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Abstract
We propose a novel approach to systematically analyze the attention requirements
of transformer-based language models and identify the implications for designing
these systems. We introduce the concept of meaningful attention as the smallest
subset of attention weights whose sum exceeds a given threshold. By varying
this threshold and evaluating the model’s performance, we aim to determine the
minimum number of tokens that need to be attended to while maintaining acceptable
performance. Our experiment on the long document summarization task using
the BookSum dataset demonstrate that the number of attended tokens can be
significantly reduced without compromising performance. We provide insights into
the sublinear relationship between the context length and the number of attended
tokens, suggesting that the number tokens that attention mechanisms meaningfully
attend to grows significantly more slowly than the context length. Our main
contributions are: (1) a task-agnostic method for determining the optimal subset of
attention weights, (2) an empirical analysis on the BookSum dataset showing the
effectiveness of our approach, and (3) exploration into a possible attention patterns
for transformer-based models.

1 Key Information
• Mentor: Yann Dubois

2 Introduction
The transformer architecture [1] has revolutionized the field of natural language processing, enabling
the development of powerful language models that achieve state-of-the-art performance across a
wide range of tasks. However, the quadratic complexity of self-attention with respect to sequence
length presents a significant challenge when processing long sequences, such as those encountered
in document-level tasks of summarization and question answering. This limitation then hinders the
efficiency and accessibility of transformer-based models for a wide variety of real-world scenarios.

Existing approaches to mitigate this issue have focused on developing sparse attention mechanisms,
which selectively attend to a subset of tokens to reduce computational overhead. While these methods
have demonstrated promising results, they often rely on heuristics or predefined attention patterns
that may not generalize well across different tasks and datasets. Moreover, the empirical limits on the
trade-off between sparsity and performance have not been thoroughly explored for these mechanisms.

In this work, we propose a novel approach to systematically analyze the attention requirements of
transformer-based models with respect to context length and use the findings to design an appropriate
task-specific attention pattern. Our method introduces the concept of meaningful attention, defined as
the smallest subset of attention weights whose sum reaches a given threshold of the total attention. By
varying this threshold and evaluating the model’s performance on a specific task, we then measure the
minimum number of tokens that need to be attended to while maintaining acceptable performance.

Our contributions are threefold: (1) We present a task-agnostic method for determining the optimal
subset of attention weights based on the notion of meaningful attention; (2) We demonstrate the
effectiveness of our approach on the task of long document summarization using the BookSum
dataset [2], showing that the number of attended tokens can, in theory, be significantly reduced
without compromising performance; (3) We provide initial insights into the relationship between the
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sparsity of attention and model performance, paving the way for the development of more efficient
transformer-based models tailored to specific tasks and resource constraints.

3 Related Work

Sparse Attention Patterns. One approach to reduce the quadratic complexity of self-attention is to
introduce sparsity in the attention matrix. The Sparse Transformer [3] employs a factorized sparse
attention mechanism, where each token attends to a local window of tokens and a stride of global
tokens. The Longformer [4] combines local sliding window attention with global attention on a few
selected tokens, allowing the model to process longer sequences efficiently. BigBird [5] extends this
idea by incorporating random attention connections to facilitate information flow across the sequence.
While these methods have shown promising results, they often rely on predefined attention patterns
that may not be optimal for all tasks.

Hierarchical Architectures. Another line of work focuses on developing hierarchical transformer
architectures to handle long sequences. HAT [6] applies attention at multiple levels of granularity,
such as sentence-level and document-level, to capture both local and global dependencies. These
approaches have demonstrated improved performance on long document tasks, but they require
modifications to the standard transformer architecture and may introduce computational overhead.

Attention Analysis. Understanding the behavior of attention in transformer models has garnered
significant interest in the research community. Clark et al. [7] analyze the attention patterns in
BERT and find that different attention heads specialize in capturing different linguistic phenomena.
Kovaleva et al. [8] identify a set of common attention patterns across various transformer models and
tasks. These studies provide useful insights into the inner workings of attention mechanisms but do
not directly tackle the question of computational complexity on long contexts.

Our work builds upon these prior efforts by proposing a task-agnostic method for determining the
optimal subset of attention weights based on their contribution to the overall attention distribution.
By systematically analyzing the relationship between attention sparsity and model performance, we
provide a more principled approach to optimizing transformer-based models for long sequence tasks.

4 Approach

Our approach aims to find the optimal threshold that preserves performance while minimizing the
number of tokens meaningfully attended to. The key steps in our method are: (1) defining and
identifying the subset of attention weights that are within a given threshold, (2) determining the
optimal threshold for a specific task, and (3) using this threshold to understand the underlying
attention pattern for generating a task-specific output.

4.1 Meaningful Attention

We define meaningful attention as the smallest subset of attention weights whose sum is at least equal
to a given threshold τ . Formally, for the i-th query vector, this subset, Si, is given by:

Si = argmin
S⊆1,...,n

|S| subject to
∑
j∈S

αi,j ≥ τ (1)

where n is the total number of tokens in the context and αi,j is the attention weight assigned by the
i-th query vector to the j-th token. This formulation captures the idea that the most important tokens
are those that are necessary to account for most of the attention distribution.

4.2 Optimal Threshold Selection

To determine the optimal threshold τ for a given task, we evaluate the model’s performance at
different threshold values. Let P (τ) be a performance metric of the model on a specific task when
using a threshold τ . We define the optimal threshold τ∗ as the maximum value of τ that satisfies:

P (τ∗) ≥ PB + γ(P (1)− PB) (2)

where γ ∈ (0, 1) is a hyperparameter that determines the fraction of the performance improvement
from the baseline to the full attention (threshold τ = 1) that we wish to retain.
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4.3 Attention Masking for Content and Control Tokens

When applying our attention thresholding method to instruction tuned language models, we need to
account for the presence of special tokens that are essential for the model’s performance. These special
tokens, which we refer to as Control tokens, include both delimiter tokens and task instruction tokens.
To ensure that the model can effectively utilize the task instructions while selectively attending to the
most relevant parts of the input and generated output, we modify our attention masking procedure.

Let C be the set of indices corresponding to the Control tokens, and X be the set of indices
corresponding to the Content tokens (i.e., input and generated tokens). We define the smallest
meaningful attention subset Si as a subset of the Content tokens X , rather than the entire set of tokens.
This allows the model to focus on the most important tokens from the content as well as essential
Control tokens. Formally, Si is given by:

Si = argmin
S⊆X

|S| subject to
∑
j∈S

αi,j ≥ τ
∑
j∈X

αi,j (3)

Here, Si represents the smallest subset of Content tokens whose attention weights sum to at least a
threshold proportion of the sum of all Content weights.

We then modify the attention masking procedure to keep the attention weights of the Control tokens
intact, while masking out the attention weights of the Content tokens that are not part of the smallest
meaningful attention subset Si. The masked attention weights α̂i,j are given by:

α̂i,j =

{
αi,j if j ∈ Si ∪ C

0 if j ∈ X \ Si
(4)

In other words, if a token is a Control token or part of the smallest meaningful attention subset Si, its
pre-normalization attention weight remains unchanged. If a token is a Content token but not part of
Si, its attention weight is set to zero. The masked attention weights are then re-normalized to ensure
that they sum to 1:

α′
i,j =

α̂i,j∑n
k=1 α̂i,k

(5)

The attention thresholding and normalization process is detailed in Algorithm 1 and its effect is
illustrated in Figure 1.

Algorithm 1 Attention Thresholding and Normalization
1: Input: Attention weights a, threshold τ , Control token indices C, Content token indices X
2: Output: Normalized attention weights a′′
3: Compute Content token attention sum: s←

∑
j∈X aj

4: Zero out non-Content token attention weights: x[j]← aj · 1j∈X

5: Sort the Content token attention weights: s, indices← sort(x, descending)
6: Compute cumulative sums: c← cumsum(s)
7: Determine threshold crossing index: k ← min{i | ci ≥ τ · s}

8: Generate sorted mask for Content tokens: m̂X [i]←
{
1 if i ≤ k

0 otherwise
9: Unsort mask for Content tokens: mX ← unsort(m̂X , indices)

10: Generate final mask: m[j]←
{
1 if j ∈ C

mX [j] if j ∈ X
11: Apply final mask to attention weights: a′ ← a⊙m

12: Normalize: a′′ ← a′∑
a′+ϵ

13: return a′′

Our approach offers a flexible and adaptable method for analyzing the attention requirements of
various transformer-based models across different tasks. By considering both input and generated
tokens as Content tokens and keeping the attention weights of Control tokens intact, the method can
be applied to models with different categorizations of input, such as instruction-based models or those
with task-specific special tokens. Moreover, the threshold-based attention masking, which preserves
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a proportion of the total attention weight rather than a fixed number of tokens, allows the method to
adapt to the particular attention weight distribution of each model and task. This flexibility enables a
more accurate and comprehensive analysis of the attention dynamics during the entire generation
process, providing insights into what the most relevant parts of the content are for a given task.

Figure 1: Visualization of the attention masking process. (a) Original attention weights. (b) Re-
normalized attention weights after applying a threshold of 0.7 (with Control weights preserved).

The resulting attention pattern is expected to be sparser than the original one, with only the most
important Content and the Control tokens being attended to. By applying this method to different
context lengths, we can then analyze the relationship between the number of meaningfully attended
tokens and the context length.

5 Experiments

5.1 Data
We use the BookSum dataset [2] for our experiments, which contains books with their corresponding
chapter-level summaries. The task is to generate concise summaries for each chapter, making it an
ideal scenario for analyzing attention patterns in the context of long-form narrative summarization.
The chapter-level summaries in BookSum provide a natural way to evaluate the quality of the
generated summaries and assess the impact of our attention thresholding approach on the model’s
performance. Moreover, the varying chapter lengths allow us to investigate the relationship between
the number of meaningfully attended tokens and the context length.

5.2 Evaluation Method
We assess the impact of different attention thresholds on the language model’s performance using
the BERTScore F1 metric [9], which measures the semantic similarity between the generated and
reference summaries by leveraging the contextual embeddings obtained from a pre-trained BERT
model. BERTScore is more accurate under passagee paraphrases and reorderings, as well as under
limited reference summaries, when compared to metrics like ROUGE [10] and BLEU [11], making it
suitable for our purposes.

5.3 Experimental Details
We conduct our experiments using the LLaMA 3 8B Instruct model [12] quantized to 8-bit precision
due to computational and memory constraints. The model’s attention mechanism is modified to
incorporate our proposed thresholding approach, as described in Section 4. We evaluate the model’s
performance at different attention thresholds, ranging from 0.05 to 1.0, with a step size of 0.05, and
compute the BERTScore F1 metric between the generated and reference summaries for 199 chapters
in the BookSum dataset.

The original code for the LLaMA attention module we modified can be found in the Hugging Face
Transformers library [13].
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To determine the optimal attention threshold, we compare the model’s performance to a baseline
where the model summarizes the chapter using only the book and chapter names, without access
to the chapter’s content. This baseline represents the performance achievable based solely on the
model’s prior knowledge and provides a more meaningful reference point than the lowest-performing
threshold. We define the optimal threshold as the one that achieves at least 95% of the performance
improvement from the baseline to full attention.

We acknowledge a potential limitation in our evaluation: the model may have memorized some of the
chapters it is being evaluated on. However, the substantial difference in performance (approximately
0.1 on the BERTScore F1 metric) between the baseline (no chapter context) and the full attention
model (with chapter) means we can still analyze significant performance variations to draw conclu-
sions on the model’s attention requirements. We also investigate this limitation with recent data that
the model was not pre-trained on (see Appendix A.1).

Once the optimal attention threshold is determined, we analyze the relationship between the number of
meaningfully attended tokens and the context length by applying our attention thresholding approach
to the model while varying the input sequence length. For each sequence length across generations
of summaries for 199 distinct chapters from the BookSum dataset, we compute and visualize the
average number of meaningfully attended tokens.

5.4 Results

Optimal Threshold. Figure 2 illustrates the impact of different thresholds on the model’s perfor-
mance, as measured by BERTScore F1, across different chapter lengths and the overall average. The
results demonstrate that a significant reduction in the threshold can be achieved without substan-
tially compromising the model’s performance. The similar trends observed across different chapter
length buckets indicate that the relative pattern between performances holds for various lengths of
summarization tasks.

Interestingly, we observe that the model’s performance at a threshold of 0.95 slightly exceeds the
performance at full attention (threshold of 1.0). This unexpected result may be attributed to the
implicit regularization effect introduced by the attention thresholding process. By focusing on the
most important tokens and reducing the influence of less relevant ones, the model may be able to
better generalize for generating high-quality summaries. Further investigation is needed to fully
understand the implications and replicability of this observation.

Based on the results presented in Figure 2, we identify an attention threshold of 0.75 as the optimal
threshold that preserves at least 95% of the performance improvement from our baseline (no chapter
text in context) to full attention (with chapter text). This threshold would strike a hypothetical balance
between computational efficiency and summary quality, making it a suitable choice for our subsequent
analyses. By setting the attention threshold to 0.75, we can then explore the relationship between
the number of meaningfully attended tokens and the context length while ensuring that the model
remains close to its potential performance.

Figure 2: Impact of attention thresholding on BERTScore F1. (Left) BERTScore F1 vs. attention
threshold for different chapter length buckets. (Right) Average BERTScore F1 across all chapter
lengths vs. attention threshold. The attention threshold of 0.75 (circled) achieves at least 95% of the
performance improvement from the baseline (without chapter text) to full attention (with chapter
text). Error bars represent 95% confidence intervals. Number of Chapters evaluated: 199
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Analyzing Attention. Figure 3 and Table 1 present the results of fitting different models to the
relationship between context length and the average number of tokens attended at each generation
step, using an attention threshold of 0.75. The scatter plot in Figure 3 shows the observed data points,
while the lines represent the fitted square root, logarithmic, and linear models. The square root model
(left) provides the best fit to the data, capturing the sublinear relationship between context length
and the number of attended tokens. This is further supported by the model performance metrics in
Table 1, where the square root model has the highest adjusted R-squared value of 0.612, the lowest
Akaike Information Criterion (AIC) of 326300.46, and the lowest mean squared error (MSE) of
428.53 among the three models.

The sublinear relationship between context length and the number of attended tokens, as captured by
the square root model, suggests that the number of attended tokens grows at a slower rate compared
to the context length. In other words, as the input sequence becomes longer, the attention mechanism
attends to a smaller fraction of the total tokens. This finding aligns with the hypothesis that the
attention mechanism is able to efficiently identify and prioritize the most informative parts of the
input, even as the sequence length increases.

The fitted models with their coefficients are as follows:

Square Root Model: ŷ = 9.6179 + 2.3644
√
x (6)

Logarithmic Model: ŷ = −217.0985 + 44.1800 ln(x+ 1) (7)
Linear Model: ŷ = 54.9845 + 0.0285x (8)

Figure 3: Relationship between context length and the average number of tokens attended at each
generation step using an attention threshold of 0.75. The scatter plot represents the observed data
points, while the lines show the fitted square root, logarithmic, and linear models. The square root
model (left) provides the best fit to the data, capturing the sublinear relationship between context
length and the number of attended tokens. Data from summary generations for 199 chapters.

Model Adjusted R-squared AIC MSE
Square Root Model 0.612 326300.46 428.53
Logarithmic Model 0.598 327606.03 444.06
Linear Model 0.600 327439.85 442.06

Table 1: Comparison of model performance metrics for the relationship between context length and
the average number of tokens attended at each generation step using a threshold of 0.75. The square
root model provides the best fit based on the adjusted R-squared and AIC values, while having the
lowest mean squared error (MSE).

While the square root model provides the best fit among the three models considered, it is important
to note that this relationship may not necessarily hold true for all transformer-based models or across
different tasks and domains. Further research is needed to investigate the generalizability of this
finding and to explore other potential models that may better capture the relationship between context
length and the number of attended tokens in various settings.
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6 Analysis

We design a new attention mask based on the square root model for the relationship between context
length and the number of tokens meaningfully attended to. The attention mask is kept the same
across all layers as the relationship did not vary significantly across layers (see Appendix A.2). As
shown in Figure 4, the square root attention mask includes a buffer of consecutive tokens followed by
strides that include tokens at perfect square distances from the buffer. This pattern aims to capture
both local and global context while maintaining a sparse attention distribution. In our experiments,
we use a buffer size that is approximately 10 times larger than the model’s intercept term suggests
(9.6179 · 10 ≈ 100 tokens) and strides that are approximately 10 times more dense than the model
suggests (by a factor of 2.3644 · 10 ≈ 25 relative to perfect square distances). We tested the square
root attention mask with this over-attending setup to obtain reasonable results without fine-tuning.
When applied to the model, the square root mask achieves a BERTScore F1 of approximately 0.53,
which is significantly lower than the performance of the model with full attention or the 0.7 threshold.

Figure 4: (Left) A visualization of the attention matrix for full attention. (Right) A visualization
for an example attention mask with square root scaling. The mask includes a buffer of consecutive
tokens followed by strides of tokens at perfect square distances from the buffer.

Generated Summaries

• Full Attention (Threshold 1.0): The text is a passage from Mary Shelley’s novel "Frankenstein" and
describes the early experiences of the monster, created by Victor Frankenstein, as he observes and
learns from a family of cottagers. The monster is drawn to the family’s gentle and kind nature, and
he begins to learn their language and customs. He is fascinated by their relationships and emotions,
and he longs to be accepted by them. Despite his physical deformity, the monster is intelligent
and capable, and he begins to assist the family by performing tasks such as gathering firewood and
clearing their path. As the seasons change, the monster becomes more confident and begins to form
his own thoughts and desires, including a desire to be accepted by the family and to learn their
language. The passage sets the stage for the monster’s later interactions with the family and his own
tragic fate.

• Attention Threshold 0.7: The text is an excerpt from the novel "Frankenstein" by Mary Shelley.
It describes the narrator, the monster created by Victor Frankenstein, as he observes a family of
cottagers living in a nearby village. The monster is fascinated by the family’s gentle manners, beauty,
and kindness towards each other, and he longs to join them and learn more about human society.
He begins to learn their language by observing them and making connections between sounds and
meanings. As the seasons change and the family’s circumstances improve, the monster becomes
more confident and begins to perform small acts of kindness for them, such as clearing their path
from snow and collecting firewood. He hopes to eventually reveal himself to the family and earn their
acceptance, but for now, he is content to observe and learn from them.

• Square Root Attention Mask: The text describes the early interactions of a monster with a family,
specifically a couple and their young daughter. The monster, who is intelligent and capable, is initially
drawn to the family’s gentle and kind nature. He begins to assist them with tasks such as gathering
firewood and clearing their path. As the seasons change, the monster becomes more confident and
begins to form his own thoughts and desires, including a desire to be accepted by the family.

Figure 5: Generated summaries using different attention configurations.

7



Figure 5 shows the summaries generated for a passage from Mary Shelley’s novel "Frankenstein"
using full attention, an attention threshold of 0.7, and the square root attention mask. The full attention
summary provides a comprehensive overview, while the threshold 0.7 summary maintains the core
message with slightly less detail. The summary generated with the square root attention mask lacks
depth and fails to capture some key details of the passage.

The relatively poor performance of the square root attention mask can be attributed to naively
applying the mask without fine-tuning the model. Fine-tuning would allow the model to adapt its
attention patterns to the specific task and dataset, likely resulting in improved summary quality. This
highlights the importance of both carefully designing the attention mask as well as training models
that maximize performance under these constraints.

While our initial results with the square root attention mask are not impressive, they serve as a proof-
of-concept for the potential of using task-specific attention patterns derived from the relationship
between context length and the number of attended tokens. Further research is needed to investigate
more sophisticated methods for designing attention masks and to explore the impact of fine-tuning on
the performance of models with said attention patterns.

7 Conclusion

In this paper, we present a novel approach to analyze the attention requirements of transformer-based
language models, introducing the concept of meaningful attention and systematically exploring the
relationship between context length and the number of attended tokens. Our findings demonstrate
that a significant reduction in the number of attended tokens can be achieved without compromising
the model’s performance on the task of long document summarization, with the square root model
capturing the sublinear relationship between context length and attended tokens.

These insights informed the design of a proof-of-concept square root attention mask, which, despite
not outperforming the baseline without fine-tuning, showcases the potential for task-specific attention
patterns that balance local and global context while maintaining sparsity. However, the limitations of
our work, such as the focus on a single task and the reliance on attention weights as explanatory tools,
highlight the need for further research to assess the generalizability of our findings and strengthen the
foundations of our method.

Our approach offers a principled, data-driven framework for determining the appropriate level of
sparsity in the attention mechanism, potentially leading to more efficient and interpretable attention
patterns. The task-agnostic nature of our method makes it applicable to a wide range of domains,
providing a foundation for future work on optimizing the attention requirements of transformer-based
models across diverse tasks and settings.

8 Ethics Statement

The primary ethical challenges and societal risks of this project include the risk of overgeneralizing
findings beyond the studied datasets and domains, which could lead to the development of models
that prioritize efficiency over fairness, robustness, or responsible deployment. Without careful
consideration of diverse requirements and characteristics across different user groups, linguistic
backgrounds, and cultural contexts, the identified optimal attention patterns could inadvertently
introduce biases or perpetuate existing inequalities. Additionally, by analyzing attention patterns
and identifying potential weaknesses or biases in how language models process information, our
method could inadvertently reveal vulnerabilities that bad actors could exploit to generate harmful,
biased, or deceptive outputs. To mitigate these ethical risks, we emphasize the importance of further
research evaluating the proposed approach across a wide range of datasets, tasks, and domains, with
a particular emphasis on incorporating data from underrepresented and marginalized communities.
This will help assess the generalizability of the findings, identify potential biases or limitations, and
ensure that the developed models are inclusive and equitable.

8



References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.
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A Appendix

A.1 Evaluating on Recent Data
We evaluated the model with a threshold of 0.75 on a recent news article from June 2024 reporting
on the conviction of former U.S. President Donald Trump (link). The summary quality qualitatively
shows that our identified threshold still performs well on texts not seen during training.

Donald Trump, the 45th President of the United States, has been convicted of 34 felony counts related
to a scheme to illegally influence the 2016 election through a hush money payment to Stormy Daniels,
a porn actress who claimed to have had an affair with Trump. The verdict was delivered by a New
York jury after more than nine hours of deliberation. Trump, who denied any wrongdoing, faces up to
four years in prison on the charges, which carry a maximum sentence of 25 years. The conviction is a
significant legal and political setback for Trump, who is seeking to reclaim the White House in the 2024
election.

A.2 Tokens Attended to Across Layers
We did not observe any meaningful pattern across the different layers.

Figure 6: Number of Tokens Attended To Across Layers and Context Lengths

A.3 Tokens Attended to Across Heads
Similarly, we did not observe any meaningful pattern across the different heads.

Figure 7: Number of Tokens Attended To Across Heads and Context Lengths
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