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Abstract

In this work, we develop a simple, end-to-end framework for generating 3D inputs
(RGB+depth) via 3D Gaussian Splatting (3DGS), conditioned on language for
training robotic imitation learning policies. In traditional robotics tasks, manipula-
tors are only provided with camera (RGB) data and their own kinematics. They
often lack the modality of both depth, which gives 3D structure to a scene, and
language, which should condition robots on where to go and what to do. We
present a simple and unique framework that adds these extra inputs to robotic
imitation models. Our contribution is three-fold: firstly, we present a teleopera-
tion data collection tool in the OmniGibson simulator for constructing Gaussian
Splats; second, we train a 3DGS on a captured scene and condition novel views on
CLIP embeddings, and finally, we train a simple robotic imitation learning model
conditioned on language with pretrained BERT embeddings that improve learning.
Our findings indicate that language should now be a staple input for training robot
learning.
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2 Introduction

As large language models become omnipresent, it is clear that the field of Natural Language Processing
is at a stage where the idea of "foundational models" can be reasonably claimed. In robotics, can this
be claimed? Recent works, such as Brohan et al. (2023) and Brohan et al. (2022) have trained large
Vision-Language Models (VLMs) from internet data, with impressive results on out-of-distribution
tasks, where a human can query a robot to perform an action, and it does a task (for example, "move
the red bull to the H object") with high success rate. A recent work called Open-X Embodiment,
by Collaboration et al. (2023), which collected robotic datasets from many labs across the world,
demonstrates high success rate on novel tasks from different labs, outperforming most other models.
The generalization abilities of these models, along with semantic understanding of objects and even
the difference in prepositions, such as "above" and "below", is remarkable. However, these robotic
models have billions of parameters, and as such require access to large-scale compute that requires a
robotic manipulator running in real-time to have access to a good internet connection. In addition,
the interpretability of these models is rather unexplored, possibly due to the lack of other researchers
being able to ablate on these models. A final concern of these works is the importance of vision and
language in these models and how exactly they work together. What representations are useful for
robot learning?
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Figure 1: The proposed framework. Given a simple action-object phrase, a LLM, such as GPT, parses
the phrase into the action and object. The action is sent to pretrained BERT, in which an embedding
is computed, and sent to a fully connected layer. On the vision side, a user can teleoperate a robot in
simulation and collect a series of images and camera poses, and create a 3D scene with Nerfstudio.
Together with the object word, this scene can be queried for any pose x to produce an RGB and depth
rendering. We segment out the object with CLIP-Seg, and provide the depth, object mask, and RGB
to a Resnet encoder. The vision and text encoder are then concatenated and sent to a fully connected
layer, which predicts an action, which we can optimize via trajectories in imitation learning.

The approach of this project is to take an opposite direction of these large foundation models. It is
start from ground zero and explore not only the role of imitation learning for robotics, but exploring
using novel view and depth synthesis from a technique called 3D Gaussian Splatting (3D-GS), which
is becoming a emerging 3D visual representation for robotic manipulation. While this work does not
advance baselines in the field, it will highlight the potential usefulness of simple language embeddings
for robot learning, and using novel view synthesis.

3 Related Work

Robotic Simulators for Learning. It is still of interest in the robotics community to utilize photo-
realistic and physically-accurate simulators for learning robotic policies. Simulators are easy to
use and can serve as a foundation for researchers to prototype before extending to the real world.
Simulators such as I-Gibson (Li et al. (2021)) and Habitat 2.0 (Szot et al. (2022)) lack the visual
realism to transfer to real-world tasks. OmniGibson in Li et al. (2024) has emerged as a solution
that supplants this realism with task diversity for human-centric tasks. OmniGibson uses Nvidia’s
Omniverse and PhysX to provide realistic physics simulation on rigid and deformable objects, and is
our simulator of choice.

Visual Representations for Robotic Manipulation. Robots manipulators traditionally rely on RGB
input to guide a task. Imitation learning, in which an expert demonstrates a task multiple times in a
diverse manner and trains a robot on those trajectories, often leverages visual input and knowledge
of robot state Osa et al. (2018). The work of Levine et al. (2016) and Chi et al. (2023) both learn
policies from RGB data and robot pose, which are often sufficient for successful task completion.

NeRFs and Gaussian Splatting Emerging from the computer vision community, Neural Radiance
Fields (NeRFs) in Mildenhall et al. (2020) and 3D Gaussian Splatting Kerbl et al. (2023) are two
techniques that use only RGB images and corresponding camera poses to reconstruct 3D photorealistic
models. Many robot manipulators give accurate camera poses and RGB input at the end effector,
lending themselves for GS.

Language Embeddings for Robot Manipulation. Language Conditioned Robot Manipulation has
now been thrust into the limelight of robot learning. It is now essential to use it in tasks that require
any language. A first work addressing this was in Stepputtis et al. (2020), which used Glove word
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embeddings and a GRU to train a robot imitation learning model. However, this work does not use
a 3D scene, relies on Faster-RCNN to find the probable object region from a sentence embedding,
and uses a GRU cell for the sentence embeddings. Our work uses the intrinsic common sense of
LLMs to get parse the action and object, to which we use the abilities of CLIP (Lüddecke and Ecker
(2022), Shridhar et al. (2021)) to construct object masks. Lynch and Sermanet (2021) and Mees et al.
(2022) integrates robotic learning for learning over unstructured data. A key insight is that pretrained
language models can handle out of distribution synonyms, which we also present in this work. Other
works are using LLM to generate commands for robots in Zhou et al. (2024).

3DGS and Language Embeddings for Robot Manipulation. 3DGS and language embeddings being
used in robotic manipulation is a new method. Li and Pathak (2024) works on object manipulation
with 3DGS without language. The most similar work to ours is ManiGaussian in Lu et al. (2024),
which takes as input an RGB and depth image, and uses a dynamic Gaussian Splatting framework
to learn behavior cloning policies. However, this work does not mention embedding language and
understanding semantically similar actions.

4 Approach

The end goal of this project is query a robot to do something like "move away from a chair" and
generate 3-D Cartesian velocity commands that are conditioned on the language, RGB, and depth
commands. The overall framework is depicted in Fig 1. The steps consist of:

1. LLM Action Phrase Object Parsing.
2. OmniGibson Data Collection and 3DGS Training.
3. 3DGS Segmentation.
4. Imitation Learning Data Collection.
5. Imitation Learning.

LLM Action Phrase Object Parsing. Given a phrase "move to the chair", we query GPT-3.5 to give
us the action ("move to") and object ("chair"). As humans parse sentences like this to understand the
action and object, we let an LLM perform this task.

OmniGibson Data Collection and GS Training. We use OmniGibson to collect data for representing
a scene and training our imitation learning model. We desire for a scene to be captured with sufficient
RGB images (and corresponding camera poses) to represent a scene. We built on top of a keyboard
teleoperation tool implemented in OmniGibson for Cartesian Control of a Franka Panda robotic arm.
OmniGibson is a high-fidelity robotics simulator for learning. We then manually captured a scene by
moving the robot around the scene. For each image we take to train 3DGS, we store the RGB image
from the end-effector camera, the mask of the robot gripper, and the camera pose in the fixed world
frame. Each image is saved and the paths and poses, as well as the camera instrinsics, and all are
saved in a transforms.json file for Nerfstudio. During training of the Gaussian Splat, we mask out the
pixels that are of the gripper in the loss. Once the GS is trained, we can use the model and query it
given a pose x in the world frame.

3DGS Segmentation with Object. With a trained splat, we can query it and output a novel RGB
and depth image. To segment the object of interest, we take the parsed object from GPT-3.5 and
compute CLIP embeddings zRGB and zobject. We then use the CLIP-SEG model (Lüddecke and
Ecker (2022)) to output logits of the detected object, and run a Sigmoid function on the logits to have
the output in the (0, 1) range, and take the logits with a higher value than 0.4 as the object mask. This
gives us an object mask, scene view, and scene depth for any view.

Imitation Learning Data Collection. We collect data with a P controller to train an imitation learning
policy. Specifically, we want a simple example where a robot can move in different directions based
on what it sees and a language command. We construct multiple trajectories in OmniGibson, run
them, and store the command, RGB, robot end-effector pose, and P controller velocity command.

Imitation Learning Training. We train an imitation learning policy π.
ẋ = π(c,GScolor(x), GSdepth(x),m) (1)

where the policy is conditioned on the novel view and depth (GScolor(x), GSdepth(x)) given pose x,
with object mask m and command c. We stack the mask, depth, and RGB image and feed into a
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Figure 2: An example of the 3DGS pipeline – the novel view, the novel view with the table mask
from CLIP-SEG, and the depth output from 3DGS.

Figure 3: Setup in OmniGibson. 3DGS removes the self-occlusion of the robot gripper.

pre-trained Resnet. The action command c is fed into a BERT tokenizer to get text tokens, and then
into the BASE base model (pre-trained), and we take the mean of the last hidden state of the input
embedding. Finally, to downsize the embedding from dimension 768 to 64, we add a couple of linear
layers and ReLU. The output of Resnet and the text layer is then concatenated, with a final regression
head predicting end effector velocity. More details can be found in the Appendix.

5 Experiments

Experiments are conducted end-to-end, from a user-provided query to training an imitation learning
model. A visual of the setup can be found in Fig 3.

5.1 Data

Action-Object Parsing: We use GPT-3.5 with no finetuning. However, the data for a simple
evaluation is that we query GPT-4o to give a list of everyday objects and actions, and run through
each combination of action and object to construct a phrase. We manually move confusing actions
such as "push to" that do not make sense in the context of one object. The list of actions and objects
is shown in Fig 4, where we have 22 · 25 actions and objects for a total of 500 unique prompts. The
goal of this experiment is to assess the basic abilities of the parser. The input is the combined action
and object, and GPT-3.5 should be able to parse the two. We perform sanitization on the output,
including removing capitalization, punctuation, and spaces.

OmniGibson Data Collection for 3DGS and 3DGS Training: Our transforms.json on the main
dataset consists of 81 manually taken images, a camera pose represented as a transformation matrix,
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Figure 4: GPT 4o generated actions and objects with small human changes.

and robotic gripper mask image. We then train a Gaussian Splat on the scene on a RTX 4080 GPU,
taking under 10 minutes. The end model is less than 150MB in size. Average inference time of GS
on a novel camera pose takes 2ms on average, making it suitable for real-time robotic applications.

3DGS Segmentation with Object: We use the pretrained data from CLIP and CLIP-Seg without any
fine-tuning. We find that the realism of OmniGibson and massive datasets CLIP and CLIP-Seg were
trained on work well in our scenario.

Imitation Learning Data Collection: For a simple chair example, the data is collected with the
Franka Panda being given a point in space xnear ∈ R3 and xfar ∈ R3, where the former is the goal
near the chair, and the latter is the goal position is away from the chair. To generate expert trajectories,
a simple P controller is used that moves between the near position and far position. Random noise
is added to the two waypoints to construct two spheres that allows for varied trajectories (instead
of overfitting to one trajectory). We can also augment our dataset by reversing the command and
velocity vector – for example, "move to" and its action ẋ1 has the reverse of "move away from" and
action −ẋ1. The collected data is the action command a, object o, RGB RGB, Cartesian velocity
command v, and the pose of the camera x. Each trial is stored in a Pickle file and saved to avoid
RAM overload. The dataset is simply read in by reading and adding all of the trials, then shuffling
them randomly. The total size of the data is 11GB. In total, this consists of a dataset of 13108
state-action samples and 3278 samples with an 80 percent train-test split. Our second dataset does
the same motion with multiple objects in the scene – wall, painting, window, chair, and table. The
second dataset size is around 16000 total samples.

5.2 Evaluation method

Action-Object Parsing: We perform a simple experiment on action-object parsing where we evaluate
the parser’s abilities. With each of the 500 prompts, we compare GPT-3.5’s parsed output with the
correct action phrase and object. Concretely, we treat the entire phrase as a list of logits, and compute
an action loss and object loss. Each loss is computed as a multi-class binary cross entropy between
output logits of the action and object. For example, if the action phrase is the words "move to" in the
phrase "move to the chair", the ground truth action logits would be

agt =

 1
1
−1
−1

 .

We do the same for the object phrase and compute a loss as Laction,Lobject. We report the average
loss of object and action phrase over the 500 trials. We explored ablating the experiment with small
changes to the prompts but noticed a) minimal change or b) catastrophic change. The system context
is listed in the appendix for brevity, but at a high level we prompt GPT to give us separated actions
and phrases.

Imitation Learning: The chair scene, although simple for humans, is non-trivial for a robotic
manipulator. We include three evaluation metrics: training and testing loss (mean-square-error) on
the output velocities, cosine similarity between predicted and output velocities, and the amount of
samples with the correct signs in all dimensions. Due to time constraints, we were not able to deploy
on a robot in real-time; however, we still believe these results demonstrate promise.

5



5.3 Experimental details

Action-Object Parsing: We use GPT-3.5 from the OpenAI API and send each phrase to parse to the
API every 0.5s to avoid throttling. The process takes in total 10 minutes.

OmniGibson Data Collection for 3DGS and 3DGS Training: The data collection takes about 5
minutes to collect data, and we use the default Gaussian Splatting implementation in Nerfstudio,
called Splatfacto, for 30000 timestamps.

Imitation Learning Data Collection: We collect 20 trials of the robot moving between performing
the "move to chair" and "move close to chair". This process takes only around 10 minutes. For the
second dataset, we do 4 trials of moving back and forth near 5 objects of window, wall, chair, table,
and painting, taking 13 minutes

Imitation Learning Training: We train our model with a train batch size of 32, 768 embedding size
for the BERT model, the Adam optimizer with a learning rate of 0.001, and 5 epochs on the 4080
GPU. The loss function is mean square error between the expert velocities and predicted velocities.
Training the full model for 5 epochs takes around 20 minutes.

5.4 Results

Action-Object Parsing: After running this experiment the average action loss is 0.3953, and the
average object loss is 0.3132. A perfect score would be 0.3132 on both.

Imitation Learning Training Results. On the chair example, we first ablate using no language as a
baseline. We check both using RGB from the robot and 3DGS. The results, shown in Table 1, are
extremely poor – the mean square error is high for a robotic system, and there are few samples that
get the correct signs for predicted velocities, which is poor due to the fact that the expert velocities
are reasonably far from 0.

From this baseline, we then perform an ablation on using RGB images vs. using the novel view RGB
images from GS. This consisted of training the model with the text commands – we simply train on
"move to" and "move away from" as the language commands, instead of the full suite of synonyms,
which are mentioned in the next experiment. The results are reported in Table 2. Using Gaussian
Splatting for novel views notably improves the performance on the test set, as the lack of robot mask
allows for the model to better identify the entire scene.

Metric Robot RGB No Lang GS RGB No Lang
Train Loss 0.0038 0.0040

Train Sign Correct 39.71% 39.45%
Test Loss 0.0040 0.0041

Test Sign Correct 39.84% 36.88%
Table 1: Results of using no language command, after 5 epochs, averaged over 5 trials.

Metric Robot RGB GS RGB Lang
Train Loss 0.00077 0.00088

Train Sign Correct 93.57% 92.59%
Test Loss 0.0037 0.0007

Test Sign Correct 86.25% 90.44%
Table 2: Results of using a binary language command, after 5 epochs, averaged over 3 trials. Best
results are bolded.

The next experiment consists of integrating the entire framework, which includes the mask and depth,
on two scenes. The first one is the same chair scene; however, this time the model is trained on a
variety of synonym phrases to "move to" and "move away from". During test time, the model is
evaluated on unseen phrases with the same object.

In Table 3, we take the last epoch of the first scene on the full model. The results are above 90% signs
of every component of the velocity vector being the same; additionally, the cosine similarity on the
test set is 0.97, indicating that the model learns a sense of direction in the scene. The second scene
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Figure 5: Synonyms

Figure 6: Visualization of BERT embeddings of words with the same meaning as "move to" and
"move away". PCA is used to output human-readable embeddings.

consists of multiple objects. For brevity, we report the test results here – the test loss was 0.0011, the
amount of signs correct was 68.17%, but importantly, the average cosine similarity was 0.964. Both
of these metrics are comparable to the one object case. Interestingly, the model learns that direction
is based on object; when the robot is reset, the object informs the direction, which is learned. Future
work will address ablating over depth, which will become more useful when interacting with objects.

Metric Full Model
Train Loss 0.0010

Train Sign Correct 91.50%
Test Loss 0.0009

Test Sign Correct 92.04%
Test Cosine Similarity 0.97

Table 3: Results of using a binary language command with synonyms, after 5 epochs.

6 Analysis

Action-Object Parsing: The action object parser was effectively able to parse simple action phrases
and objects. Even with action phrases with 1 to 3 words, it was still able to classify the action
correctly. While the object classification was perfect, the most common error in the action parsing
was adding a "to" in front of the phrase, which could be dealt with in future work.

Imitation Learning Training: The simple chair example reveals the value of using the views from
GS and adding extra examples of phrases to condition the model on. To understand the value of
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Figure 7: Language Embeddings after the Model Fully Connected Layers.

pretrained language models for the task, we include a visualization of the BERT embeddings of the
"move away" and "move to" dataset. When we visualize the BERT embeddings of the two classes,
there is not a straightforward decision boundary; however there seems to be some similarity in the
"move to" words and "move away" ones. However, when we take the output of the language encoder
(adding a fully connected layer to the BERT embedding), there is a clear, even linear, decision
boundary between words similar to "move away from" and "move to". In fact, these phrases were
never seen, which demonstrates the ability of BERT being able take care of a significant amount
of semantic meaning between the phrases, where our model separates the two by a large margin.
Even in this simple example, language embeddings are a clear necessity. Next, the similarity in
performance between the simple and multi-object experiment indicates some value of the object being
encoded into the mask. We note that the low sign correct is due to control actions in the P controller
trajectories often being close to 0, so we rely on the other two metrics to inform our analysis. The
object masks are motivated, GS novel views are motivated, and text is as well.

7 Conclusion

In this work, we proposed a simple framework for semantic novel views, depth without a depth
camera, and language for training an imitation learning model. By collecting data in simulation to
train a Gaussian Splat, outputting novel RGB views and depth for free, using the success of pretrained
language models and visual-language models, and a simple network architecture, we are able to
demonstrate the importance of conditioning on language and novel views. One limitation of our work
is the experiments – they did not involve manipulation. We believe depth will be even more useful
for grasping tasks that benefit from geometry of objects, which is provided by Gaussian Splatting’s
depth. Future experiments will extend the scene to involve manipulation tasks a broader group of
language commands and to deeply understand the value of depth in a scene. However, this work is a
promising first step in that direction, and, to the best of our knowledge, is the first work to use novel
views and depth from 3DGS, CLIP-based object masks, and action command embeddings to train an
imitation learning model end-to-end.

8 Ethics Statement

There is a strong ethical motivation to use language as control input in robotics. Teleoperation
of robotic manipulators, which is one of the common methods of control, often requires physical
dexterity of humans and a high amount of experience, whereas domestic robots are often used by
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people with mobility and dexterity challenges, presenting a challenge for these users. With language,
there can now be intuitive controle, where people simply need to be able to speak or type instead of
having the ability to operate a joystick. However, there is a concern with these physical actions being
guided on language. This means that such systems need to be robust as to avoid physical harm. In
this case, a robot is directly conditioned on language embeddings. If the language command is
out of distribution of the test set, the robot may perform erratic and dangerous actions. This is one
ethical concern. However, a mitigation strategy is that because safety and robustness in control are
well-studied in robotics, it might reasonable to implement simple methods that guard against errors
such as spilling liquid, dropping an object, or even colliding with a human. These safeguards could
be after the output of a model; only suitable actions will be sent to a robotic manipulator.

One advantage of our work is that this work leverages depth information to inform robot velocities,
even when depth sensors are not available. This is thanks to the abilities of Gaussian Splatting, which
also can render depth along a ray. This can replace a depth sensor, which often requires spending
hundreds of dollars for an effective sensor. However, one unintended impact of our method is that it
requires heavy computation (running inference on the model, Gaussian Splatting, CLIP-Seg, and the
LLM parser), which comes with it environmental and energy costs. Carbon footprint is a legitimate
concern of using larger and larger models. While our method justifies each step of the pipeline, the
energy usage is still high. A possible mitigation strategy for our method’s compute is to gridify the
scene a robot is in, turning it from a continuous space to a finely discrete one. We would lose a small
amount of accuracy, but this would allow for storing the renderings of a scene apriori, reducing the
need for an extra inference step.

Last, any system that incorporates language as input and movement leads to a risk of users not
proficient in the input language. Such NLP systems, because many of the authors speak English
and/or are required to write English for research, are inherently biased towards English. A naive first
step for mitigation is to translate from the source language to English; however, it may be worth
training a robot policy on the source policy; some languages are more compact in certain ways than
others. The interior layout of home environments is also highly dependent on culture; the model
in this work was trained in a Western style home that might not be suitable for other homes. A
mitigation for this is to use the OmniGibson environment and generate new diverse environments,
which is straightforward with the API.
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A Appendix (optional)

Below is the Python content that is sent to the OpenAI API for GPT:

1 def get_action_and_object(self , phrase):
2 content_to_send = f"I have the phrase ’{phrase}’. What is the

entire action , and what is the object ?"
3

4 completion = self.client.chat.completions.create(
5 model="gpt -3.5- turbo",
6 messages =[
7 {"role": "system", "content ": "You are a word smith. You

have been given a phrase and you must identify the
full action phrase and object. Give the answer in the
format ’action: <action >,\n object: <object >’."},

8 {"role": "user", "content ": f"{ content_to_send }"}
9 ]

10 )
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11 parsed_message = completion.choices [0]. message.content.split
(’\n’)

A.1 Model Parameters and Architecture

GPT-3.5o: No change or fine-tuning.

Splatfacto: GS does not have a deep learning model, however we will note that each Gaussian is
parameterized by a color, opacity, scale, and rotation.

Main Imitation Learning Model

Below, we detail the architecture of our Imitation Learning Model.

A.1.1 Vision Encoder.

To encode the stacked channels of RGB, depth, and object mask, we use the pretrained torchvision
Resnet-18, which is finetuned on our dataset. We modify the first convolution layer to take 5 channel
input and remove the final fully connected layer to use it as an encoder.

A.1.2 Text Encoder.

From the outputted BERT embeddings of using the BERT base model, we add a few simple fully
connected layers:

• Linear1: 768 to 128 dimensions.

• ReLU: Simple ReLU layer.

• Linear 2: 128 to 64 dimensions

A.1.3 Fusion and Regression Head.

We concatenate the output of the vision and text encoder, feeding into the following fully connected
layers:

• Linear1: 128 (each encoder outputs a 64 dim vector in the last dimension) to 128 dimen-
sions.

• ReLU: Simple ReLU layer.

• Linear 2: 128 to 64 dimensions

• RELU: Simple ReLU layer.

• Linear 3: 64 to 3 dimensions, with the output being a 3 dimensional velocity of the
end-effector.

A.2 Example Transforms.json File For Nerfstudio.

Nerfstudio, the software that allows for the training of radiance fields, requires a transforms.json file
that defines the camera parameters, poses, and image paths to each camera. An example is seen in
Fig 8.

A.3 OmniGibson Visualization.

A sample view of OmniGibson and using the data collection tool is shown in Fig. 9, where the user
can see the scene from a first and third person perspective. Each time they press the key "x", a new
entry is added to the transforms.json mentioned above.
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Figure 8: The beginning of the transforms.json. The camera instrinsics are provided in the simulaltor,
and we also provide paths to images, depths and segmentation (optional), and the world to camera
transform matrix.

Figure 9: Example Setup in OmniGibson.
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Figure 10: Nerfstudio RGB rendering

Figure 11: Nerfstudio depth rendering

A.4 Nerfstudio Visualization.

An example visualization of training a Gaussian Splat is shown. The trainer can view the training
cameras and see how closely the scene is reconstructed. Note that we are able to mask out the robot
gripper entirely in the scene! We also show a depth rendering at the same camera pose.

A.5 Sample CLIP Embedding Visualizations.

We show visualizations of novel views and the CLIP-Seg outputs.

Even a painting can be segmented out!
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(a) Novel View (b) Chair

(c) Wall (d) Floor

(e) Window

Figure 12: Example CLIP-Seg Outputs.
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Figure 13: Novel View, Depth, and Segmented "Painting"

16


	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Ethics Statement
	Appendix (optional)
	Model Parameters and Architecture
	Vision Encoder.
	Text Encoder.
	Fusion and Regression Head.

	Example Transforms.json File For Nerfstudio.
	OmniGibson Visualization.
	Nerfstudio Visualization.
	Sample CLIP Embedding Visualizations.


