
Taming Guidelines in the Wild
Stanford CS224N Custom Project

Anuj Iravane
Stanford University SCPD
anuj@anterior.com

Abstract

Decision-making using pre-defined guidelines is a prevalent task in various do-
mains, including insurance claim handling, clinical diagnosis, and student assign-
ment evaluation. While various solutions utilizing Large Language Models (LLMs)
have been developed, these solutions are often domain-specific and tailored to
specific guideline formatsLi et al. (2023). Moreover, certain domains, such as
medical diagnosis and claim handling, require determinations to provide a ’proof
of work’ and a high degree of auditability, which most general LLM-based free
text-to-free text implementations struggle to achieve. LLMs also often exhibit poor
and inconsistent performance in accurately applying complex guidelines.
This paper proposes a novel approach to address these challenges by introducing
a unified symbolic representation called GDT, designed to be able to represent
all types of guidelines in a succinct format. One of the significant advantages of
GDT is its ability to be programmatically executed, enabling automated decision-
making processes based on these representations. Additionally, we present a
dataset comprising pairs of free-text and GDT representations, alongside a novel
technique for synthetically generating such data. Furthermore, we present an
aligned model that achieves improved performance on this task as compared to
baseline foundational models.

1 Key Information

• Mentor: Soumya Chatterjee

• External Collaborators / Sharing Project (if you have any): No

2 Introduction

Rule-based decision-making systems are ubiquitous. They are found in software as if/else statements,
medical guidelines, take-off checklists, legal proceedings, and more. Decision-making processes
across various industry domains frequently rely on structured guidelines to ensure consistency,
accuracy, and fairness. Traditionally, these tasks—ranging from insurance claim evaluations to
clinical diagnoses—are performed by human experts who interpret and apply complex sets of
guidelines to make determinations based on available evidence. In recent years, there has been a
significant shift towards automating these tasks using Large Language Models (LLMs).

The typical framework for such automation involves inputting guidelines and evidence into an LLM,
which then outputs a set of outcomes.

Despite the promise of LLMs in automating guideline-based decision-making, several critical short-
comings have been identified. Firstly, LLMs generally exhibit poor performance on the complex task
of transforming guidelines and evidence into determinations. The performance notably deteriorates
as the complexity of the guidelines increases. This degradation is believed to stem from the inherent
difficulty of the task, which requires the model to not only answer questions based on the guidelines

Stanford CS224N Natural Language Processing with Deep Learning



but also logically map these answers to reach a final determination. Such tasks present multiple
potential failure modes, particularly as the complexity and nuance of the guidelines increase.

Another significant challenge is the training and fine-tuning of LLMs for specific domains. Due to the
coupling of two subtasks— question answering and logical deduction—within the decision-making
process, it becomes cumbersome to improve performance of one of the subtask independently without
impacting the other. This is especially problematic when adapting traditional question-answering
tasks to specific domain requirements, where each domain might have unique characteristics and
requirements (for e.g different needs for uncertainty modeling in clinical vs legal domains), but the
process for logical deduction is largely the same.

Moreover, in domains such as law and medicine, the stakes for accuracy and consistency are
exceptionally high. Not only must the determinations made by LLMs achieve a high degree of
precision, but they also need to provide accountability. This is often expected in the form of a ’proof
of work’ that adheres to a structured representation, which can be challenging when dealing with
inputs that are initially in a loosely structured free-text format.

Given these challenges, there is a clear need for a more robust, adaptable, and transparent approach
to automating guideline-based decision-making. Through this paper, we propose a novel framework
that addresses these issues by introducing a unified symbolic representation called GDT (Guideline
Decision Tree), which is designed to standardize the representation of guidelines across various
domains and enhance the auditability and performance of automated decision-making systems. We
also demonstrate how LLM’s may be used to convert any and all free-text guidelines into GDT’s.

Figure 1: Left: Classical Approach. Right: Proposed Approach

3 Related Work

Numerous studies have been performed to evaluate performance of foundational LLM’s on logical
reasoning tasks. Methods like ToT and CoT prompting have been widely adopted to significantly
improve base reasoning capabilities on most tasks. However, in domains requiring reasoning with
a minimal margin of error, symbolic systems are still predominantly used for logical reasoning.
In recent months, systems like AlphaGeometry have used LLM’s in conjunction with symbolic
reasoning to solve complex problems. Trinh et al. (2024) The authors of LINC provide promising
evidence for how logical reasoning over natural language can be tackled through jointly leveraging
LLMs alongside symbolic provers.Olausson et al. (2023)

4 Approach

The objective of the Guideline, Evidence→ Outcomes task is to identify the outcomes from a given
guideline based on some evidence from the world at a particular instant in time.

We posit that splitting this task into two distinct subtasks— (1) creating symbolic guideline represen-
tations from free text and (2) executing these symbolic representations based on provided evidence—
is preferable for several reasons as outlined above. For the purpose of this project, we explore solely
the first subtask of creating symbolic guideline representations. The key, original contributions of
this project include:

• An evaluation of different forms of symbolic guideline representations.

2



• A proposed unified symbolic guideline representation, GDT (Guideline Decision Tree),
which can encapsulate the logic found in all types of free-text guideline representations.

• A library for synthetically generating free-text and GDT pairs, converting and parsing GDT’s
into their textual representations, and executing and comparing GDT’s.

• Models fine-tuned for the free-text to GDT transformation task.

• Evaluations of both baseline and fine-tuned models.

Guidelines as Logical Expressions

A guideline can be interpreted as a set of predicates, a set of outcomes, and a mapping function
between them. A predicate is an independently verifiable truth statement about the world that can be
either true or false, and each outcome is a potential result of the guideline determination.

The mapping function yields a list of ‘achieved’ outcomes given the truth values for its predicates.
Formally, a guideline can be represented as follows:

• Predicates: p1, p2, . . . , pn

• Outcomes: o1, o2, . . . , om

• Mapping function: f : {0, 1}n → {0, 1}m

The mapping function can be seen as m different mapping functions for each of the outcomes:

fi : {0, 1}n → {0, 1} for 1 ≤ i ≤ m

Each mapping function fi is a logical expression involving p1, p2, . . . , pn.

A common way of representing a logical expression is through its Disjunctive Normal Form (DNF),
which consists of disjunctions (OR) of conjunctions (AND) of predicates or their negations.

The Disjunctive Normal Form (DNF) for outcome oi based on predicates p1, p2, . . . , pn is:

oi ↔
∨

k∈{1,...,2n}
where oi is 1

 n∧
j=1

p
(k)
j


However, DNF is inefficient for representing guidelines due to the exponential growth of conjunctive
statements, resulting in 2n combinations. A more succinct representation is the minimal DNF, which
includes only the essential prime implicants necessary to cover all instances where the outcome is
positive. The resulting logical expression can be further simplified to reduce the number of literals,
though this is an NP-complete problem with various existing algorithms to address it.

Despite these improvements, there are still significant drawbacks to representing guidelines purely as
simplified DNF’s for each outcome. Firstly, expressions such as "Any x of the following y are true"
require

(
x
y

)
conjunctive literals to capture in pure formal logic. Secondly, these simplified DNF’s fail

to capture both implicit and explicit dependencies between predicates. (For example, “Does the car
have >20% fuel?” has an explicit dependency on the question "Does the car use fuel?”). Thirdly,
they do not provide an evaluation order for predicates, assuming that the truth values of all predicates
are known simultaneously. However, in most real-world applications, the truth values of certain
predicates determine which predicates need to be evaluated next. More importantly, these predicate
determinations are often expensive, especially when a human is involved in evaluating them.

To address these limitations, we propose a novel symbolic representation called GDT (Guideline
Decision Trees). GDT combines formal logic and decision trees to retain the expressive power of pure
formal logic while overcoming the aforementioned drawbacks. A GDT is a directed acyclic graph
comprising constructs such as predicates, outcomes, aggregators, and directed edges that represent
logical relationships and evaluation sequences. This structure allows GDT to effectively capture
complex guideline logic, dependencies, and evaluation orders.

3



GDT Schema

A GDT (GDT) is a directed acyclic graph that encompasses various types of nodes and edges, each
serving a distinct role in the decision-making process.

Nodes in a GDT include Predicates, Aggregators, and Outcomes. Predicates are independently
verifiable truth statements about the world at a given moment. To ensure generalizability and
simplicity, these predicates are modeled without being associated with specific entities. Aggregators,
on the other hand, are nodes that combine the results of one or multiple predicates into a single
outcome. For instance, they can represent conditions like “at least one is true” or "exactly two are
false." These aggregators have specific properties: a condition that specifies the type of comparison
(≤, == , ≥), a condition count which is an integer representing the number for the comparison, and
a type indicating whether the condition is positive or negative. Outcomes, representing the possible
results of executing the GDT, are all positioned as leaf nodes within the graph.

Edges in a GDT can be classified into directed edges and feeder edges. Directed edges connect nodes
and signify logical relationships and evaluation sequences. A directed edge, denoted as <source>
-> <target>, <condition>, implies that the target node should be evaluated if the source node
meets the specified condition (True or False). Additionally, it indicates an "AND" relationship in all
paths that include this edge. For example, the edges Predicate_0 -> Predicate_1, True and
Predicate_1 -> Outcome_0, False imply that Outcome_0 is reached when Predicate_0 is true
and Predicate_1 is false.

Feeder edges, represented as <source> → <aggregator>, indicate that the aggregator node’s
determination depends on the output of the source node. These edges enable aggregators to collect
and combine inputs from multiple sources.

In a GDT, an outcome path is defined as any path that begins at a root node (an aggregator or predicate
with no incoming edges) and ends at an outcome. Conversely, an intermediate path is one that starts
from a root node but does not end at an outcome. These paths illustrate the flow of logic from initial
conditions to final determinations, showcasing how various predicates and aggregators interact to
produce outcomes.

An example of a GDT is illustrated in Figure 3, highlighting how these components interact to model
guidelines effectively and support automated decision processes.

Methods

Every form of guideline that maps predicates to outcomes at a given instant in time can be represented
in a GDT. It is important to note that multiple valid GDTs can exist for a single text-based guideline
representation.

To transform free-text guidelines into GDTs, we employ both baseline models with few-shot prompt-
ing and task-specific fine-tuned models. Specifically, we use GPT-4 and GPT-3.5-turbo for baseline
evaluations, while creating fine-tuned versions of GPT-3.5-turbo and LLAMA-3 8b. Converting
free-text guidelines into accurate GDTs is a particularly challenging task for LLMs. It involves not
only extracting the correct predicates and outcomes but also identifying the correct relationships
between them using aggregators and edges. Evaluating the correctness of a generated GDT against a
ground-truthed version is also challenging since two correct GDTs could have differently worded
predicates and outcomes. Preliminary evaluation results indicate that the predicates generated by
baseline models almost always differed from ground truth predicates both in number and meaning.

Therefore, we further break down the task of converting free text to GDT into subtasks, as shown in
Table 1. We evaluate both baseline and fine-tuned model performance on each of these tasks. To train
fine-tuned models on these specific tasks, we created a dataset comprising free text guidelines and
their corresponding GDT representations. Since no such dataset was readily available and human
annotation is expensive, we developed a novel method to synthetically generate data. We created
randomly generated GDTs and performed a series of transformations on them, including adding
synthetic noise to create corresponding free-text representations.

Additionally, we generated intermediate DNF form representations, unenriched summaries, and
extracted predicates to provide a comprehensive dataset for the subtasks mentioned in Table 1. To
facilitate the evaluation of GDTs generated by LLMs, we created library functions to parse textual
representations of GDTs and methods to compare them against ground truth versions. Since multiple

4



correct GDTs can exist for each guideline, we used the logical equivalence rate as a proxy for
correctness. Furthermore, we measured the delta between edges-to-nodes ratio as a measure of the
complexity of two GDTs.

Our findings are presented in the Results and Evaluation section, highlighting the effectiveness and
challenges of our approach.

5 Experiments

5.1 Data

Converting free-text into GDT is a challenging task, but the inverse task—converting GDTs into
free-text—is simpler. We used this idea to create a five-step translation pipeline that generates random
GDT’s and converts them into free-text representations.

First, we programmatically generate random GDT skeletons with various combinations of predicates,
aggregators, and outcomes. For our experiments, we used a dataset of trees with an average height
of 4 and an average width of 4, each containing 2 outcomes. The algorithm ensures the generation
of valid GDT’s, enforcing additional constraints on edge creation to produce guidelines that closely
resemble real-world examples. The exact algorithm for this generation process is outlined in A.1

Next, we generate fake predicates and outcomes. For each GDT skeleton, we use GPT-4 to imagine
a random scenario and create dummy predicate and outcome statements corresponding to that
scenario. A high temperature value for GPT-4 ensures greater creative variance in scenario generation,
mitigating the risk of overfitting to specific types of scenarios.

Following this, we enrich the GDT skeletons by mapping each predicate and outcome to one of the
generated statements. This step results in a complete GDT with contextually relevant predicates and
outcomes.

To transform the GDT into a free-text representation, we first convert it into a structured text
representation. We utilize two important properties of the GDT: any path in the GDT corresponds to
conjunctions of predicates (or their negations, as indicated by edge conditions) along that path, and
multiple incoming paths to a node represent disjunctions of possible paths leading to the node. This
allows us to transform the GDT into a textual minimal DNF form representation, which is a deeply
nested bulleted list of all outcome paths.

Once we have a list of all outcome paths, we use GPT-4 to convert this into a free-text paragraph
summary, ensuring that all relevant information is captured. However, due to the uncertain behavior
of LLMs, this step can introduce potential loss of information. Qualitative analysis indicates that
roughly 5% of the time, some information from the GDT is lost, hallucinated, or misrepresented
during this translation step.

To further process the summaries, we instruct a cheaper LLM, GPT-3.5-turbo, to add irrelevant words,
phrases, or sentences to the summaries that do not affect the logical information contained within
them. This adds a layer of noise to the free-text summaries.

We store the GDT objects along with the intermediary translations in a dataset for evaluation, training,
and fine-tuning on various tasks. It is important to note that the generated summaries often contain
nonsensical guidelines. For example, an example statement in the summary might be: “The car must
be driven at full speed if either the car’s battery is low or the driver has had McDonald’s for lunch.”
Creating such illogical mappings is an intentional design choice, forcing the LLM to focus on the
logical mapping between predicates and outcomes rather than relying on its parametric knowledge of
the world.

Experiment Details

To achieve the primary objective of creating a system that can convert free-text guideline represen-
tations to summaries, we devised the following three tasks to measure and improve performance
on.

5



Figure 2: a) Synthetic data generation pipeline b) Task inputs and outputs

Figure 3: Example of a synthetically generated GDT and its corresponding free-text guideline
representation

Tasks

Task 1: GDTs from Guideline Summaries This is the primary task, focusing on converting
guideline summaries directly into GuidelineDTs (GDTs).

Task 2: GDTs from Guideline Minimal DNF Form This task involves converting minimal DNF
forms of guidelines into GDTs. We posit that it is worth evaluating performance on this task since a
large portion of guidelines often follow this format.

Task 3: GDTs from Guideline Summaries + Extracted Predicates and Outcomes Tasks 1 and
2 show poor performance on baseline model evaluations primarily due to failures in the predicate
extraction step. Often, outputs from these models merge two predicates into one or incorporate
aggregator/negation logic within the extracted predicates. To address this, we propose this task to
measure the performance of deducing logical mappings when outcomes and predicates are already
provided along with free text.

Evaluation Methods

We measure the performance on these tasks using the GPT-4o, GPT-3.5-turbo and LLAMA 3 - 8b
language models.

Since GDTs are novel structures and large language models have not been trained on them, we
provide a thorough definition of a GDT and illustrate examples of how to represent a GDT in plain
text in the prompts for baseline model evaluations. Additionally, we use few-shot prompting with
example input and output pairs for each task. However, we do not instruct the models on the algorithm

6



for creating GDTs from free-text, as multiple algorithms exist and they are challenging to describe in
plain text. Our aim is for the model to learn these algorithms in an unsupervised manner.

Supervised Fine-Tuning

To improve model performance, we employ supervised fine-tuning (SFT), which is recommended for
improving task-specific performance when instructions are difficult to describe in plain text.OpenAI
We fine-tune GPT-3.5-Turbo and LLAMA 8B on the three tasks. For GPT, we use the fine-tuning API
provided by OpenAI. To fine-tune LLAMA 8b, we utilize the Unsloth library to perform Parameter
Efficient Fine-Tuning (PEFT) using Low-Rank Adaptation (LORA) on a T4 GPU. Notebook code
for fine-tuning LLAMA is provided in the project repo.

For fine-tuning we use a training/validation set of 500/50 input-output pairs. By fine-tuning these
models, we aim to enhance their ability to convert free-text guidelines into accurate GDTs, thereby
improving the overall performance on the specified tasks.

5.2 Results

The results show that baseline models consistently perform poorly on all three tasks. This is in line
with the initial hypothesis that foundational models would struggle to create GDT’s because they
have never seen them during training and because ICL based prompting is not sufficient to teach
a model how to construct GDT’s. For simple enough GDT’s (<5 nodes), we still see a reasonably
good performance in accuracy and logical equivalence rate. As the number of nodes increase, logical
equivalence rates go close to 0. Baseline models perform better on Task 2 > Task 3 > Task 1. This
result follows the order of simplicity of the three tasks.

Although we fine-tuned a LLAMA 3 8B model on the same dataset, we omit the metrics here for both
the baseline and fine-tuned model evaluations since they both yielded less than 5 perfect matches
across all tasks.

The fine-tuned GPT-3.5 model demonstrates considerably improved performance across the three
tasks.

Table 1: Performance Metrics for Tasks. Test set: n = 150

Task + Inputs Model / Metric Perfect
Matches

Logical
Equivalence Rate

Edge-to-node
ratio delta

T1: Free-Text
GPT-4o 4% 35% 0.0
GPT-3.5 (FT) 32% 67% 0.0

T2: Minimal DNF Form
GPT-4o 23% 40% 0.0
GPT-3.5 (FT) 90% 95% 0.0

T3: Free-text, Predicates, Outcomes
GPT-4o 18% 53% 0.0
GPT-3.5 (FT) 66% 81% -0.27

Figure 4: Logical Equivalence Score Avg vs no. of Predicates. Yellow line: Baseline Model. Blue
line: Fine-Tuned model

7



6 Analysis

The evaluation mechanisms used for Task 1 and Task 2 are notably strict and only provide a lower
bound on performance. This is primarily because they strongly penalize even the slightest mismatch
in predicate and outcome extraction. A qualitative analysis of outputs from Task 1 reveals that when
predicates and outcomes do not align with the ground truth, it is often due to multiple predicates
being grouped together. This penalization highlights a flaw in the evaluation mechanism rather than
the generation itself.

Consequently, results from Task 3—where predicates and outcomes are already provided to the
LLM—offer better indicators of the system’s ability to understand logical mappings in real-world
scenarios. However, the quantitative results alone do not tell the entire story.

A qualitative analysis of real-world medical guidelines with the model fine-tuned on Task 1 yields
mixed results. Although the generated GuidelineDT (GDT) does not contain incorrect mappings,
it fails to capture many of the possible outcome paths. In its current state, the model struggles to
fully generalize to medical guidelines. I suspect the root cause lies in the Disjunctive Normal Form
(DNF) to summary step of the synthetic data generation process. This step has two failure modes:
(a) loss of information during translation, and more importantly, (b) all generated summaries exhibit
very similar "ChatGPT-like" verbiage. Since an LLM with the same prompt is used to generate all
summaries, they tend to read the same way, regardless of the subject matter. This uniformity fails to
capture the varied verbiage and styles found in real-world summaries. A potential future step would
be to introduce variance in summary styles using different LLM system prompts.

An interesting and surprising finding is that there is almost no difference in complexity, measured by
the edge-to-node ratio, between generated GDTs and ground truth GDTs. Upon closer inspection,
almost all GDT pairs that are logically equivalent also share the same structure. This suggests that the
LLM-generated summary styles are closely coupled with the underlying GDT structures, potentially
causing the models to overfit to these types of summaries. This observation indicates that while the
current approach has strengths, there is room for improvement in making the model more adaptable
to the diversity found in real-world guidelines.

7 Conclusion

As part of this project, we discussed the need for symbolic guideline representations and explored
various forms of guideline representations. We proposed a novel schema - GDT, to capture all kinds
of guidelines in a succinct way. We aimed to create a system that can create GDT’s based on free-text
guidelines and devised corresponding tasks to evaluate performance on. To create this system, we
started with creating a dataset using a synthetic data generation technique, without the need for
human annotation. We then trained a first version of this system using this dataset, and demonstrated
effective performance gains over baseline models. We recognized limitations in our data generation
and evaluation mechanisms.

There is plenty of work to be done for automatically generated GDT’s to have practical relevancy.
Apart from the work required to address the discussed limitations, a potential unlock to better GDT
generation would be to experiment with using logical equivalency rates directly as a loss function
during supervised fine-tuning instead of cross entropy on tokens. We also intend to experiment with
fine-tuning on smarter models like GPT-4 and Claude.

8 Ethics Statement

The societal and ethical impact of using AI to automate decision-making varies significantly depend-
ing on the domain of application. For this project, we focused on the guideline-evidence-to-outcome
mapping task, which is particularly prevalent in the insurance industry. It is important to acknowledge
that, especially in healthcare, the insurance industry already suffers from a negative public image.
Conflicts between insurance companies, patients, and hospitals over treatment payments are common,
and these companies often have the final say in decisions that can lead to significant monetary losses
for patients.

8



The introduction of an automated decision-making tool in this context could exacerbate issues of
accountability within the insurance industry. It is crucial to ensure that human reviewers sign off
on AI-made decisions, as human lives and finances are at stake. Such automated tools should be
used as productivity aids for critical decision-makers rather than substitutes. This approach helps
maintain accountability and ensures that ethical considerations are appropriately addressed in the
decision-making process.

Mitigation strategies include:

Human Oversight: Ensuring that all AI-driven decisions are reviewed and approved by human experts
to maintain accountability and accuracy. Transparency: Making the decision-making process of AI
systems transparent and understandable to all stakeholders, including patients, healthcare providers,
and regulators. Bias Mitigation: Continuously monitoring and addressing potential biases in AI
models to ensure fair and equitable treatment of all individuals. Regulatory Compliance: Adhering to
existing regulations and guidelines to protect patient rights and ensure ethical use of AI in decision-
making. By implementing these strategies, we can mitigate the ethical challenges and societal risks
associated with using AI for decision-making in sensitive domains like insurance.

References
Binbin Li, Tianxin Meng, Xiaoming Shi, Jie Zhai, and Tong Ruan. 2023. Meddm:llm-executable

clinical guidance tree for clinical decision-making.

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang, Armando Solar-Lezama, Joshua Tenenbaum,
and Roger Levy. 2023. Linc: A neurosymbolic approach for logical reasoning by combining
language models with first-order logic provers. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguistics.

OpenAI. Fine-tuning, openai api.

Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. 2024. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482.

A Appendix

A.1 Algorithm for Generating Random Guideline Decision Tree

9

http://arxiv.org/abs/2312.02441
http://arxiv.org/abs/2312.02441
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://platform.openai.com/docs/guides/fine-tuning
https://doi.org/10.1038/s41586-023-06747-5
https://doi.org/10.1038/s41586-023-06747-5


Algorithm 1 Generate Random Guideline Decision Tree (GDT) by Level
1: Input: max_width, max_height, outcome_types
2: Output: GuidelineDT
3: level← 1
4: outcomes← [Outcome(name = f"Outcome_" + i) for i in range(outcome_types)]
5: prev_level_nodes← [outcomes[:]]
6: directed_edges← []
7: feeder_edges← []
8: predicates← []
9: aggregators← []

10: while level < max_height do
11: level_width← random.randint(1,max_width)
12: nodes← []
13: for i← 1 to level_width do
14: node_type← random.choices([”Predicate”, ”Aggregator”], [4, 1], 1)[0]
15: if node_type == "Predicate" then
16: predicate← Predicate(name = f"Predicate_" + len(predicates))
17: nodes.append(predicate)
18: predicates.append(predicate)
19: else
20: aggregator ← CREATE_AGGREGATOR(aggregators, predicates, feeder_edges)
21: nodes.append(aggregator)
22: end if
23: end for
24: for source in nodes do
25: level_choices← random.choices(range(len(prev_level_nodes)), 2)
26: marked_nodes← set()
27: for condition, level_choice in zip([True, False], level_choices) do
28: potential_targets← prev_level_nodes[level_choice]
29: if level_choice == 0 then
30: k ← 1
31: else
32: k ← LEFT_SKEWED_INTEGER_SAMPLE(1.0, len(potential_targets))[0]
33: end if
34: targets← random.sample(potential_targets, k)
35: for target in targets do
36: if target not in marked_nodes then
37: directed_edges.append(DIRECTEDEDGE(condition, source, target))
38: marked_nodes.add(target)
39: end if
40: end for
41: end for
42: end for
43: prev_level_nodes.append(nodes)
44: level← level + 1
45: end while
46: return GUIDELINEDT(predicates, aggregators, outcomes, directed_edges, feeder_edges)

10


	Key Information
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Results

	Analysis
	Conclusion
	Ethics Statement
	Appendix
	Algorithm for Generating Random Guideline Decision Tree


