
A case for pre-training in Compositional
Generalization tasks

Stanford CS224N Custom Project

Ahmad Jabbar
Department of Linguistics

Stanford University
jabbar@stanford.edu

Rhea Kapur
Department of Linguistics

Stanford University
rheak@stanford.edu

Abstract

Do neural models have the capacity to compositionally generalize (Montague,
1970; Fodor and Pylyshyn, 1988; Janssen, 1997)? We run two experiments. With
Experiment 1, we make a case for using pre-trained models for compositional
generalization. We use results in Experiment 1 to motivate Experiment 2, where
we finetuning two different versions of the pretrained T5 model (T5-small and
T5-base) on ReCOGS (Wu et al., 2023). We report higher accuracies on some of the
generalization tasks using T5-base than the baselines presented in (Wu et al., 2023).
This is a promising result, and it sets us up to use constrained models (Timkey
and Linzen, 2023) on ReCOGS in the future, with the motivation of exploring
how a well-crafted dataset can lead to higher accuracy on the task even for an
attention-constrained model.

1 Key Information to include
• Mentor: Shikhar Murty
• External Collaborators (if you have any): Christopher Potts
• Sharing project: No
• Team Contribution Statement: Chris and Ahmad came up with the idea of Experiment 2.

Ahmad came up with the idea of Experiment 1. Rhea implemented and ran Experiment
2. Ahmad implemented and ran Experiment 1. Both Ahmad and Rhea contributed to the
writing. Shikhar suggested using T5-base and provided feedback.

2 Introduction
Compositional generalization tasks such as COGS and SCAN (Lake and Baroni, 2018; Kim and
Linzen, 2020; Wu et al., 2023; Lake and Baroni, 2023) seek to test the ability of language models to
compositionally generalize. It’s best to start with a thorough understanding of compositional gener-
alization and compositionality more generally. For every novel sentence S that humans encounter,
the meaning for S is not learned, but constructed on the fly by some prior knowledge of the lexical
items and the structure in which those items are arranged in S. The capacity that makes such a feat
possible may be understood as the capacity to compositionally generalize. A precise way to think
about compositionality is as a mapping between the syntax of a language and its semantics. Even
more precisely, following Montague (1970); Dowty (2007) take there to be two algebras.

(1) ⟨α, Fγ⟩γ∈Γ

α is a set of primitive and derived expressions that is closed under all operations F . Each
subscripted F denotes a different syntactic operation.

(2) ⟨β,Gγ⟩γ∈Γ

β is a set of primitive and derived meanings that is closed under all operations G. As for F ,
each subscripted G denotes a different semantic operation.

Stanford CS224N Natural Language Processing with Deep Learning



To illustrate, F1(α, β) can be taken to arrange α and β in a precedence relation. Then, a system is
compositional if and only if for F1, and every such operation, there is a corresponding G1 that has as
its operands the meanings of the expressions that are F ’s operands. This homomorphism can more
formally be captured as in (3).

(3) h(F (α1, ...αn)) = G(h(α1), ...h(αn))

Thinking of compositionality as a homomorphism is helpful also because it provides us with a clearer
understanding of tasks like SCAN and COGS. While for instance, in SCAN, each expression of the
input language is mapped to a meaning in the output language, COGS and ReCOGS only require
the model to have learned the algorithm for semantic composition. This is most clearly seen in
the variance between COGS and SCAN, in how primitives in the input language are mapped. For
instance, while jump in SCAN is mapped to JUMP, Lina in COGS is mapped to Lina. This difference
is brought about most clearly in the recent Lake and Baroni (2023), where the action sequences
are removed by colored shapes. For now, we can look at (1), (2), and (3), and think of COGS as
testing the model’s ability to generalize and construct a ⟨β,Gγ⟩γ∈Γ from the train-set that can help it
correctly map input sequences to their LFs at test time. Here, LFs can be thought of as primitive and
complex expressions in ⟨β,Gγ⟩γ∈Γ.

With the helpful analytical tools at hand and a conceptual understanding of compositionality, we can
zoom in on how this capacity is operationalized in COGS and ReCOGS, the two benchmarks on
which we’ll focus for this paper. COGS and ReCOGS operationalize compositionality in terms of the
capacity of the model to map an input sequence of a natural language string to an output sequence of
a logical form, as done by Kim and Linzen (2020). (4)-(5) is an illustrative example for this task,
where the model sees pairings like (4) and (5), and is asked to predict LFs for constructions not seen
at train-time:

(4) Emma ate the cake on the table.
(5) *cake(x_3); *table(x_6); eat.agent(x_1, Emma) AND

eat.theme(x_1, x_3) AND cake.nmod.on(x_3, x_6)
In terms of testing model performance, the above can be operationalized in terms of a seq2seq
task. A model with an encoder and a decoder provides the most natural setting for such a task then.
The encoder receives the input string as in (4) and the decoder aims to predict the gold LF. In the
literature, the model accuracy is measured by averaging exact matches of the gold LFs across a
range of test examples. There can be methodological concerns w.r.t. averaging over exact matches
as being the best approach to measure model accuracy. For instance, it’s quite possible that the
model approximates well to all gold LFs, but overall performs poorly for exact matching. That this
alternative approximating strategy is an optimal strategy is extremely likely under the assumption
that language models are resource-rational agents (Lieder and Griffiths, 2020; Icard, 2023). Although
we note these shortcomings for exact match based accuracy metrics, for this paper, we assume the
metric, as the methodological concerns regarding accuracy metrics is orthogonal to our project.

In this paper, we’re interested in the extent to which pre-training can be helpful in getting traction on
some generalization tasks within COGS for which the literature has reported only very low accuracies.
Zheng and Lapata (2021) use a pre-trained model on COGS and do report high accuracies. How is
our contribution novel then? Our contribution is novel in two respects:

(6) We evaluate a pre-trained model’s performance on ReCOGS rather than on COGS.
(7) We run experiments aimed at showing that a model trained from scratch on a task like COGS

fails at compositional generalization, not because of its inability to build compositional
representations for certain syntactic structures, but because it is not able to build the syntactic
structures themselves in the first place.

(7) is stated at a very high level of abstraction. A lower-level description of (7) is available due to
the use of surprisal (Shannon, 1948) as a proxy for grammaticality (Smith and Levy, 2013; Futrell
et al., 2019, 2020). We aim to show that the model performs poorly to predict the gold LF for an
input sequence because the model is surprised to see the input sequence. We lay out the details for
both of these experiments extensively below. For now, in order to understand why (6) is significant,
we give the reader a brief introduction to ReCOGS.

3 Related Work
Tasks for compositional generalization are usually touted as difficult for present-day models. Wu et al.
(2023) show that these claims are inflated and the model failures are in part due to incidental features

2



of the benchmarks. More specifically, poor performance on COGS is due to incidental features of the
LF representations as in (5) that can be removed while preserving semantic identity of the LF. Wu
et al. (2023) run three experiments on two models: (i) LSTM (9M parameters) with a 2-layer LSTM
encoder with global attention and a 2-layer LSTM decoder with a 512 hidden dimension size; (ii)
Transformer (4M parameters) with a 2-layer Transformer blocks with 4 attention heads and a 300
hidden dimension size. Wu et al. (2023) modify COGS and run three experiments. Modified COGS
comprises ReCOGS, a new benchmark. The contributions can be summarized as follows:

LFs in COGS like (5) contain redundant tokens like underscores and variable names. Removing
these tokens preserves semantic identity of the LF. In addition, in COGS, the bigram (, x) appears
approximately 10 times more than the next most frequent bigram (, Emma). The resulting model
distributions are highly skewed, which can be assuaged by removing the most frequent token. As the
overall model prediction improves, the prediction for the right LFs improves too. This falls out of the
redundant token removal strategy employed.

One of the tasks in COGS requires the model to generalize to sequences of recursive depth not seen
at train-time. This can involve CP-recursion such as John knows that Mary thinks that Bill believes
that Mina came to the party or PP-recursion. Deeper CP-recursion correlates with longer sequence
length. This gives rise to a confound. The model’s inability to predict LFs for longer strings will
interfere with its ability to predict gold LFs. To remedy this confound, examples already existing
in the train-set are concatenated such that the corresponding LFs come out to have variable names
that correspond to higher numerical values. Adding 1000 such concatenated examples improves the
transformer performance significantly with lower returns on more examples. LSTM performance
keeps improving until the highest train-set augmentation comprising 3072 examples.

Kim and Linzen (2020) report poor performance on Obj PP → Subj PP. This task requires the model
to predict gold LFs for sentences with PP-modifiers, like on the table, modifying the noun in subject
position, when in the train-set, the model only sees PP-modifiers modifying the nouns in subject
position. In other words, the model sees natural language strings like (8) in the train-set, but is asked
to predict LFs for strings like (9).

(8) Emma ate the cake on the table.
(9) The cake on the table burned.

Without letting the model see subject PPs, Wu et al. (2023) induce the biases required for the model
to generalize to LFs for sentences with subject PPs. Three strategies are employed. To take one such
strategy, for 5% of the training examples, the modified phrases are preposed as in (10) so that the
model, while only seeing corresponding LFs for object PPs, sees a lower value for the variable names
associated with the modified object nouns.

(10) The cake on the table, Emma ate.

Another strategy is to add participial verb phrases for both subjects and objects. The model now
learns a new type of modifier and it sees subjects being modified with this modifier. Note crucially
that the model still doesn’t see the modifier associated with PP modifiers nmod taking the variable
associated with the subject as its first argument. The model performance sees significant gains due to
inclusion of these heuristics in the train-set.

We note that adding heuristics to induce biases that increase model accuracy provides the model with
a portion of the same knowledge that pre-training provides it with. Therefore, we aim to see how
much boost in model accuracy pre-training affords. Further, one of the aims of Wu et al. (2023) is
to remove the incidental features of the LFs that deflate model accuracies. With these incidental
features removed, we arrive at a benchmark that is more faithful to the cognitive task of compositional
generalization. The contribution due to Experiment 2 can be summarized as: gauging gains due to
pre-training on a fairer benchmark. But first, we make the case for pre-training stronger by running
Experiment 1.

4 Approach

Experiment 1 (Approach) : For this experiment, our aim is to use a model that most closely
resembles the architectures in Kim and Linzen (2020) and Wu et al. (2023). Moreover, given that
COGS and ReCOGS present a seq2seq task and given that we want to understand how the model

3



processes the input sequence, we ideally want to assess the information to which the encoder has
access. For this reason, we choose to use TinyBERT (Turc et al., 2019; Bhargava et al., 2021)
imported from the HuggingFace library. Note that this experiment only makes a case for pre-training,
and doesn’t itself use a pre-trained model. Accordingly, we re-initialized the weights of TinyBERT
to random parameters, to only afford access to its architecture as an encoder model that can be
straightforwardly trained on an unsupervised masking task on a new dataset. TinyBERT has 4.4M
parameters, which is close to the number of the parameters (4M) for the transformer architecture
used in Wu et al. (2023).

Experiment 2 (Approach) : For this experiment, our aim is to gauge the traction a pre-trained
model gets when fine-tuned on ReCOGS. We run this experiment using two pre-trained models. We
choose T5-small and T5-base. We import T5-small (60 million parameters) and T5-base (220 million
parameters) (Raffel et al., 2020) from the HuggingFace library, and fine-tune each to the ReCOGS
dataset. The T5 architecture is apt for this task as it is an encoder-decoder model. Although the model
size of T5-base is a far cry from TinyBERT used in Experiment 1 and the model sizes in Kim and
Linzen (2020) and Wu et al. (2023), T5-base is smaller in the context of pre-trained models—for
comparision, GPT2-medium comprises approximately 350M parameters. We take its size in the
context of pre-trained models to justify our choice. The same considerations hold for T5-small a
fortiori.

We are using the accuracy scores reported in Wu et al. (2023) as our baseline; specifically, we
compare against their previously reported accuracies on the test set and on non-lexical generalization
tasks. The finetuning code was written ourselves, but some of the data preprocessing, setup, and
tokenization code was borrowed from the CS224U repository (exact file). Additionally, for evaluation,
we used part of the script in ReCOGS/runcogs.py from the GitHub repository associated with Wu et al.
(2023) as well as the recogsexactmatch() function in the CS224U repository (exact file). We used the
CS224U ReCOGS processing and evaluation code with the knowledge of Chris Potts and Zhengxuan
Wu (both authors on the ReCOGS paper). Any additional code was implemented ourselves.

5 Experiments

5.1 Experiment 1

5.1.1 Data

For experiment 1, we construct our dataset from the input sequences like (4) of COGS (available
najoungkim/COGS/data/train.tsv). Note crucially, that we exclude sentences like (5) from this dataset.
Only retrieving the input sequences of COGS leaves us with a dataset of approximately 24,154
sentences. This is only appropriate, as the aim here is to train the re-initialized TinyBERT model on
the unsupervised task of predicting the next token in the dataset. This enables the model to build a
probability distribution over the input vocabulary of COGS, via which we can then retrieve surprisal
scores.

5.1.2 Evaluation method

Our experimental framework gives rise to two aims. First, the aim is to then gauge if these surprisal
scores for a particular generalization co-vary with the accuracy on that generalization task—a metric
we can retrieve from Kim and Linzen (2020). Second, do the surprisal scores vary for sequences in
the train set and the test set? For instance, (11) is a train-set example and (12) is a test-set example.

(11) Emma ate the cake on the table.

(12) The cake on the table burned.

We mask the target site for each generalization as in (13) and (14) and obtain the surprisal score for
the target word, i.e., on for (13) and (14) for the mask. Moreover, as we’re using a bi-directional
encoder model, we provide the context after the [MASK] token as well to enable the model to make
better predictions.

(13) Emma ate the cake [MASK] the table.

4

https://github.com/cgpotts/cs224u/blob/main/hw_recogs.ipynb
https://github.com/frankaging/ReCOGS/blob/main/run_cogs.py
https://github.com/cgpotts/cs224u/blob/main/compgen.py
https://github.com/najoungkim/COGS/blob/main/data/train.tsv


(14) The cake [MASK] the table burned

A note on target sites and generalizations: For this experiment, we focus primarily on structural
generalization tasks, leaving out lexical ones. One of these generalizations is ObjPP → SubjPP as
exemplified in (11) and (12). The other two are generalizing to higher recursion depth for CP recursion
as in (15a)-(15b) and generalizing to higher recursion depth for PP recursion as in (16a)-(16b).

(15) a. John thinks that it is raining.
b. John thinks that Mary believes that Bill knows that it is raining.

(16) a. John saw the ball in the bottle.
b. John saw the ball in the bottle on the box in the living room.

For CP-recursion sentences, we took the last complementizer, i.e., that, to be the target site and
masked it. We then retrieved the surprisal scores for the complementizer that. For PP-recursion
sentences, we took the last preposition to be the target site and masked it. We retrieved the surprisal
scores for the preposition in. To construct masked examples like (13) and (14), we used ChatGPT.
The reason why we constructed our own examples is because we believe that the model could have
overfit to the input sequences in COGS, which can be a confound, by deflating the surprisal scores on
sentences like (13) that the model has seen. Using ChatGPT, we constructed 12 lists of examples.

With the surprisal scores in hand, we gauge if the model is more surprised by examples like (14) as
compared to (13). If this prediction is borne out, then an explanation for why the model performs
poorly in mapping gold LFs for sentences like (12) in comparison to (11) can be explained in terms
of processing difficulty of the input sequences of the test-set in COGS. Then, a way to level the
playing-field between sentences like (11) and (12) in terms of surprisal is to bring pre-training into
the mix. Pre-training will expose the model to input sequences of the form (12), and note crucially
that by using a pre-trained model, we still don’t expose the model to the gold LFs associated with
such input sequences. Therefore, the task of mapping to gold LFs still remains a legitimate task pace
Kim et al. (2022).

5.1.3 Experimental details

We import TinyBERT from the HuggingFace library. This is a model with 4.4M parameters. We
re-initialize its weights and train it from scratch on our dataset. The model is trained for a total of 3
epochs on 24,154 examples with a training-rate of 5×10−5. The batch size is set to 128.

5.1.4 Results

Here, we report on each generalization separately. First, we see a difference in the average surprisal
over 100 strings like (11) that insantiate the ObjPP structure and the average surprisal over 100 strings
like (12) that instantiate the SubjPP structure.

Generalization: ObjPP → SubjPP
Structure Surprisal

ObjPP 5.46
SubjPP 8.95

Table 1: Surprisal scores for structure (ObjPP) the model gets trained on and the structure (SubjPP)
the model is expected to generalize to.

The second structural generalization requires the model to predict LFs for CP structures with higher
recursive depth. In COGS, at train-time, the model only sees CP structures with recursive depth 1
and 2. At test time, the model has to predict LFs for CP-recursive structures of depth 3-12. We report
mean surprisals for recursive depths 1-4, to illustrate the point that with each recursive depth, the
surprisal of the complementizer that at the target site increases.
The third structural generalization of interest is PP-recursion. The model only sees sequences with
one or two PP-modifiers in a recursive structure as in (16a). The model is expected to generalize
to deeper PP-recursive structures like (16b). We obtained mean surprisal scores for PP-recursive
structures of depth 1-6.

5



Generalization: CP recursion
CP recursive depth Surprisal
1 3.74
2 6.86
3 8.39
4 9.51

Table 2: Surprisal scores increase with each recursive depth of the embedded CP.

Generalization: PP recursion
PP recursive depth Surprisal
1 4.75
2 4.13
3 4.66
4 5.46
5 8.56
6 10.64

Table 3: Surprisal scores increase with each recursive depth after 3 of the embedded PP.

The above results are interesting because the surprisal scores first decrease for each recursive depth
until 3, but then we see the same pattern as we see with CPs: the surprisals increase with each recursive
depth. As the model is not only expected to generalize to predicting LFs for PP-recursive sequences
of depth 3, but a range of them from 3-12, this result also corroborates our hypothesis about how the
surprisal for input sequences in COGS train-set and the surprisal for input sequences in the test-set
will vary. Upshot: If we think of the homomorphism in (3), our results suggest that the bad model
performance on COGS is not solely due to the inability of the model to compositionally generalize
by constructing a homomorphism. Instead, taking surprisal to be a proxy for grammaticality, the
model is unable to construct the requisite syntactic structure for the input sequences that it sees
only at test-time. To fix this and to see if we can fix this, we introduce pre-training into the mix.
Although pre-trained models have been used before as in Zheng and Lapata (2021), we have provided
a justification for using pre-trained models via the results presented above.

5.2 Experiment 2

5.2.1 Data

For Experiment 2, we use ReCOGS (Wu et al., 2023) which, as described above, is a benchmark
for compositional generalization. It contains a suite of distinct tasks all aimed at testing the model’s
capacity to generalize. See (4)-(5) from above for an illustrative example of its pairings. The training
set of ReCOGS consists of 135,547 pairs of a natural language string and a gold LF (as in (9) and
(10)). We used the training set for finetuning because it is set up in the way of helping models learn
relative positional indices. The test set contains 3,000 pairs and was used for our evaluation. We also
did evaluation on the generalization set, which consists of 21,000 pairs and is split into a number of
tests on different generalization tasks (ex. Obj PP → Subj PP).

5.2.2 Evaluation method

For evaluating both the fine-tuned T5-small and T5-base, we use the same metric described in the
ReCOGS paper (Wu et al., 2023) (and which their authors also used for evaluation, as noted in the
previous section). It generates percent exact string identity of logical forms (model output vs. ground
truth) along the generalization splits present in ReCOGS. This is done via the recogsexactmatch()
function mentioned in the above section on the approach for Experiment 2. We evaluate only structural
tasks (ObjPP → SubjPP, CP recursion, PP recursion, Subj → Obj Proper, Prim → Obj Proper, Prim
→ Subj Proper) due to compute constraints (full evaluation of the generalization set would have taken
upwards of twelve hours with an A100 GPU). We also generate an overall (averaged) test accuracy
on ReCOGS.

6



5.2.3 Experimental details

After retrieving from HuggingFace, we fine-tuned T5-small (60 million parameters) and T5-base
(220 million parameters) for 4 epochs on the training set of ReCOGS Raffel et al. (2020). This took
about 1.5 hours and 4 hours respectively on a Colab A100 High-RAM GPU instance. We used a
learning rate of 3e-4 and a batch size of 64. Additionally, we monitored the TensorFlow Dashboard
to ensure that overfitting was not an issue (early stopping also ensured as such). We then ran the
evaluation script described above to generate the results.

5.2.4 Results

Table 1 reports our results in the third and fourth columns. We also provide a comparison with
the performances so far reported in the literature for COGS and ReCOGS. Wu et al. (2023) run
an LSTM model in addition to a Transformer; we report accuracy scores only for the Transformer.
This is a fairer comparison, given that we are also using T5-small, a pre-trained transformer. The
results for Kim and Linzen (2020) have been taken directly from their paper, whereas scores in Wu
et al. (2023) have been estimated from a figure in Wu et al. (2023). In the code for our milestone,
there was an error in fine-tuning T5-small where the data mistakenly included the some of the
generalization set, leading to higher accuracies than was correct. We have since fixed this error for
the final paper, and we now see that T5-small does not learn patterns in ReCOGS adequately even
after sufficient finetuning (lowest scores in generalization tasks and very low test accuracy score).
This is an interesting result; it seems that larger pretrained models are needed for this task. The
T5-base performance corroborates this; we see comparable test accuracy (>90%) to what was
reported in Wu et al. (2023) and substantially better performance on some generalization tasks,
namely Obj PP → Subj PP (39% improvement), Subj → Obj Proper (85% improvement), and Prim
→ Obj Proper (33% improvement). While we were not able to fine-tune T5-large due to constrained
compute resources, we expect that T5-large will give even better performance than what we have
seen so far, following this trend. We will test this by fine-tuning T5-large over the summer as we
continue the project.

Results
Generalization COGS Kim

and Linzen
(2020)

ReCOGS Wu
et al. (2023)

ReCOGS+T5-
small

ReCOGS+T5-
base

ObjPP → SubjPP 0.00 0.04 0.22 0.61
CP recursion 0.00 0.10 0.00 0.02
PP recursion 0.09 0.02 0.00 0.02
Subj → Obj Proper 0.54 0.70 0.19 0.85
Prim → Obj Proper 0.23 0.50 0.29 0.83
Prim → Subj Proper 0.24 0.90 0.21 0.83
Test 0.97 0.93 0.31 0.91

Table 4: Accuracy scores for structural generalization tasks and test set.

6 Analysis

The results from both experiments complement each other synergistically. First, Experiment 1
corroborates our hypothesis that surprisal for target sites in each structure depends on whether the
model has been exposed to that structure or not. Take for instance, Obj PP structures. The surprisal
at the target site for such structures is much lower than the surprisal at the target site for Subj PP
structures. Both Kim and Linzen (2020) and Wu et al. (2023) report low accuracies for Obj PP →
Subj PP. If our hypothesis is right, then using pre-trained models should see increased accuracy on
this generalization. Indeed that is what we report by using T5-small and T5-base. We go from Kim
and Linzen (2020)’s 0.00 and Wu et al. (2023)’s 0.04 to 0.61 for T5-base.

It is true however that even using T5-base, a pre-trained model, on ReCOGS doesn’t get much traction
on CP-recursion and PP-recursion. Nonetheless, the results from Experiment 1 report that with each
recursive depth, the surprisal increases. Here, we offer an explanation. It’s quite possible that the long
CP and PP recursive structures don’t exist out there in the wild, and more specifically in the corpus

7



that T5-base is trained on. For instance, it is hard to imagine that the corpus includes a sentence
with CP-recursive structure of depth 10. This further corroborates our hypothesis from Experiment 1.
As even pre-trained models aren’t exposed to sequences of such recursive depth, using pre-trained
models cannot reduce the surprisal at seeing such structures.

To blinker ourselves to Experiment 2 now, we glean from the results in Table 4 that pretrained T5
models struggle on CP and PP recursion generalization tasks most of all (mostly looking at T5-base
here, and choosing not to focus on test accuracy because it seems likely that when we test T5-large,
that will reach near 100%). By examining (wrong) outputs generated by T5-base for examples in the
test set as well as the CP and PP recursion generalization splits, it is clear that T5-base when finetuned
still has gaps in learning relative positional indices. We have included screenshots of such errors in
the appendix (see 1), but the main thing to note is that a few very specific numbers (representing
certain positional indices) are repeated among many pairings in the test set, CP recursion, and PP
recursion set where the model failed; instead, the numbers or positional indices should be varied
and highly specific to each example. In particular, this pattern is exacerbated with the CP and PP
recursion generalization tasks (both of which do not have an accuracy exceeding 2% with T5-base).

In terms of next steps from here, we are curious to see whether CP and PP recusion accuracies will
improve with T5-large. If not, more in-depth evaluation and perhaps restructuring of the finetuning
data may be needed.

7 Conclusion

Through Experiments 1 and 2, we make a case for using pre-trained models for compositional
generalization and then show that pre-trained models can in fact lead to better performance on difficult
generalization tasks. We fine-tune two different versions of the pretrained T5 model (T5-small and
T5-base) on ReCOGS (Wu et al., 2023). We report higher accuracies on certain generalization tasks
using T5 than with the baselines presented in (Wu et al., 2023), and comparable accuracy on the test
set. This is a novel result, and it sets us up to use constrained models (Timkey and Linzen, 2023) on
ReCOGS in the future, with the motivation of exploring how a well-crafted dataset can lead to higher
accuracy on the task even for an attention-constrained model. We will also explore fine-tuning even
larger pretrained models such as T5-large in the future and expect to see even better results. Moreover,
we think that lower accuracies on CP recursion and PP recursion further corroborate our hypothesis:
that the model ought to be exposed to input sequences of the test examples for the seq2seq task of
compositional generalization. We think that using sequences like CP-recursive structures of depth 12
that are unlikely to occur on the web in most corpora is unfair. Note crucially that via pre-training,
we don’t expose the model to the gold LFs; thus we preserve the integrity of the generalization task.
Our experiments give rise to new ideas for a fairer benchmark for compositional generalization. We
seek to pursue construction of such a benchmark in the future.

8 Ethics Statement

We wish to comment on two aspects of our experiment. First, we think that we’re resolving a
theoretical question while using some compute that can perhaps be better used for experiments that
are more practical and fruitful. However, we think that this is a concern that can be raised for any
research question. For any research question Q, there’s perhaps another question P that serves
humanity more. This connects to objections against Utilitarianism more generally (Wolf, 1982;
Feldman, 1986). Nonetheless, the question of using computing resources is germane. Via running this
experiment, we are contributing to our carbon footprint. However, these concerns are also assuaged,
given that most of the models that we are using for our experiments are pretrained. So, we don’t have
to use the compute required for pretraining. Another crucial contribution of our project can be noted
via the following observation in Lake and Baroni (2018): that perhaps the inability of present-day
models to systematically generalize may be responsible for their data-thirst. If it turns out that we can
contribute in some way to understanding systematic generalization better, we can save up on future
compute and money spent on extra training on extra data.

We noted above that our work has a theoretical bent. Nonetheless, our research has implications
for understanding how humans communicate through novel complex sentence forms. As we stated
earlier in this proposal, there are various ambiguities in understanding complex sentence forms (in

8



"Emma ate the cake on the table," is Emma on the table or was the cake on the table?). We will ensure
that the various ambiguities are well-represented in our training data and that there is not any bias
toward one particular interpretation (or that the bias is proportional to how often the interpretations
appear in English or among English speakers).

AI use statement: we used ChatGPT for problem-solving purposes and mainly to generate sentences
used for Experiment 1. This was done by providing it with an example and asking it to replicate it
with certain variables. This was done to have a large sample size for each type of sentence. We did
NOT use any AI tools to aid us in the writing of this report.

References
Bhargava, P., Drozd, A., and Rogers, A. (2021). Generalization in nli: Ways (not) to go beyond

simple heuristics.

Dowty, D. (2007). Compositionality as an empirical problem. Direct compositionality, 14:23–101.

Feldman, F. (1986). Doing the best we can: An essay in informal deontic logic, volume 35. Springer
Science & Business Media.

Fodor, J. A. and Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical
analysis. Cognition, 28(1-2):3–71.

Futrell, R., Gibson, E., and Levy, R. P. (2020). Lossy-context surprisal: An information-theoretic
model of memory effects in sentence processing. Cognitive science, 44(3):e12814.

Futrell, R., Wilcox, E., Morita, T., Qian, P., Ballesteros, M., and Levy, R. (2019). Neural lan-
guage models as psycholinguistic subjects: Representations of syntactic state. arXiv preprint
arXiv:1903.03260.

Icard, T. F. (2023). Resource rationality. Manuscript, Stanford.

Janssen, T. (1997). Compositionality. In Janssen, T. M. and Partee, B. H., editors, Handbook of logic
and language, pages 417–473. Elsevier.

Kim, N. and Linzen, T. (2020). Cogs: A compositional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087–9105.

Kim, N., Linzen, T., and Smolensky, P. (2022). Uncontrolled lexical exposure leads to overestimation
of compositional generalization in pretrained models. arXiv preprint arXiv:2212.10769.

Lake, B. and Baroni, M. (2018). Generalization without systematicity: On the compositional skills of
sequence-to-sequence recurrent networks. In International conference on machine learning, pages
2873–2882. PMLR.

Lake, B. M. and Baroni, M. (2023). Human-like systematic generalization through a meta-learning
neural network. Nature, 623(7985):115–121.

Lieder, F. and Griffiths, T. L. (2020). Resource-rational analysis: Understanding human cognition as
the optimal use of limited computational resources. Behavioral and brain sciences, 43:e1.

Montague, R. (1970). Universal grammar. Theoria, 36:373–98.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.
(2020). Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of
Machine Learning Research, 21(140):1–67.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal,
27(3):379–423.

Smith, N. J. and Levy, R. (2013). The effect of word predictability on reading time is logarithmic.
Cognition, 128(3):302–319.

9



Timkey, W. and Linzen, T. (2023). A language model with limited memory capacity captures
interference in human sentence processing. arXiv preprint arXiv:2310.16142.

Turc, I., Chang, M., Lee, K., and Toutanova, K. (2019). Well-read students learn better: The impact
of student initialization on knowledge distillation. CoRR, abs/1908.08962.

Wolf, S. (1982). Moral saints. The Journal of Philosophy, 79(8):419–439.

Wu, Z., Manning, C. D., and Potts, C. (2023). Recogs: How incidental details of a logical form over-
shadow an evaluation of semantic interpretation. Transactions of the Association for Computational
Linguistics, 11:1719–1733.

Zheng, H. and Lapata, M. (2021). Disentangled sequence to sequence learning for compositional
generalization. arXiv preprint arXiv:2110.04655.

10



A Appendix

Figure 1: Examples of errors made by T5-base on the test set. Notice how the predictions include
relative positional indices marked by repeating numbers, and how the ground truth outputs do not.
This is an example of a common issue with our model, and one that shows up in the CP and PP
recursion generalization splits as well.

11


	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Experiment 1
	Data
	Evaluation method
	Experimental details
	Results

	Experiment 2
	Data
	Evaluation method
	Experimental details
	Results


	Analysis
	Conclusion
	Ethics Statement
	Appendix

