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Abstract

In this project, we developed a Neural Machine Translation (NMT) model capable
of generating translated sentences with specified formality levels. We modified
and fine-tuned a multilingual translation model, incorporating an additional input
parameter for formality level in the Korean-English setting. Notably, even without
adding a loss term for formality, our model demonstrated the capability to produce
sentences that maintain the original meaning while varying in formality. Addition-
ally, we explored various weight tuning methods and the potential for controlling
sentiment through our framework. Our results indicate significant improvements in
both semantic preservation and formality alignment compared to baseline models.
This work highlights the feasibility and effectiveness of direct style control in NMT,
paving the way for more nuanced and contextually appropriate translations.

1 Key Information to include
• Mentor: Moussa Doumbouya
• External Collaborators (if you have any): N/A
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• Team contributions: All three members contributed equally. Jiwon worked on dataset and

evaluation. Hyejin and Youjin worked on fine-tuning the LLM model using two different
approaches – Encoder output Extension and Categorical Token Fine-tuning, respectively.

2 Introduction

Recent large language models (LLMs) have demonstrated remarkable accuracy in translating sen-
tences between languages while preserving their original meaning. However, in practice, merely
focusing on meaning preservation may not suffice, as different language styles are employed depend-
ing on the context and audience. For instance, the level of formality in sentences varies based on
the social setting and the interlocutors. Recognizing this need, our project aims to develop a neural
translation model capable of style control for Korean and English. Specifically, our model trans-
lates Korean sentences into English while adhering to a specified formality level, thereby ensuring
consistency with the source sentences’ meaning.

The task of controlling the style in translations presents several challenges. One significant hurdle is
the lack of parallel corpora with source and target sentences that exhibit different styles, particularly
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for low-resource languages. Traditional approaches often require extensive datasets with varied style
annotations, which are not readily available. Additionally, incorporating new loss functions to manage
stylistic variations introduces substantial computational complexity and resource consumption, which
we sought to avoid.

Our approach diverges from existing methods by leveraging the inherent formality variations present
in pre-existing Korean-English parallel corpora. By avoiding the need for additional stylistic loss
terms during training, we circumvent the associated computational overhead. Instead, we experiment
with providing the neural machine translation (NMT) model with the target sentence’s formality level
during the decoding phase. This strategy enables the model to learn and apply the desired formality
without extensive data augmentation or complex loss function integration. Additionally, we explored
the possibility of applying the same approach to different styles, such as sentiment.

We employed a multilingual machine translation model as our foundation model and modified its
structure in two distinct ways to process a target style and incorporate it into the translation output.
The first approach, Encoder output Extension, involves extending the encoder output’s embedding
dimension to include style information directly. The second approach, Categorical Token Fine-Tuning,
introduces style tokens that guide the model’s output style. These methods were designed to explore
the feasibility of direct style control in NMT and assess their impact on translation quality.

In summary, this project contributes to the field of style-controlled machine translation by demon-
strating the feasibility of controlling translation styles without the need for additional stylistic loss
functions or augmented data. This work paves the way for more nuanced and contextually appropriate
translations, addressing a critical gap in the current capabilities of neural machine translation models.

3 Related Work

Controlling styles in machine translation has been explored through various methods. Wang et al.
(2023) utilized prompts to control different styles, including modern and early English, honorific style
Korean, and modern and classical Chinese. These approaches highlight the flexibility of prompt-based
control in achieving stylistic outcomes in translation tasks.

Formality control has been extensively studied, often through post-editing or re-ranking translations.
Zhang et al. (2022) and Vincent et al. (2022) proposed methods that involve post-processing steps to
adjust the formality levels, relying on external formality scoring systems and re-ranking mechanisms
to refine the output. While effective, these can introduce additional computational overhead and
complexity.

A major challenge in formality control is the need for parallel corpora with different formality levels,
particularly for low-resource languages Tyagi et al. (2023). To address this, some researchers have
generated synthetic data for training. Rippeth et al. (2022) generated synthetic parallel corpora by
converting the formality level of sentences, which were then used to train the translation models.
Although useful, this approach depends heavily on the quality of the synthetic data, which may not
always accurately reflect natural language variations. Iterative dual knowledge transfer frameworks
have also been explored (Wu et al., 2021). These frameworks iteratively refine translation and style
transfer tasks, improving the model’s ability to handle formality variations without extensive parallel
corpora.

In addition to these methods, some researchers have explored using Minimum Risk Training (MRT)
to incorporate stylistic loss terms directly into the training process He et al. (2020). However, MRT
introduces substantial computational complexity and resource consumption, making it less practical
for large-scale applications.

Overall, while significant progress has been made in controlling styles in machine translation, the
reliance on extensive parallel corpora, synthetic data, and computationally intensive training methods
highlights the need for more efficient and scalable solutions. Our work contributes to this field
by demonstrating that effective formality control can be achieved without additional stylistic loss
functions or augmented data, paving the way for more practical and accessible style-controllable
translation models.
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4 Approach

4.1 Foundation model: facebook nllb-200-distilled-600M

We began with a multilingual NMT model, the facebook/nllb-200-distilled-600M (Costa-jussà et al.,
2022). This model is capable of translating between multiple languages, including low-resource
languages, and offers a favorable balance of performance and model size compared to other models
of similar capability. It is a sequence-to-sequence multilingual machine translation model based on
the Transformer encoder-decoder architecture and serves as the foundation model for our fine-tuning
efforts described in the rest of the report.

4.2 Baseline model

Given the absence of an open-sourced, style-controllable Korean-to-English NMT model, we
used our foundation model – a naive translator – in conjunction with a formality style transfer
model (Damodaran, 2022) as the baseline for our formality-controllable NMT experiments. For our
additional style input, sentiment, we explored several sentiment style transfer models (Shen et al.,
2017; He et al., 2020; Yi et al., 2021; Wang et al., 2019; Li et al., 2018). However, none of these
models produced satisfactory qualitative results for reversing the sentiment of general sentences.
Consequently, we compared the performance of the foundational model without any sentiment style
transfer against our proposed methods

4.3 Formality Level Control Without Stylistic Loss and Data Augmentation

Creating a machine translation (MT) model capable of style control requires addressing two main
challenges. First, while some studies have introduced additional stylistic loss terms to generate
translations that align with the desired style, directly backpropagating these losses through the
model is often infeasible. To address this, researchers have utilized Minimum Risk Training (MRT).
Although effective, MRT introduces substantial computational complexity and resource consumption,
which we sought to avoid. Second, some methods require source-target parallel datasets with
multiple style variants for each source sentence to facilitate training. However, most language pairs,
particularly low-resource languages, lack such datasets. Instead, our dataset exhibited mismatches in
formality levels between source and target sentences. We hypothesized that this property could be
beneficial, as it might help the model learn to generate sentences with different formality levels from
the source sentences.

Consequently, we experimented with providing the NMT model with the target sentence’s formality
level during the decoding phase. This approach leverages the natural formality variations present in
the existing Korean-English parallel corpora, enabling the model to adjust the formality of the output
without the need for additional stylistic loss terms or augmented data.

4.4 Our Approaches

APPROACH 1: Encoder output Extension

Figure 1: Encoder output extension for the multi-head attention mechanism. The left figure illustrates
the initial few steps of the original mechanism, while the right figure depicts the extended version.
B,D,L, and nh stands for batch size, embedding dimension, sequence length and number of attention
heads, respectively.
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We introduced an additional input parameter (style level) into the output of the encoder stack.
Following the encoding process, we expanded the embedding dimension of both the encoder output
and the decoder hidden state. Specifically, the embedding dimension was extended for each attention
head, as illustrated in Figure 1. For the encoder output, this extended dimension was filled with a
continuous style level, while for the decoder hidden state, it was filled with zero. Upon loading the
pre-trained weights, the existing parameters were assigned to their corresponding positions, and the
additional parameters were either initialized to zero or sampled from a normal distribution N (0, 0.25),
and truncated to the range [-0.5, 0.5].

APPROACH 2: Categorical Token Fine-Tuning

We found that the pretrained translation model, facebook/nllb-200-distilled-600M (Costa-jussà et al.,
2022), is capable of translating any pair of languages simply by switching the language token. By
positioning the target language token at the beginning of the target sentence, i.e., [Language_token]
X [EOS_token] with X being the tokenized source or target text, it functions as a BOS (beginning of
sentence) token that also indicates the target language for the generated sentence. During the training
phase, the model learns the function of this target language token as a language signal through the
teacher forcing nature of the transformer. During inference, the first token is forced to the language
token of the target language.

This was surprising, as a token at the front significantly affects the generation as a whole by influencing
subsequent tokens. Given its strong signal, we hypothesized that it might also be able to control the
style of the sentence, in our case, formality, by using a ‘style token’ without adjusting any model
structure. Starting with model weights that already performed well for Korean to English translation,
we inserted the style token(e.g. formality or sentiment token) immediately after the target language
token, i.e., [Language_token] [Style_token] X [EOS_token]. During training, the model is
expected to learn from the style token signals through teacher forcing. After sufficient training, the
model should be able to output translated sentences with the desired level and/or class of language
style during inference.

5 Experiments

5.1 Data

We used a dataset from ‘The Open AI Dataset Project (AI-Hub, S.Korea)’ which are widely used
for KO-EN and EN-KO NMT tasks. First dataset is Korean Public AI Hub Parallel Corpora (Park
et al., 2021) of 1.6M sentences from several areas including news, Korean culture, colloquial style,
and conversational style. Since our objective is to generate the sentences spanning a wide range
of formality, we aimed to use the sentences from the areas whose formality score distributions are
not skewed. Therefore, we omitted the areas such as news whose sentences are mostly formal. The
method we used to measure the formality score is demonstrated on Section 5.2. The training dataset
consists of 400K sentences in colloquial style and 90K sentences in conversational style.

Figure 2: Formality score distribution of the entire dataset and sampled dataset. Score is a raw output
of the formality regressor, and nScore is Score discretized into 5 levels.
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Figure 2 (a) shows the formality score distribution of the entire training dataset of 490K sentences.
To make the distribution more uniform, we first divided the score range into 100 bins. For each bin
having more than 10K sentences, we randomly sampled 10K sentences. Figure 2 (b) illustrates that
the sampled dataset contains less sentences having moderate formality score. We used this sampled
dataset for training.

For the test dataset, we used 10K sentences in conversational style since the difference in formality is
usually demonstrated well in conversations. For formality scores which will be given to the model,
we utilized two types of approaches. First, since the baseline model can only generate formal or
informal sentences, we introduced extreme formality scores so that we can compare the performance
of our model to that of the baseline model. For APPROACH 1(embedding extension model), target
formality score -2 and 2 were given for each sentence in the test dataset, and target formality token
1 and 5 were given for APPROACH 2(categorical token fine-tuning model). Next, to validate if the
model can generate the sentences with different levels of formality, we applied random formality
scores. For each sentence in the test dataset, we randomly assigned two integer formality scores in
range of -3 to 3 and two formality tokens within 1, 2, 3, 4 and 5. Since two consecutive scores or
tokens may not display enough difference in formality even in the sense of human judgement, we
constrained two scores or two tokens to have a difference greater than or equal to 2.

For sentiment control as the extension of our approach, we added sentiment score for each sentence
in the training set measured by the method illustrated on Section 5.2, and assigned two random scores
within -1 (negative), 0 (neutral), and 1 (positive) for each sentence in the test set.

5.2 Evaluation method

Our model is evaluated across three dimensions: meaning preservation, formality, and sentiment.
First, we defined three scores corresponding to each dimension as described below. Given the pairs
consisted of the source sentences from the test dataset and their translated versions generated by the
model, we calculated those scores for each pair and used the average score for each dimension to
demonstrate the performance of the model. For meaning preservation and formality, we referred
to the best practices for automatic evaluation in style transfer (Briakou et al., 2021) which strongly
correlates with human judgements.

We used chrF (Popović, 2015) to calculate the similarity between the source sentence and the model
output in terms of semantics. This metric is based on the character n-gram F-score, and it is known
for having good correlations with human judgements on both system-level and segment-level.

To compute the formality of a sentence, we utilized a model that fine-tuned XLM-R (Conneau et al.,
2020) on English formality ratings (Pavlick and Tetreault, 2016) with the Adam optimizer, a batch
size of 32, and a learning rate set to 5e-5 for 5 epochs (Briakou et al., 2021). This formality regressor
can measure the formality of a given sentence with a score between -3 (informal) and 3 (formal). For
baseline model and APPROACH 1, we directly compared the target formality score and the formality
score of model output by calculating the difference between two. However, since APPROACH 2
utilizes discretized tokens for formality score, we assigned integer formality score between -2 to 2 to
each formality token and computed the difference with the translated sentence’s formality score.

Regarding the sentiment dimension, we made use of TimeLMs (Loureiro et al., 2022) fine-tuned for
sentiment analysis with the TweetEval (Barbieri et al., 2020) benchmark. We defined a sentiment
score by subtracting the probability of a sentence being negative from that of a sentence being positive,
resulting in a real value between -1 (negative) and 1 (positive). Similar to formality transfer evaluation,
we calculated the difference between target sentiment score and the model output’s sentiment score.

5.3 Experimental details

As the foundation model, we used the facebook nllb-200-distilled-600M model, following the
NLLB (Costa-jussà et al., 2022) team’s configuration. The learning rate and weight decay were set to
10−4 and 10−3, respectively, with a batch size of 16. Our loss converged quickly due to the pretrained
weights. However, a small loss and a slower convergence rate did not necessarily indicate that our
model was sufficiently trained; while the output sentences began to make sense, they still exhibited
subtle semantic differences even when the loss was very small. After at least 10,000 iterations, we
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monitored and manually stopped training based on translation quality and alignment with the target
formality level. Training took about 12 hours on a Titan RTX.

5.3.1 Efficient Initialization and Weight tuning

We started by controlling the continuous formality level (from least formal to most formal) using
the data mentioned in Section 5.1. For APPROACH 1, we applied the formality level ranging
from -3(informal) to 3(formal) to the output of the transformer’s encoder stack, specifically to the
expanded dimension of the weights. For APPROACH 2, we inserted one of five formality style tokens
immediately after the language token, i.e., [Language_token] [FormalityLevel_token] X
[EOS_token], to provide a formality signal to the model.

For both approaches, we compared convergence speed and model performance after at least 20,000
iterations for different ranges of freezing weights and initializing methods in the transformer. For
the first approach of extending weights, we experimented with two settings for each initialization
method (all zero or randomly sampled from a normal distribution) and freezing range (not freezing
and freezing encoder weights only). For the second approach of categorical token fine-tuning, we
experimented with 3 ranges of freezing weights: training all weights, freezing only the encoder, and
freezing both the encoder and decoder. All experiments started from the pre-trained weights of the
foundation model. Further details on the token vocabulary expansion process and the rationale for
weight tuning are explained in Appendix B.

5.3.2 Exploring Other Language Style Transfer

After determining the most efficient way of fine-tuning the model, we explored whether different
language style transfers (such as sentiment) could work well. We utilized the sentiment analysis
technique described in Section 5.2. In APPROACH 1, we used a continous sentiment level ranging
from -1 (negative) to 1 (postive) and in APPROACH 2, we discretized sentiment into three levels:
negative, neutral, and positive, and added these three style tokens to our tokenizer and transformer
embedding vocabulary. We also tried to utilize both formality and sentiment styles, by extending
the embedding twice, and forcing style token as [Language_token] [FormalityLevel_token]
[SentimentLevel_token] X [EOS_token], respectively. We evaluated the model by measuring
the distance between the target sentiment score and the output sentiment score.

5.4 Results

5.4.1 Efficient Initialization and Weight tuning

We evaluated the model performance using two types of test sets, each with different target formality
score settings: "extreme" and "random" (as in Section 5.1). The models generated two translated
sentences from a single source text using the two target formality levels and calculated the formality
distance from the target formality score. We also measured semantic similarity to ensure the translator
functions well while modifying the formality level. The quantitative results are shown in Table 1.

baseline APPROACH 1 APPROACH 2
no freeze
zero init

no freeze
rand init

freeze enc
zero init

freeze enc
rand init no freeze freeze enc freeze enc&dec

extreme Semantic ↑ 0.353 0.405 0.416 0.413 0.414 0.436 0.430 0.463
Formality ↓ 1.405 1.054 1.095 1.081 1.050 1.388 1.291 1.823

random Semantic ↑ – 0.404 0.414 0.412 0.412 0.448 0.449 0.465
Formality ↓ – 1.001 1.029 1.032 0.973 1.056 1.009 1.370

Table 1: Table above compares quantitative results of our formality style transfer approaches. "Se-
mantic" indicates how well the semantic meaning of the source sentence is preserved, measured by
the chrF score (higher is better). "Formality" indicates alignment with the target formality level,
measured by the difference in formality scores (lower is better).

Compared to the baseline model, both of our methods excelled in semantic meaning preservation
and formality style transfer. The level of meaning preservation remained similar across different
weight tuning methods, while formality alignment showed more significant differences. This might
be because we started with a well-performing language translator model, so most of our training
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iterations focused on training the extended style parameters (APPROACH 1) or the new style token
(APPROACH 2) rather than semantic language understanding.

Evaluating with extreme formality levels was generally more challenging than with random formality
levels. This could be because it is inherently more difficult to make sentences very formal or very
informal, and also due to a comparable lack of data for those extreme cases in our training dataset.

For both of our approaches, freezing only the encoder outperformed the other methods, even surpass-
ing the performance of training all the weights. For APPROACH 2, training only the shared weights
(freezing both the encoder and decoder) performed poorly, showing worse formality alignment than
the baseline. Our rationale for freezing only the encoder was based on the expectation that the encoder
output encapsulates the semantic information of the source sentence, while the decoder is responsible
for generating a sentence in the target style using this encoded information and the style token. Given
our goal to preserve semantic meaning in this style transfer task, freezing the encoder proved to be
highly efficient. By starting with a model that already excels at extracting semantic meaning from the
source sentence, freezing the encoder allowed us to fully leverage this capability.

Additionally, for APPROACH 1, randomly initializing the extended parameters performed slightly
better than zero initializing them. We suspect that randomly initializing the parameters introduced
diverse starting points for the parameters, which led to faster and more effective learning. Using a
normal distribution with zero mean and a small standard deviation helped avoid instability during
training, thus improving the overall performance.

5.4.2 Exploring Other Language Style Transfer

As our approach of adding style information at the decoding phase seems to be effective, we decided
to explore other language styles and potentially incorporate two styles simultaneously. We used
formality as the first style, and selected sentiment for the second as it is one of the widely used styles
for text style transfer tasks and various open-sourced sentiment analysis tools are available. Compared
to the baseline model, which resulted in a sentiment distance of 0.774, our model with APPROACH
1 and APPROACH 2 achieved slightly better scores of 0.758 and 0.763, respectively. When both
formality and sentiment styles were utilized, the sentiment distance and formality distances were
0.759, 1.002 and 0.761, 0.996 for APPROACH 1 and APPROACH 2, respectively.

While it appears that style transfer for two styles is feasible, sentiment style transfer poses challenges.
This is primarily because most sentiment pairs inevitably differ in semantics, for example, "I like this
food" versus "I don’t like this food." This setup may have introduced contradictions during training
since the translator fundamentally needs to convey the same meaning as the source sentences. If
there exists a style with a sufficient dataset or classifier that exhibits differences only in style while
preserving meaning, our method could perform better. Importantly, our method has opened up the
possibility of style transfer for multiple styles simultaneously, without modifying the model structure
or compromising training efficiency.

6 Analysis

Following Figure 3 provides qualitative results for both of our approaches. Given a single sentence,
we varied the formality level from very informal to very formal. For APPROACH 1, this ranged from
-3 to 3 on a real number scale, and for APPROACH 2, we used 5 formality tokens. Despite these
changes, the semantic meaning of the sentence is highly preserved.

Additionally, we wanted to assess how effectively our approaches signal the desired formality level
compared to the model before fine-tuning. Our foundation model, naive machine translator, produces
sentences with varying formality levels primarily by detecting the formality of the source sentences
and attempting to generate translated sentences that match this level. Note that its ability to discern
formality is minimal, showing differences only when the formality disparity is significant.

As shown in Figure 3, we generated sentences with varying formality levels for two input sentences
that only differed in formality. Although their meanings are exactly the same, the formality levels are
distinctly different, evident to any Korean speaker, even beginners. The foundation model produces
different sentences based on these formality levels. It is noteworthy that our fine-tuned model still
produces sentences ranging from less formal to more formal, although it remains slightly biased
toward the formality tone of the input.
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Figure 3: Comparison of sentence generation with varying formality levels. The foundation model
produces very minor differences in sentences (with and without ‘please’) reflecting the formality
level of the inputs. Our fine-tuned model, while slightly biased toward the formality tone of the input,
successfully generates sentences across a range of formality levels from less formal to more formal.
The vocabulary choice for verbs (e.g., ‘want’ vs. ‘wanna’) and nouns (e.g., ‘go’ vs. ‘return’) varies,
as well as expressions of politeness and formality, such as ‘please,’ across different formality levels.

Although our model successfully generates sentences with different formality levels, its performance
is better when generating formal tones rather than informal ones. This is likely due to the bias in our
dataset: sentences with a formal tone significantly outnumber those with an informal tone.

There are also some fundamental challenges in the language style transfer task in general. Since the
‘style’ and ‘content’ of a language cannot be completely separated, even for humans, it is difficult
to label or classify the style of a sentence accurately. Formality style was comparatively easier to
manage because it often has a direct counterpart in being formal or informal with exactly the same
meaning. However, it was more challenging for sentiment or emotion transfer. It was nontrivial to
find pairs of sentences that varied only in sentiment or emotion while conveying exactly the same
meaning.

7 Conclusion

In conclusion, our research have focused on nuanced control of stylistic attributes at translation from
Korean to English. One of our significant contributions is that we’ve opened up the possibility of
efficient language style transfer in translation. With over 7,000 languages globally, there are linguistic
styles unique to specific languages, some of which may be explicitly present in one language while
absent in others. Through our method, anyone possessing a dataset that pairs target sentences with
specific style levels or types can seamlessly incorporate these stylistic nuances.

To enhance the efficiency of the pipeline, we have experimented with various initialization methods
and weight-freezing techniques. Furthermore, we have achieved this feat without introducing
additional loss functions or adopting additional data augmentation techniques for style transfer,
relying solely on the cross entropy loss inherent in the transformer. This success owes much to our
strategic selection of parallel translation datasets, which ensure the preservation of semantic meaning
between source and target texts without necessarily aligning with formalities.

Our model did not explicitly introduced new loss function for formality. If we could find a way
to integrate such loss models without the need for tokenizing processes or effectively propagate
such losses during training, our training could be even more efficient. We also wish to mention that
our training dataset had only one reference translation for each sentence, as in Niu et al. (2017)’s
work. If we can make use of more reference translations with various formality and sentiment
levels for each source sentence, our model performance will be improved further. Additionally, the
unavailability of open-source Korean formality measuring models hindered our ability to experiment
with English-Korean translation with formality control. Acquiring such a classifier or dataset would
allow us to easily apply it to our model and further enhance its capabilities.
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8 Ethics Statement

Our model has a risk of generating output that contains toxic language, since our dataset used for
fine-tuning included slangs. Based on the fact that slangs are typically classified as informal, the
model may have been trained to use toxic vocabularies if the target formality is set extremely informal.
This issue is also observed from the output of our foundation NMT model, as it translates the abusive
language from source sentence without any filtering. One way to mitigate this risk is applying
toxicity mitigation methods such as the one proposed by Bhan et al. (2024) to our model’s output.
Furthermore, we can ensure that the model avoids generating specific words by implementing a logit
processor at the end of our transformer, such as NoBadWordsLogitsProcessor. This processor
ensures that specified sequences are never selected by setting the probability of such tokens to negative
infinity.

The generation of false translations is another possible concern of our model. Although our foundation
model generally maintains the semantics of the source sentence well, our model often modifies
the meaning if the target formality is set to extreme. Unlike other tasks using a single language,
misinformation can be especially problematic in translation tasks since the users typically lack an
understanding of the target language. As we interpreted this observation was due to the lack of
training data having extreme formality scores, utilizing more of such data would help the model not
to alter the meaning of the sentence.
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A Encoder output Extension and Parameter Initialization

To incorporate style information by extending the embedding dimension of the encoder hidden state,
we focused on the multi-head attention algorithm. In multi-head attention, multiple attention heads
calculate attention scores for divided hidden states. If we naively extend the hidden state dimension
by 16 (the number of attention heads) at the end, it would result in the last attention head only
processing the style information. To avoid this, we extended the hidden state dimension (1024) to
1040 by increasing the hidden state embedding dimension for each attention head.

Consequently, the decoder parameters were also extended. Parameters with one dimension (i.e., norm,
bias) that have a shape of [1024] were extended to [1040], and 2D tensors with shapes [4096, 1024],
[1024, 1024], and [1024, 4096] were extended to [4096, 1040], [1040, 1040], and [1040, 4096],
respectively. For initialization, each attention head’s first 64 parameters were set to the pre-trained
values, and the last 1 was initialized to 0 or sampled from a truncated normal distribution. This
allowed our model to perfectly retain its translation capacity when initialized to 0, and partially
retained translation performance when randomly initialized.
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Figure 4: Embedding dimensions of both the encoder output and decoder hidden state were extended.
The encoder output was extended with the style, represented as a float, and the decoder hidden state
was zero-padded. They then went through the adjusted decoder layer to get the final output.

Sampling from a truncated normal distribution with zero mean and a small standard deviation was
crucial. When we experimented with random numbers or a standard deviation of 1, the model
completely lost its ability to translate, and the training became very unstable. Even after 60,000
iterations, the model produced outputs like "the the the the the the the". By using a small standard
deviation, we ensured that the model retained some of its pre-trained capabilities, making the training
process more stable and effective.

One small consideration is that we extended the dimensions from 1024 to 1040, which is not a power
of 2. In neural networks, dimensions that are powers of 2 are often preferred for their computational
efficiency. Changing 1024 to 1040 might affect resource efficiency. Future work could explore
methods to extend hidden state dimensions in a way that minimally impacts resource efficiency.

B Token Vocabulary Expansion and Efficient Weight Tuning

Expanding the token vocabulary and forcing the token to be positioned at the front requires an
understanding of the entire pipeline. Our base language translation pipeline consists of two main
modules: the tokenizer and the transformer. The tokenizer converts natural language into a sequence
of tokens at the beginning of the process so that the model can process it as numerical vectors, and it
converts the translated tokens back into natural language at the final stage. The transformer learns to
generate tokenized output in the target language given tokenized inputs in the source language by
training shared embeddings (also called ‘shared weights’ since they are shared for both the encoder
and decoder) and non-shared weights of the encoder and decoder.

The number of vocabularies in the tokenizer and shared embedding must match, as the transformer
expands a given language token (a single number) into a high-dimensional vector (1024-D in our
case) at the shared embedding layer. Adding any number of tokens (we discretized formality into 5
levels and added 5 special tokens corresponding to each level) requires expanding the vocabulary size
of both the tokenizer and the embedding layer of the transformer. Expanding the vocabulary size of
the tokenizer is straightforward, as it only needs to assign a unique ID to each added vocabulary. For
expanding the vocabulary size of the embedding layer, we ensured that the embedding vectors for
pre-existing vocabularies remained the same while initializing vectors for the added vocabularies. In
summary, we added 5 style tokens to the tokenizer and expanded the embedding vocabulary size in
the transformer while keeping other weights fixed.

The shared embedding must not be frozen since we initialized the added embedding of style token.
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Figure 5: Token vocabulary expansion process and our machine translation pipeline

Figure 6: We tried different ranges of freezing weights: training all weights without any freezing,
freezing only the encoder, and freezing both the encoder and decoder (with only the shared embedding
weights being trained)
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