
BERTolomeu: Exploring Methods to Improve
Downstream Task Performance with BERT

Stanford CS224N Default Project

Flora Yuan
Department of Data Science

Stanford University
floray@stanford.edu

Jack Zhang
Department of Computer Science

Stanford University
jyxzhang@stanford.edu

Abstract

In the early 15th century, Bartolomeu Dias charted new waters and unveiled count-
less uncharted territories. Just like Bartolomeu, we navigate the vast expanse of
natural language processing with BERTolomeu, seeking to optimize the multitask
performance of pre-trained BERT for three downstream tasks: sentiment analysis,
paraphrase detection, and semantic textual similarity. We experimented with vari-
ous approaches to fine-tune the provided base BERT model on three downstream
tasks simultaneously and analyzed the effectiveness of different combinations of
fine-tuning techniques. We found the most success with adopting an annealed sam-
pling approach, cross-encoding for the paraphrase detection and semantic textual
similarity tasks, SMART regularization for sentiment analysis to reduce overfitting,
and training on a combination of the provided and additional data. We achieve an
overall score of 0.782 on the dev set, and 0.789 on the test set.

1 Key Information to include

Our mentor was Johnny Chang. We had no external collaborators, and we are not sharing this project.

Contributions: Flora owns the development of the BERTBASE model and additional datasets. Jack
owns conducting experiments and development of sampling strategies, encoding strategies, and
SMART regularization. We contributed equally to training/design strategies, SMART regularization,
and writing the paper.

2 Introduction

In recent years, large pre-trained language models, such as BERT by Devlin et al. (2019) and
GPT by Brown et al. (2020), have proven the effectiveness of transformer models and have driven
significant advancements in the field of natural language processing (NLP). However, these pre-
trained transformer models have limitations. For real-world applications, they require fine-tuning to
perform specific downstream tasks and struggle with performing multiple tasks simultaneously.

We present our approach to fine-tune the pre-trained BERT model for multitask performance on three
downstream tasks: fine-grained sentiment classification, paraphrase detection, and semantic textual
similarity (STS). The approaches we incorporated include annealed sampling with novel tuning
parameters for efficient training on datasets of varying sizes, cross-encoding for sentence-pair tasks,
SMART regularization, and additional datasets to supplement tasks with smaller provided datasets.
Using pretrained BERT parameters as a starting point, our aim is to determine the combination of
fine-tuning approaches that yields the highest overall multitask accuracy. We present our approaches,
experiments, and results to demonstrate the effectiveness and limitations of our model.

Stanford CS224N Natural Language Processing with Deep Learning

3 Related Work

Since Vaswani et al. (2023) proposed the transformer architecture in 2017, many language models
proposed subsequently adopted the transformer for its superior performance. Proposed by Devlin et al.
(2019), the Bi-directional Encoder Representations from Transformers (BERT) model is one such
pre-trained model. Following the success of BERT, a surge of research aimed to enhance fine-tuning
on downstream tasks for pre-trained models ensued.

A challenge in fine-tuning pre-trained language models for multitask performance is the imbalance in
dataset sizes. When dataset sizes vary significantly, the model may overfit on smaller datasets and
undertrain on larger ones. To address issue, sampling approaches, like annealed sampling by Stickland
and Murray (2019), have been introduced. Annealed sampling adjusts the sampling probabilities of
datasets relative to dataset size and current epoch, giving larger datasets higher sampling probabilities
near the start of training and lower probabilities near the end of training.

Paraphrase detection and STS are sentence-pair tasks, meaning the model needs to learn the in-
terdependencies between two input sentence sequences. Various encoding strategies have been
proposed for sentence-pair tasks. Along with the BERT model, Devlin et al. (2019) also proposed
an encoding approach for tasks involving multiple inputs called cross-encoding. In cross-encoding,
input sentences are concatenated with a separator token [SEP] prior to passing through the model.
Another encoding approach called bi-encoding have been introduced by Reimers and Gurevych
(2019). Bi-encoding feeds each input sentence separately through the model, then combines their
the outputs for downstream tasks. Bi-encoding has been shown to be computationally efficient and
effective for similarity-based tasks.

Another prominent concern when fine-tuning large pre-trained models on relatively small datasets
is overfitting. To alleviate overfitting, regularization schemes have been proposed, like SMART by
Jiang et al. (2020). SMART alleviates aggressive updates by incorporating smoothness-inducing
adversarial regularization and Bregman proximal point optimization, which has shown to achieve
better generalization to unseen data.

4 Approach

We created our extensions to extend the pre-trained BERT model. The provided model follows a
similar structure as discussed in Devlin et al. (2019).

4.1 Baseline

For our baseline, we kept the pretrained BERT parameters frozen except the last linear layer, i.e. the
task specific layers. We trained the task specific layers on the full provided datasets, and evaluated
the resulting performance on the dev set.

4.2 Sampling Strategies

The three provided datasets showed significant imbalance in size. There are 283,003 train examples
in the Quora dataset, 8,544 in the SST-5 dataset, and 6,040 in the SemEval STS Benchmark dataset.
The model can overfit on tasks with significantly larger datasets and undertrain on smaller ones. Thus,
we investigated two approaches that aim to optimize the multitask learning process with varying
dataset sizes.

Round-robin is a multitask sampling strategy that simply cycles through the tasks. Since there are 3
tasks, we train a batch from task 1 on training step 1, train a batch from task 2 on step 2, train a batch
from task 3 on step 3, train a batch from task 1 on step 4, and so on. When a dataset is exhausted, we
start over from the beginning of the dataset. The model will see smaller datasets more than once, and
may not see the entirety of large datasets, alleviating the dataset size disparity.

Annealed sampling is a dynamic sampling strategy that adjusts the probability of selecting examples
based on the relative size of the datasets and the current epoch. The idea is to train on tasks with
abundant data more frequently in the beginning of training and gradually less frequently as training
progresses, since overfitting tends to be worst near the end of training. Specifically, we select one
task to sample a batch and train on at each training step. We select task i with probability pi, which is

2

proportional to Ni, the number of training examples for task i:

pi ∝ Nα
i , α = 1− 0.8

e− 1

E − 1
,

where α changes with each epoch e, E is the total number of epochs. α forces pi for different tasks
to be more equal near the end of training. We wanted to explore the effectiveness of more forceful
functions for α, which is why we introduced σ as a tuning parameter:

α = 1− σ
e− 1

E − 1
,

where σ defaults to 0.8. We performed a simple grid search to find the optimal value σ = 0.99 (see
Appendix A).

4.3 Encoding Strategies

Paraphrase detection and and STS are sentence-pair tasks, meaning the model needs to learn the
nuanced dependencies between two phrases. Yet, BERT traditionally processes single-input tasks. To
address this challenge, we explored two encoding strategies: bi-encoder and cross-encoder.

(a) Bi-encoder with linear layer. (b) Cross-encoder with linear layer.

Figure 1: Encoding strategies for sentence-pair input tasks.

4.4 SMART Regularization

The primary purpose of utilizing SMART Finetuning is to prevent overfitting and alleviate aggressive
updates on multi-task data. This approach is described in Jiang et al. Jiang et al. (2020). As
described in the paper, this technique incorporates Smoothness-Inducing Adversarial Regularization
and Bregman Proximal Point Optimization.

Smoothness-Inducing Adversarial Regularization aims to enforce smoothness by minimizing the
local Lipschitz continuity of the model, which is achieved by introducing small perturbations (ϵ) to
the input data and optimizing Equation 1 in the paper

minθF(θ) = L(θ) + λsRS(θ) (1)

where L represents the loss function and RS(θ) represents the smoothness-inducing adversarial
regurlarizer (full equations definded in paper).

Bregman Proximal Point Optimization, used in conjunction with the adversarial regularizer, serves
as a strong regularizer by preventing the model parameters from deviating significantly between
iterations. This method is implemented through momentum Bregman Proximal Point method (MBPP),
which is shown in Equation 3:

θt+1 = argmin
θ

F(θ) + µDBreg(θ, θ̃t) (2)

However, in our implementation, we used the ADAMW optimizer to solve the minimization, instead
of their proposed Bregman Proximal Point method. This effectively retains the knowledge of the
pre-trained model while adapting to new tasks. The combined approach of SMART fine-tuning not
only enhances the robustness of the model but also optimizes its performance across various NLP
tasks.

3

4.5 Additional Data

Another approach we attempt to alleviate the disparity in dataset sizes is to seek additional datasets
for training.

For the sentiment analysis task, we are evaluated on the Stanford Sentiment Treebank (SST-5), which
is a dataset of movie reviews. Due to the unique nature of this genre of writing that feature highly
polarized opinions and nuanced expression of these opinions, we searched for similar datasets from
movie review websites like RottenTomatoes and IMDB. We decided to complement this task with
the Large Movie Review Dataset (LMRD) from Maas et al. (2011), a collection of 50,000 highly
polarized reviews from IMDB since it is most similar to SST-5.

We decided to not look for any additional data for the paraphrase detection task, as the provided QQP
dataset was already significantly larger than the provided SST and SemEval datasets.

For STS, we decided to complement this task with an additional dataset called Sick2014 Marelli
et al. (2014). This dataset is similar to SemEval STS Benchmark, but aims instead to capture only
similarities on purely language and common knowledge level, without relying on domain knowledge
like history. Sick2014 contains 10,000 English sentence pairs, each annotated for relatedness in
meaning.

To couple the increased data, we experimented with increasing the number of epochs. By extending
the training duration, we aimed to give our model more opportunities to learn and generalize from the
available data. This allows the model to make multiple passes over the data, refining its understanding
and improving its ability to capture complex patterns.

5 Experiments

5.1 Data

We have three datasets provided by the CS224N staff, and two additional datasets we use to alleviate
size disparity among the provided datasets. All provided datasets come with respective train, dev,
and test splits, and we create two new train splits for datasets that mix provided and additional
data.

For sentiment analysis, the SST-5 dataset is provided, and the LMRD is additional Maas et al. (2011).
SST-5 have 8,544 train examples, 1,001 dev examples, and 2,210 test examples. LMRD has
50,000 examples. The format of both datasets is the same, both consisting of phrases extracted from
movie reviews. Each phrase is either labeled as negative, somewhat negative, neutral, somewhat
positive, or positive (on a respective scale from 0 to 4). When we train on additional data, we use a
combination of the two datasets. To create a balanced combined dataset, we concatenate randomly
sampled 60% of the data from the SST-5 dataset and 40% from the LMRD dataset, then shuffled the
entries to eliminate order bias. The result is a combined dataset with 21,126 train examples. We
keep the provided 1,101 dev examples and test examples.

For paraphrase detection, we use the Quora Question Pairs (QQP) dataset, which is made up of
question pairs and indicates whether the sentences are paraphrases of each other. We have 283,010
train examples, 40,429 dev examples, and 80,859 test examples.

For semantic textual similarity, the SemEval STS Benchmark dataset is provided and the Sick2014
dataset is additional. SemEval STS Benchmark has 6,040 train examples, 863 dev examples, and
1725 test examples. Sick2014 has 10,000 examples. The format of both datasets is the same,
consisting of sentence pairs of varying similarity from 0 (not related at all) to 5 (equivalent). Similar
to sentiment analysis, we create a combined dataset with 5,424 train examples, containing 60% of
the provided data and 40% of the additional data randomly sampled and shuffled.

5.2 Evaluation method

To evaluate our model, we are using the task-specific metrics provided in the default final project
handout. For the combined sentiment (SST-5 and IMDB) and paraphrase detection (QQP), we
are evaluating performance based on the accuracy between the true and predicted labels. For the

4

combined semantic textual similarity (SemEval STS and Sick2014), we are evaluating performance
based on the Pearson correlation of the true similarity values against the predicted similarity values.

5.3 Experimental details

In this section, we detail the explorations we made to find the best performing combination of exten-
sions. All experiments used the BERTBASE model with provided pre-trained parameters. Whenever
we finetune with all BERT layers frozen except the last task-specific layer, we use a learning rate of
1e-3, which we call the "last linear layer" mode. When we train to update all model parameters, we
use a learning rate of 1e-5, which we call the "full model" mode. All experiments used a hidden layer
dropout probability of 0.3, a batch size of 8, and 4096 training steps per epoch. We also used the
default AdamW optimizer hyperparameters. For the loss function, we use cross entropy for sentiment
classification, binary cross entropy for paraphrase detection, and mean squared error (MSE) loss for
STS. We will describe how each of the following experiments with our extensions builds on top of
each other.

Sampling Strategies: Our first experiment compared the two sampling strategies. We finetuned the
full model first with round-robin sampling. After that, we finetuned the full model with annealed
sampling. As shown in Table 1, annealed sampling outperformed round-robin in all three tasks.
Furthermore, as shown in Table 3, annealed sampling with σ = 0.99 yielded the highest overall dev
accuracy.

Cross-Encoding: To address the outstandingly low STS correlation after our first experiment, we
explored the performance of another encoding strategy. We compared two encoding approaches:
bi-encoding and cross-encoding. In bi-encoding, we pass sentence pairs individually through BERT,
concatenate the outputs, and then apply a linear classification layer. In cross-encoding, we concatenate
the sentence pair with a [SEP] token before passing through BERT and linear classification layer.

As shown in Table 1, cross-encoding significantly improved performance for both STS and paraphrase
detection, since the model can better learn the relationship between two input sentences. Hence, we
decided to use cross-encoding in our final model for tasks with sentence-pair inputs.

SMART: We observed signs of overfitting for sentiment analysis, where train accuracy was
increasing while dev accuracy was decreasing. Thus, for our third experiment, we implemented
SMART regularization specifically for sentiment analysis to reduce overfitting. As shown in Table
1, accuracy improved for the sentiment task without compromising performance on other tasks. A
drawback is SMART significantly increased the training time, since we double the number of passes
through BERT (once unperturbed, and once with noise) for the task.

(a) Sentiment train accuracy over training epochs. (b) Sentiment dev accuracy over training epochs.

Figure 2: The sentiment classification task shows signs of overfitting between epochs 15 and 20, as
the train accuracy is increasing while the dev accuracy is decreasing. This implies the model is
getting better at predicting the train data, but getting worse at predicting dev data, a sign of losing
generality. The model was trained on full model for 20 epochs, with round robin sampling, cross
encoding, and SMART.

Additional Data: To complement dataset size for sentiment analysis and STS and support model
generalization, we constructed mixed datasets that randomly samples provided and additional data at
a 60-40 ratio, i.e. 60% provided data and 40% additional data. We finetuned full model on the mixed
datasets (leaving QQP unchanged) for 20 epochs, then finetuned last linear layer on the provided

5

datasets for 3 epochs, since we want the model to see just the provided data before evaluation.
As per Table 1, training on the mixed datasets improved accuracy for the two targeted tasks. The
training time increased notably because the IMBD dataset contains movie reviews that are on average
longer in length compared to its provided dataset counterpart: the average number of characters per
movie review is 1285.49 for the IMBD dataset, and 103.74 for the SST-5 dataset. We saw further
improvement after finetuning on last linear layer with just the provided data.

Number of Epochs: We trained for 10 epochs for most of our early experiments. We later discovered
signs of underfitting and increased the total epoch count to 20. Upon this switch, we saw clear signs
of overfitting as in Figure 2, which shows that the optimal total epoch for the sentiment analysis task
is 15 epochs. Other tasks did not show any sign of overfitting, so we continued with 15 epochs for
training.

5.4 Results

After all our experiments, we found the best combination of extensions is as follows: annealed
sampling with σ = 0.99, cross encoding for paraphrase detection and STS, SMART regularization in
sentiment analysis to mitigate overfitting, and additional data to improve model generalization. This
strategy allowed us to surpass our baseline by a significant amount.

For convenience and spacing sake, we will label many epochs we ran with for each of the approaches.
Unless otherwise specified, we train for 10 epochs. We will mark changes in epochs with symbols.
"#" represents training on full model for 15 epochs, and "∗" represents 20 epochs. "$" represents
training on the last linear layer for 3 epochs on top of results from the full-model approach in the cell
directly above.

Table 1: Dev performance of multitask models on downstream tasks. All models are trained on a
server with Intel Skylake 2 vCPU 7.5 GB memory, 1 NVIDIA T4 GPU.

Model Overall
Score

Sentiment
Accuracy

Paraphrase
Accurary

STS Cor-
relation

Training
Time

Baseline 0.563 0.401 0.702 0.172 02:30

RR 0.642 0.500 0.755 0.339 01:50
AS 0.662 0.506 0.780 0.400 02:05

RR + CE 0.764 0.499 0.855 0.874 02:00
AS + CE 0.774 0.500 0.885 0.872 02:00

RR + CE + SMART 0.737 0.513 0.764 0.870 05:00
RR + CE + SMART (*) 0.768 0.489 0.876 0.878 03:30
RR + CE + SMART + AD (*) 0.773 0.504 0.881 0.866 16:40
AS + CE + SMART (*) 0.780 0.502 0.898 0.879 03:30

AS + CE + SMART + AD (#) 0.780 0.516 0.892 0.866 10:00
AS + CE + SMART ($) 0.782 0.523 0.891 0.867 00:30

As seen in Table 1, our model significantly surpassed the baseline in all three tasks. These improve-
ments demonstrate the model’s enhanced ability to understand sentiments within text, similarity in
text, and nuanced semantic relationships.

Table 2: Test performance of single and multitask models on downstream tasks
Model Overall

Score
Sentiment
Accuracy

Paraphrase
Accurary

STS Cor-
relation

Baseline 0.563 0.401 0.702 0.172
AS + CE + SMART + AD (#$) 0.789 (+0.226) 0.541 (+0.140) 0.891 (+0.189) 0.869 (+0.697)

As shown in Table 2, our performance on the test set further confirms the effectiveness of our
approach. We can see that the model saw a large increase in the accuracies across the board, with an
especially notable increase in STS correlation of 0.697. We attribute this increase in STS to annealed

6

sampling and cross-encoding. Our initial tests had far lower STS correlation compared to sentiment
and paraphrase accuracy indicated to us that the model is significantly overfitting to the paraphrase
task, due to the overwhelming difference between the sizes of the paraphrase and STS datasets. By
implementing annealed sampling, we were able to ensure that the model is able to train on STS.
Cross-encoding further allowed the model to learn nuanced similarities between the input sentence
pairs.

6 Analysis

To better understand our best model’s performance, we conducted a qualitative evaluation by looking
closer at the predicted and true results. In this section, we explore our findings, focusing on where
the model performs well, where the model performs poorly, and key characteristics.

6.1 Sentiment Classification

Figure 3: Normalized confusion matrix for sentiment classification

We decided to visualize our model’s performance in sentiment classification using a confusion matrix
(Figure 3). The diagonal values represent the proportion of correctly predicted instances for each
class, while the off-diagonal values represent misclassifications. We can see that 3 out of the 4 highest
accuracy blocks are on the diagonal: 1, 3, and 4. This indicates that our model is better at predicting
extreme sentiments and worse at discerning neutral and weak sentiments. We believe that this is due
to the composition of our additional data, namely containing only extreme sentiments (exclusion of
neutrals).

Additionally, we see there is a high level of misclassification, particularly between classes 0 and 1.
Specifically, 70% true class 1 are misclassified as class 0. Similarly, 42% of true class 3 instances were
misclassified as class 4. These two notable misclassification examples show that there is substantial
confusion between adjacent classes, suggesting that the model struggles with fine-grained sentiment
distinction. We believe this is due to variations in human judgment during the labeling process, which
may have impacted our model’s accuracy.

6.2 Paraphrase Detection

Though examining our model’s paraphrase detection performance, we discovered that our model
has difficulty distinguishing sentence pairs that are highly similar in general context but have subtle
differences that make them not paraphrases of each other. For example, consider the sentence pair:
"How can I overcome this fear?" and "How does one overcome a fear of power?", which our model
incorrectly misclassifies as paraphrases of each other. Notice that both sentences are generally talking
about overcoming fear; however, they differ in details, such as the specific focus on the fear of power
in the second sentence. This illustrates our model’s limitations with identifying nuanced distinctions
in sentence pairs that share similar structures and vocabulary but convey different specific actions or
contexts.

7

6.3 Semantic Textual Similarity

Figure 4: Scatter plot of predicted and target STS similarities

To analyze our model’s performance in semantic textual similarity through a scatter plot of predicted
vs target similarities (Figure 4). Our analysis revealed there is a fairly strong correlation between the
predicted and target STS similarities. From the graph, we also notice outliers, representing when our
model inaccurately determined the similarity of sentences with different meanings.

For example, the sentences "A woman opens a window." and "A woman is looking out a window."
share many of the same key words. However, we can see that they describe two completely different
actions. Despite ths, our model predicted a similarity score of 3.95, compared to the true similarity
score of 2.0. This misclassification example suggests that the model places too much emphasis on
surface-level lexical similarities rather than the underlying semantic differences, leading to an inflated
similarity score.

7 Conclusion

In this paper, we presented a model using multitask learning strategies to enhance the BERTBASE
model’s ability to assess downstream tasks. Throughout our process, we experimented with a plethora
of techniques, including round-robin, annealed sampling, bi-encoding, cross-encoding, SMART
regularization, and additional data. Through our experiments, we demonstrated the effectiveness of
our final model, which greatly exceeded our initial baseline model on all three tasks. Our final model
incorporated annealed sampling with σ = 0.99, cross-encoding for paraphrase detection and STS,
SMART regularization for sentiment classification, and additional data. We showed the strengths
of our model in our analysis, highlighting its ability to classify sentiment, detect paraphrasing, and
recognize semantic similarity. Additionally, we showed our model’s limitations in truly understanding
specific distinctions on a more nuanced level. For further research, we would look into exploring
variations of the methods we have proposed, including experimenting with different splits between
provided and additional data, the number of training steps, SMART regularization weight selection,
and more.

8 Ethics Statement

One concern is the potential for bias in the training data, which leads to biased predictions. If the
training data contains biased language or reflects societal prejudices, the model may inadvertently
perpetuate or even exacerbate these biases, resulting in unfair treatment of certain groups, misrep-
resentation of sentiments, and incorrect paraphrase or similarity judgments that align with biased
perspectives. To mitigate this, it is crucial to employ diverse datasets and monitor the model’s outputs
for bias. Additionally, there is a potential risk of misuse of these models. For instance, these models
could be exploited to create sophisticated fake news or misinformation by slightly altering true
statements. To mitigate these risks, it is important to establish clear ethical guidelines for a model’s
use and promote accountability by monitoring the applications and enforcing appropriate regulations.

8

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language models are few-shot learners.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota.
Association for Computational Linguistics.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
SMART: Robust and efficient fine-tuning for pre-trained natural language models through princi-
pled regularized optimization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2177–2190, Online. Association for Computational Linguistics.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. 2011. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies, pages
142–150, Portland, Oregon, USA. Association for Computational Linguistics.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and Roberto
Zamparelli. 2014. A SICK cure for the evaluation of compositional distributional semantic models.
In Proceedings of the Ninth International Conference on Language Resources and Evaluation
(LREC’14), pages 216–223, Reykjavik, Iceland. European Language Resources Association
(ELRA).

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 3982–3992, Hong Kong, China. Association for Computational Linguistics.

Asa Cooper Stickland and Iain Murray. 2019. Bert and pals: Projected attention layers for efficient
adaptation in multi-task learning.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention is all you need.

A Appendix: Optimal value for σ in Customized Annealed Sampling

Table 3: Dev performance of various σ values for annealed sampling in multitask models on down-
stream tasks. All models are trained on a server with Intel Skylake 2 vCPU 7.5 GB memory, 1
NVIDIA T4 GPU.

σ Overall
Score

Sentiment
Accuracy

Paraphrase
Accurary

STS Cor-
relation

0.7 0.643 0.479 0.785 0.328
0.8 (default) 0.662 0.506 0.780 0.400
0.9 0.647 0.499 0.761 0.359
0.95 0.657 0.515 0.782 0.347
0.99 0.662 0.529 0.777 0.362
0.995 0.651 0.485 0.781 0.376

To determine the optimal value for σ in annealed sampling, which, for context, is defined as follows:

pi ∝ Nα
i , α = 1− σ

e− 1

E − 1
,

9

http://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
http://www.aclweb.org/anthology/P11-1015
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
http://arxiv.org/abs/1902.02671
http://arxiv.org/abs/1902.02671
http://arxiv.org/abs/1706.03762

where pi is the probability with which we select task i, Ni is the number of training examples for
task i, and α changes with each epoch e, E is the total number of epochs.

We used annealed sampling as the only extension on top of the BERTBASE model, and trained with
various values for σ. We show the results in Table 3, σ = 0.99 yielded the highest overall score.
While other σ values had higher accuracies on paraphrase detection and STS, σ = 0.99 won out
overall due to significantly higher sentiment classification accuracy.

10

	Key Information to include
	Introduction
	Related Work
	Approach
	Baseline
	Sampling Strategies
	Encoding Strategies
	SMART Regularization
	Additional Data

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Sentiment Classification
	Paraphrase Detection
	Semantic Textual Similarity

	Conclusion
	Ethics Statement
	Appendix: Optimal value for in Customized Annealed Sampling

