuracy: 0.368
3. Semantic Textual Similarity correlation: 0.651

Figure 16: Impact of lower learning rate and lambda = 0.7**epoch scheduler on performance
(purple).

We then tried a triangular cyclical learning rate schedule from 1e − 4 to 2e − 4, seeing very little
difference. With the cylical learning rate scheduler still in place, we experiment with an exponential
moving average (EMA) wrapper for our model, which decreased performance, especially in later
epochs. See Appendix E for details on the EMA experiment. The learning curve is also below
(Figure 17).

Figure 17: Impact of cyclic learning rate and EMA on performance.

We then scrapped EMA, and continue exploring optimal multiplicative learning rate scheduling,
noting that more aggressive decay (multiplicative factor 0.7) was better than shallower decay (0.85),
especially for the SST task. See Figure 18.

Figure 18: Comparison of Lambda LR schedulers: 0.7 (pink) vs 0.85 (orange).

Reducing learning rate even more (multiplicative factor of 0.5) and reducing regularization helped
the overall learning trajectory, as shown in Figure 19.
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Figure 19: Impact of further reduced learning rate (0.5) and less weight decay on learning trajectory.

Many further architecture and learning routine experiments were performed, but are not detailed here.
See subsection 4.2 for our ultimately best architecture and Appendix D for our ensembling strategy
to achieve maximal multi-task performance.
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H "Duality of Man" Model Variants and Ensemble

H.1 "Duality of Man" Architecture

With "Duality of Man" model variants we introduced a separate BERT backbone for the SST task.
In experiments, we found that Quora and STS training benefitted one another via shared sub-layers
and backbone, likely the result of the inherent similarity between the two tasks. Both the paraphrase
detection (Quora) and similarity score (STS) tasks seek to understand how similar two sentences are.
On the other hand, the SST task is focused on sentiment, which is largely orthogonal to sentence
similarity (especially since we derive sentiment based on the input of one sentence at a time).
Attempting to train all three models on the same BERT backbone led to instability in tuning learning
rates appropriately so as not to compromise SST performance. By enforcing our prior knowledge
that the SST task differs significantly from the other two and partitioning its backbone separately, we
saw hugely increased training stability.

Compared to our best "Yin Yang" model architecture, the earlier "Duality of Man" architecture lacks a
few important features. The "Duality of Man" Similarity Feature Extraction sub-layer shared between
the paraphrase and STS tasks lacks the unadulterated embeddings of the two sentences. The feature
extraction includes only the element-wise product, element-wise difference, and cosine similarity
of input sentence embeddings for the Para and STS classifier layers (see below). There are also no
BatchNorms in the "Duality of Man" classifier layers. The latter made the more significant difference
in boosting "Yin Yang" model variant performance over this earlier "Duality of Man" architecture.

1 def extract_comparison_features(self ,
2 input_ids_1 , attention_mask_1 ,
3 input_ids_2 , attention_mask_2):
4 """
5 Given a batch of pairs of sentences , extract comparison

features
6 for Quora and STS tasks.
7

8 Useful for both Sim tasks.
9 """

10

11 embeds_1 = self.forward(input_ids_1 , attention_mask_1 ,
which_bert = "sim")

12 embeds_2 = self.forward(input_ids_2 , attention_mask_2 ,
which_bert = "sim")

13 cosine_sim = F.cosine_similarity(embeds_1 , embeds_2).unsqueeze
(-1)

14 elem_prods = embeds_1 * embeds_2
15 diff = torch.abs(embeds_1 - embeds_2)
16 features = torch.cat([diff , elem_prods , cosine_sim], dim=1)
17 features = self.comparison_features_fcn(features)
18

19 return features

G6 "Duality of Robust Men" (RAdam, 5x instead of 10x LR for SST), 1e-4 weight decay for para

$python multitask_classifier.py –fine-tune-mode iterative –optim RAdam
–sst_lr_multiplier 5 –para_weight_decay 1e-4 –lr 1e-4 –use_gpu –amp
–batch_size 64 –train_sst –train_quora –train_sts –clf conv –epochs 10

G6 "Duality of Faster Men" - same as above, higher LR

$python multitask_classifier.py –fine-tune-mode iterative
–sst_lr_multiplier 5 –para_weight_decay 1e-4 –lr 2.1e-4 –use_gpu –amp
–batch_size 64 –train_sst –train_quora –train_sts –clf conv

G6 "Duality of Slow Men"
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$python multitask_classifier.py –fine-tune-mode full-model
–sst_lr_multiplier 5 –para_weight_decay 1e-4 –lr 5e-5 –use_gpu –amp
–batch_size 64 –train_sst –train_quora –train_sts –clf conv

G6 "Duality of Nonlinear Men"

$python multitask_classifier.py –fine-tune-mode iterative
–sst_lr_multiplier 5 –para_weight_decay 1e-4 –lr 1e-4 –use_gpu –amp
–batch_size 64 –train_sst –train_quora –train_sts –clf nonlinear

G6 "Mega Duality" (20 epochs)

$python multitask_classifier.py –fine-tune-mode iterative
–sst_lr_multiplier 5 –para_weight_decay 1e-4 –lr 1e-4 –use_gpu –amp
–batch_size 64 –train_sst –train_quora –train_sts –clf conv –epochs 20

H.2 Ensemble Command

We ensemble all of the Duality of Man variants using the following command.

$python ensemble.py –filepaths g6-duality-of-man.pt duality-of-fast-man.pt
duality-of-long-distance-runners-20.pt duality-of-man-nonlinear.pt
duality-of-slow-man.pt duality-of-robust-men.pt

Result:

1. Sentiment classification accuracy: 0.533
2. Paraphrase detection accuracy: 0.858
3. Semantic Textual Similarity correlation: 0.853
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I "Yin Yang" Model Variants and Ensemble

Towards improving the "Duality of Man" variants architecture, the Yin Yang model architecture
(our best multi-task model architecture) includes both pure sentence embeddings and the extracted
elementwise product, cosine similarity, and embedding difference features. We also add more
BatchNorms to the classifier layers, with the latter providing a significant performance boost. See
below for the new shared similarity task feature extraction layer, and the updated classifier layers.

1

2 def __init__(self , config):
3 ...
4 # ===== sentiment =====
5 ...
6 self.sentiment_conv = nn.Sequential(
7 nn.Conv1d(in_channels =1, out_channels =4, kernel_size =3), #

note: input needs to be unsqueezed
8 nn.BatchNorm1d (4),
9 nn.Flatten (), # Flatten layer to convert (N, 4, D-2) to (N,

4*(D-2))
10 nn.Linear (4 * (BERT_HIDDEN_SIZE - 2), BERT_HIDDEN_SIZE // 2),
11 nn.BatchNorm1d(BERT_HIDDEN_SIZE // 2),
12 nn.ReLU(),
13 nn.Linear(BERT_HIDDEN_SIZE // 2, N_SENTIMENT_CLASSES)
14 )
15

16 # ====== comparison task shared layer ======
17 # learn linear mapping which can be shared among STS and Quora

tasks for comparison features
18 self.comparison_features_fcn = nn.Sequential(
19 nn.Linear(FEATURE_SIZE , FEATURE_PROJ_SIZE),
20 nn.BatchNorm1d(FEATURE_PROJ_SIZE),
21 nn.ReLU(),
22 nn.Linear(FEATURE_PROJ_SIZE , FEATURE_PROJ_SIZE),
23 nn.BatchNorm1d(FEATURE_PROJ_SIZE)
24 )
25

26 # ===== paraphrase ======
27 ...
28 self.paraphrase_conv = nn.Sequential(
29 nn.Conv1d(in_channels =1, out_channels =4, kernel_size =3), #

note: input needs to be unsqueezed
30 nn.BatchNorm1d (4),
31 nn.Flatten (), # Flatten layer to convert (N, 4, D-2) to (N,

4*(D-2))
32 nn.Linear (4 * (FEATURE_PROJ_SIZE - 2), BERT_HIDDEN_SIZE // 2),
33 nn.BatchNorm1d(BERT_HIDDEN_SIZE // 2),
34 nn.ReLU(),
35 nn.Linear(BERT_HIDDEN_SIZE // 2, 1)
36 )
37 ...
38 # ===== similarity ========
39 ...
40

41 self.similarity_conv = nn.Sequential(
42 nn.Conv1d(in_channels =1, out_channels =4, kernel_size =3), #

note: input needs to be unsqueezed
43 nn.BatchNorm1d (4),
44 nn.Flatten (), # Flatten layer to convert (N, 4, D-2) to (N,

4*(D-2))
45 nn.Linear (4 * (FEATURE_PROJ_SIZE - 2), BERT_HIDDEN_SIZE // 2),
46 nn.BatchNorm1d(BERT_HIDDEN_SIZE // 2),
47 nn.ReLU(),
48 nn.Linear(BERT_HIDDEN_SIZE // 2, 1)
49 )
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50

51 ...
52

53 def extract_comparison_features(self ,
54 input_ids_1 , attention_mask_1 ,
55 input_ids_2 , attention_mask_2):
56 """
57 Given a batch of pairs of sentences , extract comparison features

for Quora and STS tasks.
58

59 Useful for both Sim tasks.
60 """
61

62 embeds_1 = self.forward(input_ids_1 , attention_mask_1 , which_bert
= "sim")

63 embeds_2 = self.forward(input_ids_2 , attention_mask_2 , which_bert
= "sim")

64 cosine_sim = F.cosine_similarity(embeds_1 , embeds_2).unsqueeze (-1)
65 elem_prods = embeds_1 * embeds_2
66 diff = torch.abs(embeds_1 - embeds_2)
67 features = torch.cat([embeds_1 , embeds_2 , diff , elem_prods ,

cosine_sim], dim=1)
68 features = self.comparison_features_fcn(features)
69

70 return features

I.1 G6 "Yin Yang"

$python multitask_classifier.py –fine-tune-mode iterative –lr 1e-4
–use_gpu –amp –batch_size 64 –train_sst –train_quora –train_sts –clf conv
–sst_weight_decay 8e-3 –para_weight_decay 1e-5 –sts_weight_decay 9e-3
–lr_lambda 0.55 –optim Adamax –sst_lr_multiplier 7 –para_lr_multiplier 1.0
–sts_lr_multiplier 3 –epochs 7

Result:

1. Dev sentiment accuracy: 0.516
2. Dev paraphrase accuracy: 0.851
3. Dev STS correlation: 0.861

I.2 G6 "Yang Yin"

$python multitask_classifier.py –fine-tune-mode iterative –lr 1e-4
–use_gpu –amp –batch_size 64 –train_sst –train_quora –train_sts –clf conv
–sst_weight_decay 8e-3 –para_weight_decay 1e-5 –sts_weight_decay 9e-3
–lr_lambda 0.55 –optim Adamax –sst_lr_multiplier 3 –para_lr_multiplier 4
–sts_lr_multiplier 1 –epochs 7

Result:

1. Dev sentiment accuracy: 0.515
2. Dev paraphrase accuracy: 0.888
3. Dev STS correlation: 0.835

I.3 G6 "Yin Yang Fast"

$python multitask_classifier.py –fine-tune-mode iterative –lr 1.5e-4
–use_gpu –amp –batch_size 64 –train_sst –train_quora –train_sts –clf conv
–sst_weight_decay 8e-3 –para_weight_decay 1e-5 –sts_weight_decay 9e-3
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–lr_lambda 0.55 –optim Adamax –sst_lr_multiplier 5 –para_lr_multiplier 5
–sts_lr_multiplier 2 –epochs 7

Result:

1. Dev sentiment accuracy: 0.513
2. Dev paraphrase accuracy: 0.887
3. Dev STS correlation: 0.816

I.4 G6 "Yin Yang Steady Hand"

$python multitask_classifier.py –fine-tune-mode iterative –lr 1e-4
–use_gpu –amp –batch_size 64 –train_sst –train_quora –train_sts –clf conv
–sst_weight_decay 9e-3 –para_weight_decay 1e-5 –sts_weight_decay 1e-2
–lr_lambda 0.5 –optim Adamax –sst_lr_multiplier 4 –para_lr_multiplier 5
–sts_lr_multiplier 3 –epochs 7

Result:

1. Sentiment classification accuracy: 0.522
2. Paraphrase detection accuracy: 0.888
3. Semantic Textual Similarity correlation: 0.848

I.5 G6 "Yang Yin The Parabola"

$python multitask_classifier.py –fine-tune-mode iterative –lr 1e-4
–use_gpu –amp –batch_size 64 –train_sst –train_quora –train_sts –clf conv
–sst_weight_decay 9e-3 –para_weight_decay 1e-5 –sts_weight_decay 1e-2
–lr_lambda 0.5 –optim Adamax –sst_lr_multiplier 3 –para_lr_multiplier 8
–sts_lr_multiplier 1 –epochs 7

Result:

1. Sentiment classification accuracy: 0.515
2. Paraphrase detection accuracy: 0.892
3. Semantic Textual Similarity correlation: 0.801

I.6 G6 "Yin Yang" 2

Minor adjustments to the original to better time the SST optimal point towards the 7th epoch.

$python multitask_classifier.py –fine-tune-mode iterative –lr 1e-4
–use_gpu –amp –batch_size 64 –train_sst –train_quora –train_sts –clf conv
–sst_weight_decay 9e-3 –para_weight_decay 1e-5 –sts_weight_decay 1e-2
–lr_lambda 0.5 –optim Adamax –sst_lr_multiplier 4 –para_lr_multiplier 1.0
–sts_lr_multiplier 3 –epochs 7

Result:

1. Sentiment classification accuracy: 0.520
2. Paraphrase detection accuracy: 0.842
3. Semantic Textual Similarity correlation: 0.858

I.7 G6 "Yue the Moon Spirit" - "Yin Yang" Ensemble

We ensemble all of the Yin Yang variants (other than Steady Hand 2,3,4,5,6 which were not yet
available) via:

$python ensemble.py –filepaths g6-yin-yang.pt g6-yang-yin.pt
g6-yin-yang-fast.pt g6-yin-yang-steady-hand.pt g6-yang-yin-the-parabola.pt
g6-yin-yang-2.pt
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Result:

1. Sentiment classification accuracy: 0.522
2. Paraphrase detection accuracy: 0.889
3. Semantic Textual Similarity correlation: 0.858

Based on the success of the Steady Hand variant, we later made more to add to our final ensembles.

I.8 G6 "Yin Yang Steady Hand" 2

$python multitask_classifier.py –fine-tune-mode iterative –lr 1e-4
–use_gpu –amp –batch_size 64 –train_sst –train_quora –train_sts –clf conv
–sst_weight_decay 9e-3 –para_weight_decay 1e-5 –sts_weight_decay 1e-2
–lr_lambda 0.5 –optim Adamax –sst_lr_multiplier 3 –para_lr_multiplier 4
–sts_lr_multiplier 2 –epochs 7

Individual results not recorded.

I.9 G6 "Yin Yang Steady Hand" 3

$python multitask_classifier.py –fine-tune-mode iterative –lr 1e-4
–use_gpu –amp –batch_size 64 –train_sst –train_quora –train_sts –clf conv
–sst_weight_decay 9e-3 –para_weight_decay 1e-5 –sts_weight_decay 1e-2
–lr_lambda 0.55 –optim Adamax –sst_lr_multiplier 4 –para_lr_multiplier 5
–sts_lr_multiplier 3 –epochs 7

Individual results not recorded.

I.10 G6 "Yin Yang Steady Hand" 4

$python multitask_classifier.py –fine-tune-mode iterative –lr 1e-4
–use_gpu –amp –batch_size 64 –train_sst –train_quora –train_sts –clf conv
–sst_weight_decay 9e-3 –para_weight_decay 1e-5 –sts_weight_decay 1e-2
–lr_lambda 0.6 –optim Adamax –sst_lr_multiplier 2 –para_lr_multiplier 3
–sts_lr_multiplier 2 –epochs 7

1. Sentiment classification accuracy: 0.510
2. Paraphrase detection accuracy: 0.887
3. Semantic Textual Similarity correlation: 0.845

I.11 G6 "Yin Yang Steady Hand" 5

$python multitask_classifier.py –fine-tune-mode iterative –lr 1e-4
–use_gpu –amp –batch_size 64 –train_sst –train_quora –train_sts –clf conv
–sst_weight_decay 9e-3 –para_weight_decay 1e-5 –sts_weight_decay 1e-2
–lr_lambda 0.5 –optim Adamax –sst_lr_multiplier 5 –para_lr_multiplier 6
–sts_lr_multiplier 4 –epochs 7

1. Sentiment classification accuracy: 0.520
2. Paraphrase detection accuracy: 0.888
3. Semantic Textual Similarity correlation: 0.841

I.12 G6 "Yin Yang Steady Hand" 6

$python multitask_classifier.py –fine-tune-mode iterative –lr 1e-4
–use_gpu –amp –batch_size 64 –train_sst –train_quora –train_sts –clf conv
–sst_weight_decay 9e-3 –para_weight_decay 1e-5 –sts_weight_decay 1e-2
–lr_lambda 0.5 –optim Adamax –sst_lr_multiplier 6 –para_lr_multiplier 7
–sts_lr_multiplier 5 –epochs 7

36



1. Sentiment classification accuracy: 0.518
2. Paraphrase detection accuracy: 0.891
3. Semantic Textual Similarity correlation: 0.840
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J G6 "Run it Back" Model Variant

Given the massively larger compute requirements of training full epochs on the Quora dataset, we
proposed that we might get easy value with minimal added compute by re-shuffling and re-training
the SST and STS tasks multiple times per epoch. As such, we implemented simple training loops to
allow multiple rounds of training for each sub-task per-epoch when requested. Unfortunately, this
experiment proved largely unsuccessful across all three tasks, with dramatic decrease in paraphrase
accuracy (the task we did not multiplicatively train per epoch). The main model architecture here
was derived from the "Yin Yang" architecture, with differences limited to training routine.

Command:

$python multitask_classifier.py –fine-tune-mode iterative –lr 1e-4
–use_gpu –amp –batch_size 64 –train_sst –train_quora –train_sts –clf conv
–sst_weight_decay 9e-3 –para_weight_decay 1e-5 –sts_weight_decay 1e-2
–lr_lambda 0.55 –optim Adamax –sst_lr_multiplier 4 –para_lr_multiplier
1.0 –sts_lr_multiplier 3 –epochs 7 –num_sst_trains 2 –num_quora_trains 1
–num_sts_trains 5

Results:

1. Dev sentiment accuracy: 0.494
2. Dev paraphrase accuracy: 0.653
3. Dev STS correlation: 0.839
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K G6 "Interleaver" Model Variants and Ensemble

As opposed to the Duality of Man, Yin Yang, and Run it Back architectures, the Interleaver models
derive their name from the fact that we interleave model training at a finer granularity. Whereas all
other models are trained by iterating through the full SST Dataloader, then the Quora Dataloader,
then the STS Dataloader, this model iterates through SST, Quora, and STS batch by batch, calculating
each loss function and backpropagating in turn in a single batch iteration. While we observed inferior
performance for the individual models (particularly on SST), the overall ensemble yields surprisingly
good results. The main model architecture here was derived from the "Yin Yang" architecture, with
differences limited to training routine.

1 # G6 interleaver
2 $python multitask_classifier.py --fine -tune -mode iterative --lr 1e-4

--use_gpu --amp --batch_size 64 --train_sst --train_quora --
train_sts --clf conv --sst_weight_decay 8e-3 --para_weight_decay 1
e-5 --sts_weight_decay 9e-3 --lr_lambda 0.55 --optim Adamax --
sst_lr_multiplier 4 --para_lr_multiplier 1.0 --sts_lr_multiplier 3
--epochs 7 --num_sst_trains 5 --num_quora_trains 1 --

num_sts_trains 5
3

4 # G6 interleaver more para
5 $python multitask_classifier.py --fine -tune -mode iterative --lr 1e-4

--use_gpu --amp --batch_size 64 --train_sst --train_quora --
train_sts --clf conv --sst_weight_decay 8e-3 --para_weight_decay 1
e-5 --sts_weight_decay 9e-3 --lr_lambda 0.55 --optim Adamax --
sst_lr_multiplier 3 --para_lr_multiplier 4 --sts_lr_multiplier 2
--epochs 7 --num_sst_trains 4 --num_quora_trains 1 --
num_sts_trains 4

6

7 # G6 interleaver fast
8 $python multitask_classifier.py --fine -tune -mode iterative --lr 1.5e-4

--use_gpu --amp --batch_size 64 --train_sst --train_quora --
train_sts --clf conv --sst_weight_decay 8e-3 --para_weight_decay 1
e-5 --sts_weight_decay 9e-3 --lr_lambda 0.55 --optim Adamax --
sst_lr_multiplier 5 --para_lr_multiplier 5 --sts_lr_multiplier 2
--epochs 7 --num_sst_trains 3 --num_quora_trains 1 --
num_sts_trains 3

9

10 # G6 interleaver steady hand
11 $python multitask_classifier.py --fine -tune -mode iterative --lr 1e-4

--use_gpu --amp --batch_size 64 --train_sst --train_quora --
train_sts --clf conv --sst_weight_decay 9e-3 --para_weight_decay 1
e-5 --sts_weight_decay 1e-2 --lr_lambda 0.5 --optim Adamax --
sst_lr_multiplier 4 --para_lr_multiplier 5 --sts_lr_multiplier 3
--epochs 7 --num_sst_trains 5 --num_quora_trains 1 --
num_sts_trains 5

12

13 # G6 interleaver the parabola
14 $python multitask_classifier.py --fine -tune -mode iterative --lr 1e-4

--use_gpu --amp --batch_size 64 --train_sst --train_quora --
train_sts --clf conv --sst_weight_decay 9e-3 --para_weight_decay 1
e-5 --sts_weight_decay 1e-2 --lr_lambda 0.5 --optim Adamax --
sst_lr_multiplier 3 --para_lr_multiplier 8 --sts_lr_multiplier 2
--epochs 7 --num_sst_trains 2 --num_quora_trains 2 --
num_sts_trains 2

15

16 # G6 interleaver 2
17 $python multitask_classifier.py --fine -tune -mode iterative --lr 1e-4

--use_gpu --amp --batch_size 64 --train_sst --train_quora --
train_sts --clf conv --sst_weight_decay 9e-3 --para_weight_decay 1
e-5 --sts_weight_decay 1e-2 --lr_lambda 0.5 --optim Adamax --
sst_lr_multiplier 4 --para_lr_multiplier 2.0 --sts_lr_multiplier 4
--epochs 7 --num_sst_trains 10 --num_quora_trains 1 --

num_sts_trains 10
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18

19 # ensemble
20 $python ensemble.py --filepaths g6 -interleaver.pt g6 -interleaver -more -

para.pt g6-interleaver -fast.pt g6 -interleaver -steady -hand.pt g6-
interleaver -the -parabola.pt g6-interleaver -2.pt

Listing 5: G6 Interleaver Shell Commands

G6 "Interleaver" Ensemble Results

Result:

1. Sentiment classification accuracy: 0.500
2. Paraphrase detection accuracy: 0.897
3. Semantic Textual Similarity correlation: 0.866
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L Final Ensembles

L.1 G6 "Ménage à Onze" - Duality of Man + Yin Yang Ensemble

We ensemble all Yin Yang and Duality of Man variants with:

$python ensemble.py –filepaths g6-yin-yang.pt g6-yang-yin.pt
g6-yin-yang-fast.pt g6-yin-yang-steady-hand.pt g6-yang-yin-the-parabola.pt
g6-yin-yang-2.pt g6-duality-of-man.pt duality-of-fast-man.pt
duality-of-long-distance-runners-20.pt duality-of-man-nonlinear.pt
duality-of-slow-man.pt duality-of-robust-men.pt

Result:

1. Sentiment classification accuracy: 0.538
2. Paraphrase detection accuracy: 0.879
3. Semantic Textual Similarity correlation: 0.860

Other Ensembles Tried:

G6 "Oligarchy" v1 [First CS224N Class Test Leaderboard Submission]

This model is the same as G6 "Ménage à Onze" except that we now give Yin Yang Steady Hand (our
most performant single sub-model) 3 votes.

$python ensemble.py –filepaths g6-yin-yang.pt g6-yang-yin.pt
g6-yin-yang-fast.pt g6-yin-yang-steady-hand.pt g6-yang-yin-the-parabola.pt
g6-yin-yang-2.pt g6-duality-of-man.pt duality-of-fast-man.pt
duality-of-long-distance-runners-20.pt duality-of-man-nonlinear.pt
duality-of-slow-man.pt duality-of-robust-men.pt g6-yin-yang-steady-hand.pt
g6-yin-yang-steady-hand.pt

Dev Result:

1. Sentiment classification accuracy: 0.536
2. Paraphrase detection accuracy: 0.882
3. Semantic Textual Similarity correlation: 0.860

Test Result:

1. SST test accuracy: 0.551
2. Paraphrase test accuracy: 0.881
3. STS test correlation: 0.853
4. Overall test score: 0.786

G6 "Oligarchy" v2

This ensemble is the same as Oligarchy v1 except we give Yin Yang, Yang Yin, Yang Yin the Parabola,
and Duality of Robust Men models additional votes as well.

$python ensemble.py –filepaths g6-yin-yang.pt g6-yang-yin.pt
g6-yin-yang-fast.pt g6-yin-yang-steady-hand.pt g6-yang-yin-the-parabola.pt
g6-yin-yang-2.pt g6-duality-of-man.pt duality-of-fast-man.pt
duality-of-long-distance-runners-20.pt duality-of-man-nonlinear.pt
duality-of-slow-man.pt duality-of-robust-men.pt g6-yin-yang-steady-hand.pt
g6-yin-yang-steady-hand.pt g6-yin-yang.pt g6-yang-yin.pt
g6-yang-yin-the-parabola.pt duality-of-robust-men.pt

Result:

1. Sentiment classification accuracy: 0.530
2. Paraphrase detection accuracy: 0.883
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3. Semantic Textual Similarity correlation: 0.860

G6 "Lisan al Gaib"

This ensemble includes one of (almost) everything, including additional slightly modified versions of
Yin Yang Steady Hand. Kitchen-sink style ensemble. It sees across the dunes.

$python ensemble.py –filepaths g6-yin-yang.pt g6-yang-yin.pt
g6-yin-yang-fast.pt g6-yin-yang-steady-hand.pt g6-yang-yin-the-parabola.pt
g6-yin-yang-2.pt g6-duality-of-man.pt duality-of-fast-man.pt
duality-of-long-distance-runners-20.pt duality-of-man-nonlinear.pt
duality-of-slow-man.pt duality-of-robust-men.pt g6-interleaver.pt
g6-interleaver-more-para.pt g6-interleaver-fast.pt g6-interleaver-steady-hand.pt
g6-interleaver-the-parabola.pt g6-interleaver-2.pt g6-yin-yang-steady-hand-2.pt
g6-yin-yang-steady-hand-3.pt g6-yin-yang-steady-hand-4.pt
g6-yin-yang-steady-hand-5.pt g6-yin-yang-steady-hand-6.pt

Result:

1. Sentiment classification accuracy: 0.530
2. Paraphrase detection accuracy: 0.891
3. Semantic Textual Similarity correlation: 0.864

G6 "The Sage"

This ensemble combines primarily known high-quality sub-models, with a handful of weaker per-
formers. It does not perform better than the kitchen sink model, suggesting that simply including
more models is more optimal.

$python ensemble.py –filepaths g6-yin-yang.pt g6-yang-yin.pt
g6-yin-yang-fast.pt g6-yin-yang-steady-hand.pt g6-yang-yin-the-parabola.pt
g6-yin-yang-2.pt g6-duality-of-man.pt duality-of-man-nonlinear.pt
duality-of-slow-man.pt duality-of-robust-men.pt g6-interleaver-steady-hand.pt
g6-yin-yang-steady-hand-2.pt g6-yin-yang-steady-hand-3.pt
g6-yin-yang-steady-hand-4.pt g6-yin-yang-steady-hand-5.pt
g6-yin-yang-steady-hand-6.pt

Result:

1. Sentiment classification accuracy: 0.529
2. Paraphrase detection accuracy: 0.889
3. Semantic Textual Similarity correlation: 0.860
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M Efficiency Experiments Details

M.1 Grid Search Details

Parameter Values
AMP On

Learning Rate 1× 10−4, 5× 10−5, 1× 10−5, 5× 10−6

Batch Size 64, 128, 256, 384
LoRA Rank 1, 5, 10
LoRA Mode ’none’, ’all-lin’, ’attn’, ’all-lin-only’, ’attn-only’

DoRA Off, On
Fine-Tune Mode ’full-model’, ’last-layer’

Epochs 3
Table 4: Grid search parameters for evaluating the impact of LoRA and DoRA.
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M.2 LoRA and DoRA Over Many Ranks

This grid search generated a total of 960 possible combinations. However, only 416 of these
combinations are feasible, as certain parameter configurations are logically incompatible (e.g., setting
’LoRA Mode’ to ’none’ while varying ’LoRA Ranks’ is illogical since LoRA is deactivated). Out
of these, only 270 could be executed to completion due to memory constraints. For instance,
configurations with ’Fine-Tune Mode’ set to ’full-model’ and ’LoRA Mode’ set to ’none’ could not
support batch sizes above 128. We restricted our training and evaluation to the SST and STS tasks, as
the Paraphrasing task required significantly more computational resources.

We ran both LoRA and DoRA for ranks 1,2,5,10,20,50,80,100 with the hyperparameters outlined in
Table 5. The resulting normalized Memory, Time and Accuracy values are presented in Figure 20.

Table 5: Hyperparameters

Hyperparameter Value

Batch Size 192
Learning Rate 0.0002
Epochs 10
AMP On
Dropout Probability 0.3

Figure 20: All values normalized to the value for LoRA and Rank 1
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M.3 Ablation Experiment Details

Parameter Values
AMP Off, On

Learning Rate 1× 2× 10−4

Batch Size 96
LoRA Rank 1
LoRA Mode ’none’, ’attn’, ’attn-only’

DoRA Off, On
Fine-Tune Mode ’full-model’, ’last-layer’

Epochs 10
Table 6: Grid search parameters for evaluating the impact of LoRA and DoRA.

Figure 21: Comparison of Memory Usage, Processing Time, and Accuracy With and Without AMP

Figure 22: Comparison of Memory Usage and Accuracy Across LoRA/DoRA Modes
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M.4 Final Model Hyperparameters

Table 7: Hyperparameters used for benchmarking the final model configurations.

Hyperparameter Value

Fine-tune mode Iterative
Learning rate (lr) 1× 10−4

Batch size 64
Tasks SST, Quora, STS
Classifier (clf) Convolutional
SST weight decay 9× 10−3

Paraphrase weight decay 1× 10−5

STS weight decay 1× 10−2

Learning rate lambda (lr_lambda) 0.5
Optimizer (optim) Adamax
SST learning rate multiplier 4
Paraphrase learning rate multiplier 5
STS learning rate multiplier 3
Epochs 7
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N Data Preprocessing Experiments

In addition to the default string processing included in the handout, we experimented with a modified
datasets.py using the Bird et al. (2009) library to remove stopwords, lemmatize, remove all
punctuation, and replaced contractions such as "n’t" with "not" and "’ll" with "will". Stopwords are
words with low discrimination power, such as ‘a’, ‘an’, ‘the’, ‘and’, etc and their removal has been
shown to increase performance on text classification tasks Ladani and Desai (2020). Lemmatization
involves breaking a word down into its root meaning (for instance, "best" to "good") and has been
shown to improve performance in sentiment analysis tasks Khyani and B S (2021). We hypothesized
also that contraction removal could help with text standardization and potentially improve subtask
performance. Overall, we did not observe significant differences between our various preprocessing
pipelines when applied to model training with our final model architecture (subsection 4.2). Thus, we
stuck with only basic white-space removal and special character removal for the models included in
our final ensembles (Appendix L).

O Model Parameter Count

We computed each of our minBERT backbones to contain ≈ 110M trainable parameters, and our
full set of convolution classifiers to contain ≈ 6M trainable parameters. Thus, for the architecture
described in subsection 4.2, our model consists of ≈ 226M parameters.
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