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Abstract

Concepts form the mental representations of words, and are used for high-level
thinking, reasoning, and decision making, representing a core difference between
humans and contemporary large language models (LLMs), which are trained at
the token-level. While work has been conducted to evaluate LLMs’ conceptual
understanding and to endow them with conceptual awareness, this work has mainly
worked on prompting models, and not their latent embedding spaces. Yet, concepts
have been encoded in embeddings for years: early embedding methods such as
word2vec encoded certain conceptual relationships (ex: hypernym-hyponym), as
apparent in the parallelogram rule.
Therefore, I explore whether a contemporary model can identify and extract differ-
ent aspects of in-context, concepts from their embeddings. To do that, I take very
polysemous words, which contain high contextual diversity and therefore aspects,
cluster different sentences containing each word, and used an LLM to describe
embeddings. Results show that the LLM can encode context-dependent aspects
of concepts in its embeddings, can determine the highlighted aspect of a word in
context, and can understand if a cluster of sentences is conceptually cohesive.
This analysis suggests that LLMs can generate accurate descriptions of their concep-
tual aspects in context, and present an evaluation method to verify their correctness
and another method to prove a model’s understanding of cohesive clusters. I also
confirm that there is no simple metric to identify noisy and incohesive clusters, but
do find a direct correlation between the number of clusters for a word and their
frequency.

1 Key Information to include

• Mentor: Chen Shani cshani@stanford.edu
• External Collaborators (if you have any): None
• Sharing project: No

2 Introduction

Concepts play an important part in human speech and reasoning. They provide the sustenance from
which words aim to convey, and transcend the linguistical differences between languages. They
are, essentially, the backbone for human thought [1]. When communicating, humans consider both
the concepts and the tokens necessary to convey them, which can lead to the same concepts having
various word representations.

On the other hand, present-day Large Language Models (LLMs) are currently trained and operate
only on the token level. This can lead to an unnaturally limited range of speech, as models operate
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only the probabilities of a word, and not their underlying concepts. Token-centric training can
also lead to a phenomenon known as surface form competition, where the probability for a given
concept is spread among its various word forms. [2], artificially hurting its chances of correctly being
output. Work has been conducted in creating concept-aware LLMs, and it has been demonstrated that
LLMs have some conceptual understanding when prompted directly with tests of logic, and it has
been determined that some models [3] do possess conceptual knowledge. In addition, conceptual
relationships (such as the hypernym-hyponym relationship) have historically been observed to be
mapped in early vector embeddings such as word2vec [4], specifically as seen in the parallelogram
rule. With the transformative potential of endowing LLMs with concepts, it is interesting to see if
contemporary models’ embeddings already do encode awareness of conceptual relationships, and
more excitingly, does a model’s latent embedding space map different aspects of the same concept
given varying contexts?

As such, I explore two research questions:

1. Does a model’s latent space encode the highlighted aspect(s) of a word given a context?
2. Given the noise present in the embedding space, is there a metric to easily detect or fix

clusters of embeddings that are conceptually incohesive?

I specifically examine very polysemous words, as these correlate to higher word frequency [5], and
higher word frequency leads to more contextual diversity [6], which would give us more aspects to
examine.

I present my findings that:

• We can find aspects of the same concept in a model’s contexualized embedding space, and
models are able to recognize and can extract a specific conceptual aspect of words in context,
and also understand when a cluster of sentences are not conceptually cohesive.

• There is a strong, significant correlation between the number of senses for a word, and the
number of embedding clusters generated. There is a direct correlation between the number
of clusters for a word and the frequency of the word in text.

• There is no observed simple metric from the data to determine or remedy the incohesivity of
a cluster.

3 Related Work

Conceptual awareness in models is nuanced and desireable goal with the potential to make LLMs
more robust and flexible to unimportant semantic variations. Current literature points to the notion
that models possess varying levels of conceptual understanding, and it has been determined possible
to train models on subsets of tokens which represent certain concepts, and not singular tokens,
both during the pretraining stage and, especially excitingly, the finetuning stage [7]. Conceptual
understanding has also been pursued in the field of visual question answering (VQA), with work
demonstrating that labeling images with their high level concepts improves image captioning and
sentence question answering [8]. The idea of focusing on concepts to handle semantic variation
has also been explored in computer vision, with recent work showing a marked improvement when
training vision models using visual concepts to help them map these to semantic concepts [9]. In
addition, work has been conducted to gauge LLM’s self-awareness of their capabilities and their
social intelligence [10], both of which contain very high-level, in-context conceptual knowledge. In
addition, researchers have introduced into some models a system to map input text to hidden neurons
that are trained to identify certain high-level human concepts, such as food and service quality, to
create bottlenecks that can then be used to perform downstream tasks such as sentiment analysis,
with the goal of improving model interpretability [11]. However, these works focus on determining
conceptual awareness or training concepts into models on the word-level, with not much attention on
the latent embedding spaces that could encode meaningful conceptual knowledge.

4 Approach

Task: Given a set χ of polysemous, multifaceted words (as defined by WordNet’s number of senses
for them), for a given word x ∈ χ, I want to find all the different aspects of the word that can be
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Figure 1: Approach Architecture.

represented and encoded in the model’s embeddings. I need to generate the contexualized embeddings
for the word x, cluster them, and have the model describe the aspect of the word being represented in
these clusters. I then want to evaluate the quality of these descriptions. The complete architecture is
seen in Figure 1, and each section below corresponds to a step in the figure.

An aspect of a word can include the various contexts in which it is used/interacted with and the
various scenarios that it inhabits, and also includes its formally defined senses. For example, the word
"coffee" can be used to describe a "coffee shop", be modified by a color such as "black coffee," or
even be a color itself, such as "coffee colored." Of course, a very polysemous word is also a very
multi-aspected one, as in the word "run". The distinction between whether a model describes an
aspect of a word as being an entirely distinct sense or simply a modification based on its context is not
significant; however, the model should recognize how a word affects and is affected by its context.

4.1 Extracting Sentences

Correlating to the first step in Figure 1, I start by extracting every sentence that contains the given
word x from our dataset. I also included instances of sentences that contained the plural form of
the word (i.e. suffixed with -s), if such a form is a valid word. Preliminary tests determined that
the cosine similarity between the singular and plural form of a noun was high (across a test of six
words, averaged .6-.7), and so should not significantly affect the final result. Due to ambiguity over
whether other forms of a word represent an aspect of the word or a completely different word (ex:
open vs opening), no other forms were included. For example, using the word "round", I would take
all sentences with the word "round" or "rounds", but not "rounding", or "around".

4.2 Generating Embeddings

As per the second step of Figure 1, I feed all of these sentences with the target word into a Llama2
[12] chat model, and extract the contextualized embedding for the word. For words that are tokenized
into multiple tokens, the resulting embeddings are averaged together.

4.3 Clustering Embeddings

For the third step, the embeddings were then clustered utilizing nVIDIA’s cuML library’s implemen-
tation of HDBSCAN, the algorithm of which is described in [13]. This algorithm finds areas of high
and low density. This algorithm was chosen because concepts are inherently hierarchical, and so this
would represent their relationships more accurately. This algorithm was also chosen over K-Means
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and Agglomerative clustering because these require a k cluster hyperparameter, which was inherently
indeterminate as I do not have, nor can expect, a fixed set of aspects to find. I chose a small minimum
sample size and small minimum cluster size relative to the size of the dataset, as these would produce
the most finegrained clusters that would better assist the model in extracting a singular aspect for this
cluster (exact numbers in 5.3).

4.4 Generating Cluster Descriptions

Once the clusters have been determined, each embedding in a cluster still corresponds to its original
sentence. I then pass all the sentences in a given cluster into a Llama3 [14] instruct model, and
prompt it to describe the aspect of the target word that is being represented in the cluster as well as
to determine if the cluster is cohesive. All clusters were clipped to 240 sentences, an empirically-
derived value that alleviated massive inputs that would exceed the model’s context length and caused
indeterminate behavior.1

5 Experiments

5.1 Data

The corpus I used consisted of the BookCorpus [15] dataset, a collection of about 7,000 self-published
works of literature from the website SmashWords. To find very polysemous, multifaceted words to
evaluate, 65 of NLTK’s WordNet [16] 100 most polysemous words were randomly chosen. Random
selection ensured that there was a slight variation in the polysemity of the words, in order to see its
effects on the clusters, and 65 was simply chosen due to the smaller scale scope of the project.

5.2 Evaluation method

Because I am working with concepts, it is difficult to establish a perfectly quantitative metric. Still,
to automate evaluation, I passed all the sentences associated with a cluster of embeddings into a
Llama3 8B instruct model and prompted it: You are given a list of sentences, all containing the
word <word>. State in up to five words what aspect of <word> is being represented in these
sentences in one line in the form: RESPONSE: <aspect>. Also state in only one word if there is
only one aspect of the word represented in the list of sentences in the format: ONE ASPECT:
<TRUE OR FALSE>. " Clusters that the model labeled as having one aspect, specifically containing
the string "ONE ASPECT: TRUE", were marked as cohesive.

Evaluation Task 1 To verify the accurateness of these generated descriptions as well as the correctness
of the model’s determination of cohesive versus non-cohesive clusters, I created my own evaluation
method. In this method, I randomly sampled a set of kwords words, and within them randomly
sampled ksents sentences from a random kclusters clusters the model labeled as cohesive. For each
sentence, the kcluster descriptions of the clusters were presented to a human evaluator alongside the
sentence, and they would select either one description if they confidently could tell which cluster
the sentence belonged to, multiple if it was ambigious (such as due to duplicate titles), or none if
they believed none of the descriptions were accurate. See Figure 2 for an example. A high number of
correct, single responses indicates strong cohesivity within clusters and distinctiveness between them,
and a high number of times the user correctly chose the cluster but with multiple choices chosen
indicates high cohesivity but low distinctiveness.

Evaluation Task 2 Additionally, to conversely verify that clusters labeled as having various aspects
or as being incohesive were correct, I also randomly sampled a set of words, clusters, and numbers
similar to the above evaluation metric. I then took the ksents random sentences for each cluster, and
displayed them alongside the description for the associated cluster, and then prompted the evaluator
to label the cluster as cohesive or incohesive. See Figure 3 for an example.

1In hindsight, we should have randomly sampled sentences rather than purely choosing the first k sentences.
The value 240 was also chosen through limited experimenting, but no rigorous testing was done to verify I had
the optimal value
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Figure 2: Example of Evaluation Question for Verifying Cluster Descriptions (Task 1)

The evaluator looks at sentences from a cohesive cluster, and chooses the right cluster description to
verify that the descriptions match the sentences .

Figure 3: Example of Evaluation Question for Verifying Model’s Incohesive Cluster Label (Task 2)

The evaluator looks at a incohesive (ie having multiple aspects) cluster description and it’s sentences,
and verifies that the cluster is indeed incohesive.

For both metrics, scores were calculated based on a simple ratio of correct answers to total answers.

5.3 Experimental details

For the embeddings, a Huggingface Llama2-7b-Chat model [12] was used. To evaluate the clusters, a
HuggingFace Llama3-8B-Instruct2 model was used, with a temperature of .2 and a top probability of
.9. For clustering, nVIDIA’s cuML’s HDBSCAN was used with the minimum number of samples
was set to 8, the minimum cluster size was set to 30, and the distance metric set to euclidean. For
plotting the embedding vectors, cuML’s UMAP was used to reduce the dimensionality to 2, using a
cosine distance metric, 40 neighbors, 240 epochs, and a random state of 2024.

For both human evaluation tasks, a sample of 10 words, each with 5 clusters, and for each cluster 5
sentences were used. For the purposes of this project, I was the human evaluator.

2I extracted Llama2 embeddings before I learned that Llama3 had been released just a month prior. Given
that Llama3’s instruct had better performance, I reasoned it would do better in the cluster description generation
task.
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5.4 Results and Analysis

5.4.1 Model Performance on Human Evaluation

I present the results for our previously-defined evaluation task here, summarized in Table 1.

Table 1: Cluster Cohesivity Evaluation Results
Choices Accuracy
Correct Cluster, one cluster chosen 56%
Correct Cluster, multiple clusters chosen 18%
Total Accuracy 74.8%

*Note: Guessing baseline for one cluster is 20%

As described before in 5.2, I wanted to verify that the model can correctly produce accurate cluster
descriptions, as well as correctly identify when a cluster is cohesive or not. My previously created
and defined evaluation method aims to do that.

Based on the human evaluator, the model was able to classify a sentence (using the task from Figure
2 into solely the correct cluster 56% (noting that randomly guessing has a baseline accuracy of 20%)
of the time. However, there were some duplicate and slightly overlapping titles, so 18% of the time
the cluster assigned by the model was one of the multiple chosen by the evaluator, meaning that the
model was able to generate correct descriptions for the clusteres 74.8% of the time. This suggests
that the model is acceptably capable of extracting the nuanced aspects of certain concepts, and
can also identify that these extracted aspects indeed represent a cluster of sentences.

Some examples from this task are given above in Table 2. In the first row, the reader can see an
example where the model and user agree on the description. In the second row, the model generated
a very close but not quite correct description, and the user chose instead another description that
the model generated for a different cluster. In, the third row, the second user-chosen description is
from a different cluster. This illustrates how some of the descriptions the model generated for other
clusters can sometimes overlap with multiple clusters, leading to ambiguity, hence why the evaluator
chose two responses. Some of the descriptions also highlight the dynamic nature of these aspects of
concepts, and the LM’s ability to identify them: for instance, the word "wing" was used as a name
of both a geological place and a person’s name, and the clustering algorithm was able to separate
these instances and the model was able to detect this difference, despite the fact that using "wing" as
a name is not common nor most likely pretrained for.

In addition, the model, based on a human evaluator (which for the purposes of the project was me),
correctly classified clusters as being incohesive or having various aspects of a word represented
72.5% of the time, using the evaluation metric (ie, being presented with sentences from a incohesive
cluster, and having the evaluator verify the sentences do indeed show multiple aspects of the same
word) of which is described above, and again an example is given in Figure 3.

5.4.2 Cluster Characteristics and Noise

Inital Attempts to Remedy Incohesive Clusters The model would have a difficult time describing
certain clusters, often outputting "various aspects of <word> represented", or would produce duplicate
cluster descriptions. To remediate this, reclustering these groupings was attempted. For indeterminate
descriptions, I attempted to run HDBSCAN on just the indeterminate clusters, and for the duplicate
clusters, I pooled all the embeddings from these clusters and reran HDBSCAN. However, it was

Table 2: Example of User Responses to Evaluation Task
word sentence model-assigned description user chosen description
medium "My steak’s medium rare." "cooking temperature" "cooking temperature"
issue "that’s not the issue’ "disagreement or distraction" "problematic situation"
medium “no’, said the medium" "communication aspect" ["communication aspect", "aspect of medium as a person"]

*Note: All descriptions are model generated.
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observed that there was only a marginal improvement, usually one or two better-described clusters.
As such, as per research question 2, I was also interested to see if there was any metric or variable
that could be used to easily identify and recluster incohesive clusters.

This was especially important because our clustering algorithm labeled a significant amount of points
as noise, ranging from 30% to 80%3. Empirically, it has been previously shown that polysemity
correlates positively to word frequency [5], and my clusters include senses for words and the in-
context ways those senses are used, so if the number of clusters was not somehow correlated to word
frequency, then these variables could be responsible for incohesive clusters. To analyze this, I present
my resulting data on the relationships between number of senses, clusters, frequency of a word, and
also other related variables.

Overall, there was no significant relationship between the cluster size and number of clusters),
with a correlation score of -.24. There was also a significant overlap between the length of
clusters that were determined to be incoherent and those determined to be coherent, with the
median cluster length of 59 and 57 respectively. Words most frequently had below 50 clusters.

The cluster sizes tended to be around 50-100 sentences. The relatively high number of clusters
also signifies that the model already encodes a large range of aspects of concepts. This points to the
fact that some concepts are highly modified by their context, and also that the model is able to detect
variations in it.

Below in Table 3, I also present the correlation scores between the number of clusters, frequency of a
word, the number of a word’s senses, and their median cluster size.

X var Y var Correlation Significance
# clusters frequency of word .94 1.8e-21
# senses # clusters .69 1.9e-07
# senses frequency of word .62 5.4e-06
# clusters median cluster size -.37 .002
# senses median cluster size -.24 .02

Table 3: Relationships between number of clusters, number of senses, frequency of word, and
median cluster size.

As shown in Table 3 and displayed in Figure 4, these demonstrate that the number of senses of a word
can be used as a rough indicator of how many clusters one should expect. Yet, the fact that I show
high correlation between number of clusters and word frequency, coupled with the demonstrated
constant difference between the number of cohesive and incohesive clusters 5.4.2 across all sense
levels, shows that we cannot look at number of clusters and word frequency to predict and
remedy incohesive clusters. Instead, one can only merely look at the number of senses for a word
and the frequency of the word to understand if enough clusters have been identified.

As for the other potential variables that could explain cohesivity, the number of sentences in each
cluster did not appear to have an consistent effect on the cohesivity of the cluster, with an exception of
extremely large clusters (>4000 sentences), with the median absolute difference between the number
of cohesive clusters and incohesive clusters being 1; however, with a high standard deviation of 67.
Therefore, I find that there is no easy metric to predict and fix incohesive clusters.

However, these correlations do demonstrate our conclusion for research question 1. Specifically, it
is known that the word frequency positively correlates to the number of senses a word has, which
I demonstrate. We know that the number of senses correlates, but not completely, to the number
of clusters, which are composed of our embeddings. That means I can safely assume that the other
part of the correlation is contributed by the aspects of the word (meaning, the same sense used in
different contexts), which we know as I have established that the aspects are represented in the cluster
descriptions. Therefore, this demonstrates again that the senses and contexual aspects of a word
directly correlate to the clusters, or embeddings, of the model. This table also serves as a sanity
check to verify that our data is consistent with previously-observed semantic patterns.

3Density-based clustering algorithms allow for points to be classified as noise, i.e. not belonging to any
cluster.
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Figure 4: Number of Clusters per Word to its Frequency

*Note: Due to performance limitations, words were accidentally limited to 150,000 sentences. These
points are depicted in red. All correlation values were calculated on the non-limited points.

6 Conclusion

Based on the experiments, our chosen LLM cleary encodes certain conceptual knowledge in its
latent embedding spaces, even though it was never explicitly optimized to do so. The LM can also
identify conceptual aspects that are present in the text that was clustered using its own embeddings,
signifying a direct relationship between the conceptual knowledge in its latent spaces and in its output.
I present a simple and robust model-agnostic evaluation method to verify the accuracy of a model’s
description of clusters, and use this to verify that the LLMs have the ability to automate the extraction
of concepts from context and to determine the conceptual cohesivity of text.

I also discover that there is no easy metric from our data to determine if a cluster is incohesive or a
way to easily remedy it. However, I show that the direct relationship between the number of clusters
and the frequency of a word can be used to verify that one has gathered enough clusters for a certain
word, and this relationship and our data is supported by previously-observed semantic patterns.

Of course, it would be interesting to see if our results hold up for other datasets as well, given that
BookCorpus is a relatively small and niche corpus. The use of external human evaluators to run
our task on larger selections of data would also help to verify our findings. Duplication of model
labels was also not addressed; however, one could possibly use the fact that models can somewhat
understand concepts to prompt the model to identify and recluster clusters that have near-identical
labels. Finally, a considerable amount of data is removed due to noise. so testing our findings on
other datasets is important. Additionally, I only used Llama models in our implementation, and I used
a different Llama version to extract the embeddings and to generate cluster descriptions, so verifying
our results with other models would prove informative.

7 Ethics Statement

Because the main corpus of the project is a mainly fiction literature, some concepts analyzed may
not be factually correct, and can contain harmful language. Also, since I directly cluster word
embeddings, discriminatory concepts encoded in these latent spaces can accidentally be clustered
together (such as gendered language and certain careers having a low vector distance). To mitigate
this, I would include an option in my human evaluation program to flag problematic clusters and
sentences, and also label which sentences come from fictional sources.
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A Appendix (optional)

If you wish, you can include an appendix, which should be part of the main PDF, and does not count
towards the 6-8 page limit. Appendices can be useful to supply extra details, examples, figures,
results, visualizations, etc. that you couldn’t fit into the main paper. However, your grader does not
have to read your appendix, and you should assume that you will be graded based on the content of
the main part of your paper only.
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